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ABSTRACT: This paper explores security risks in state estimation based on multi-sensor systems that implement a
Kalman filter and a χ2 detector. When measurements are transmitted via wireless networks to a remote estimator,
the innovation sequence becomes susceptible to interception and manipulation by adversaries. We consider a class of
linear deception attacks, wherein the attacker alters the innovation to degrade estimation accuracy while maintaining
stealth against the detector. Given the inherent volatility of the detection function based on the χ2 detector, we propose
broadening the traditional feasibility constraint to accommodate a certain degree of deviation from the distribution of
the innovation. This broadening enables the design of stealthy attacks that exploit the tolerance inherent in the detection
mechanism. The state estimation error is quantified and analyzed by deriving the iteration of the error covariance matrix
of the remote estimator under these conditions. The selected degree of deviation is combined with the error covariance
to establish the objective function and the attack scheme is acquired by solving an optimization problem. Furthermore,
we propose a novel detection algorithm that employs a majority-voting mechanism to determine whether the system is
under attack, with decision parameters dynamically adjusted in response to system behavior. This approach enhances
sensitivity to stealthy and persistent attacks without increasing the false alarm rate. Simulation results show that the
designed leads to about a 41% rise in the trace of error covariance for stable systems and 29% for unstable systems,
significantly impairing estimation performance. Concurrently, the proposed detection algorithm enhances the attack
detection rate by 33% compared to conventional methods.

KEYWORDS: Cyber-physical system; kalman filter; remote state estimation; Chi-square detection;
linear deception attack

1 Introduction
The deep integration of information technology with industrialization has significantly enhanced the

intelligence and networking capabilities of next-generation production systems, establishing higher stan-
dards for traditional single-point technologies. In this context, Cyber-Physical Systems (CPS) have emerged
as advanced systems that seamlessly integrate the physical environment, communication infrastructure,
and computational resources [1,2]. CPS integrate advanced technologies in computing, communications,
and control to enable dynamic regulation and real-time perception. These capabilities support the delivery
of information-centric services across complex engineering domains, thereby enhancing system reliabil-
ity, operational efficiency, and responsiveness [3]. These systems have found extensive applications in
environmental monitoring, industrial automation, navigation, and target tracking. Furthermore, network
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communication technology facilitates network-based control of physical processes, streamlining system
design and deployment while enabling more flexible and efficient management [4].

Unlike traditional physical systems that operate in relatively isolated environments, modern CPS sys-
tems inherently rely on openness and interconnectivity to maximize efficiency and scalability. However, this
openness also introduces vulnerabilities, exposing CPS susceptible to cyber threats within the information
layer. Such threats can trigger cascading effects, potentially leading to hardware failures and significant
system damage. Such as the SQL Slammer worm and the Stuxnet attacks, illustrate the serious risks that CPS
security vulnerabilities pose to national security and public safety [5,6].

The CPS attack model is structured into three aspects: the adversary’s apriori system model knowledge,
disclosure abilities, and disruption resources [7]. Based on this modeling, attacks are generally grouped
into three major types: 1) Denial of Service attack; 2) Replay attack; 3) False Data Injection attack [8].
Wei et al. investigated sequential DoS attacks against finite impulse response (FIR) systems, developing a
parameter identification algorithm to formulate optimal attack strategies based on the covariance matrix of
estimation error [9]. To mitigate impact of DoS attacks, Zhao et al. proposed an adaptive event-triggered
communication mechanism. This mechanism reduces communication resource consumption and alleviates
network bandwidth pressure by only transmitting data when necessary, based on specific event triggers rather
than continuous transmission. In addition, they developed a combined design method to jointly tune the
controller gain, and event-triggered weighting matrix [10]. Mo et al. examined how replay attacks influence
system behavior and evaluated whether such attacks can succeed under certain conditions. They further
proposed injecting minor variations into the control commands to help the system recognize and detect
these attacks [11]. To address periodic replay threats in CPS, Li et al. designed an encryption-based method
that ensures complete detection during an attack [12]. Naha et al. propose a detection method for replay
attacks that integrates signal watermarking with cumulative sum testing to enhance system resilience. By
optimizing the watermark signal’s variance to maximize the KLD, the method significantly shortens the
latency in identifying replay attacks [13]. Ni et al. investigated how reset attacks affect CPS, presented basic
and advanced reset attacks, and demonstrated validity of these attacks [14]. Remote state estimation with an
active eavesdropper, Ding et al. introduced a unified framework such attacks and proposed a stealthiness
metric derived from the estimator’s packet reception rate [15]. Pang et al. proposed a partial FDI attack
strategy aimed at networked stochastic systems. This strategy degrade the performance of a Kalman filter-
based output tracking control system by manipulating certain sensor measurements [16]. Xu et al. addressed
event-based remote state estimation attacks by proposing a false data injection strategy aimed at evading
the Chi-squared data detector while reducing the impact of the scheduler. They developed a two-channel,
scheduler-oriented false data injection method by altering the numerical characteristics of the innovation
signal [17]. Taking into account multiple forms of detection feedback, Li et al. proposed a novel estimation
framework designed to defend against false data injection attacks [18].

Existing research on stealthy attacks has made substantial progress in the field of CPS security. Anomaly
detection techniques have evolved significantly, with advanced methods leveraging deep learning models
to enhance adaptability and detection sensitivity. Alzubi proposed a GRU-based detection framework that
demonstrates improved performance in dynamic environments by effectively capturing temporal depen-
dencies [19]. Furthermore, Alzubi et al. introduced a deep learning-driven detection scheme that integrates
Frechet and Dirichlet distributions to enhance intrusion detection accuracy in industrial wireless sensor
networks [20]. Despite recent advances, residual-based detection remains highly relevant for resource-
constrained systems, owing to its minimal computational demands and ease of implementation. However,
linear deception attack strategies remain limited by strict feasibility constraints, often enforcing tight residual
conditions. Guo et al. formulated a linear attack with the condition that residual covariance remains
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unchanged [21]. An attack strategy aimed at maximizing system degradation was developed by Liu et al,
while strictly satisfying constraint TkPT T

k +B = P [22]. Li et al. extended their research on detecting
linear deception attacks in multi-sensor remote state estimation [23]. However, their work did not investigate
the impact of relaxing feasibility constraints on attack performance. To address these limitations, this paper
proposes a linear deception attack framework with relaxed feasibility constraints, enabling the attacker to
introduce controlled statistical deviations into the innovation signal. Furthermore, considering the charac-
teristics of multi-sensor systems, we design an adaptive detection algorithm that compares distributed state
estimates, thereby improving detection sensitivity under parameter uncertainty. The primary contributions
as follows:

1. We adopt a linear deception attack form broadly applicable to multi-sensor remote estimation systems
and establish the corresponding feasibility constraint. Recognizing the inherent statistical variability
of the detection function derived from the χ2 detector, we strategically relax this constraint to allow
controlled deviations from the nominal innovation distribution. The recursive formulation of the error
covariance under the proposed broadened constraint is rigorously derived using Kalman filtering
theory, thereby enabling a precise quantification of the attack’s detrimental effects on the system’s
estimation accuracy.

2. Under the broadened constraint scenario, we incorporate the predefined permissible deviation into
the estimation error covariance to construct an optimization-based objective function. Consequently,
the determination of attack parameters is transformed into a structured optimization problem.
Comparative analysis demonstrates that the proposed attack strategy markedly outperforms existing
approaches, yielding significantly larger estimation error covariance and thereby severely degrading
system performance.

3. Since single-sensor detection methods cannot be directly applied to multi-sensor scenarios, we propose
a novel adaptive detection algorithm specifically designed for such settings. This algorithm dynamically
adjusts detection parameters and leverages discrepancies in inter-sensor state estimation to identify
linear deception attacks. Simulation results demonstrate that our adaptive detection approach signifi-
cantly reduces the missed detection rate compared to traditional fixed-parameter detection algorithms,
thereby enhancing the reliability of multi-sensor CPS.

The structure of the remainder of this paper is as follows. Section 2 outlines the setup of CPS and briefly
reviews essential concepts. In Section 3, we examine the features of linear attacks and derive a targeted attack
strategy. A detailed account of the proposed attack detection method can be found in Section 4. Section 5
illustrates numerical results and simulation experiments. Lastly, Section 6 summarizes the contributions of
study then discusses possible directions for future research.

2 Cyber-Physical System Setup
The system configuration designed to support remote state estimation under cyber attack conditions,

illustrated in Fig. 1, comprises six core components: physical process, sensors, adversary, wireless commu-
nication network, remote estimator, and a false data detection mechanism. Sensors collect data from the
physical process and transmit measurements to the remote estimator through the wireless network. In this
configuration, the remote estimator transmits a centralized prior estimate to the sensor at each time step
through a dedicated feedback channel. Although this design slightly increases communication overhead,
it significantly reduces the computational burden requirements for a single sensor. To better support the
design of the attack strategies and detection algorithms, it is necessary to review representative classical and
emerging CPS attack and detection methods.
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Figure 1: System architecture

As shown in Table 1, a range of attack strategies have been proposed to compromise the state estimation
of CPS. Replay attack and DoS attack are simple to implement but often limited in their impact. Machine
learning-based adversarial attacks demonstrate strong performance, but they generally rely on prior knowl-
edge of training data or model structure, making them difficult to implement in real CPS environments. To
address these limitations, this paper proposes a linear attack strategy under relaxed feasibility constraints.
This design enables the attacker to degrade estimation performance while remaining undetectable within
acceptable statistical bounds.

Table 1: Overview of CPS attack strategies

Technique Description Evaluation metrics Datasets/Environments
Replay attack Reuses previously

recorded sensor data to
bypass detectors

Detection rate, false
alarm rate

Simulated LTI systems

DoS attack Prevent timely state
updates

Packet loss rate,
estimation error

Networked CPS
simulations

False data injection
attack

Injects false data into
sensor

Estimation deviation,
detection rate

LTI systems

ML-based attack Generates adversarial
inputs

Attack success rate,
detection robustness

ICS simulation
datasets

Note: LTI = Linear Time-Invariant; ICS = Industrial Control System.

As summarized in Table 2, recent years have seen the development of a variety of detection techniques
tailored to CPS.

Table 2: Overview of CPS detection methods

Technique Description Evaluation metrics Datasets/Environments
Graph signal

processing-based
Uses graph residual

energy to detect
Node-level accuracy,
graph residual energy

Smart grid simulation
networks

ML-based
detection

Learns temporal patterns
of anomalies using deep

neural networks

Precision, recall, F1-score ICS benchmark
datasets

(Continued)
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Table 2 (continued)

Technique Description Evaluation metrics Datasets/Environments
Federated

learning-based
Distributed anomaly

detection without
centralized data sharing

Global accuracy,
communication overhead

Multi-agent CPS
networks

Kalman residual
detection

Monitors innovation
residuals

Estimation error,
detection rate

Simulated linear
Gaussian systems

Despite notable progress, existing detection methods face several limitations. Graph-based approaches
can become computationally intensive for large-scale networks. Deep learning models require substantial
training data and may struggle with limited generalization. Federated learning introduces communication
and synchronization complexity, and Kalman residual methods often fail to detect stealthy or low-magnitude
attacks under noisy conditions. To address these challenges, we design a detection mechanism based on
adaptive that enhances sensitivity to persistent threats while maintaining a low false alarm rate. Furthermore,
the approach avoids large-scale model training or distributed coordination, making it suitable for real-time
deployment in noisy and resource-constrained CPS environments.

2.1 Process Model
We consider a networked system consisting of N wireless sensors and a single remote estimator, that

communicate in real time. Each sensor i ∈ N ≜ {1, 2, 3, . . . , N} observes the output of a linear time-invariant
process denoted by {x(k)} .

xk+1 = Axk + wk (1)
yi ,k = Ci xk + vi ,k (2)

k ∈ N denotes the discrete-time index, xk ∈ Rn represents system state vector, yi ,k ∈ Rmi indicates the
measurement vector collected by sensor i. The system matrix is given by A ∈ Rn×n and the observation matrix
corresponding to sensor i is denoted as Ci ∈ Rmi×n . The variables wk ∈ Rn denote the process noise and vi ,k ∈
R

mi denote the measurement noise. Both are zero-mean, independent, and identically distributed (i.i.d.)
Gaussian random variables with associated covariance matrices.

E[wkwl
T] = δkl Q(Q ≥ 0)

E[vi ,kvT
j , l ] = δi jδkl Ri(Ri > 0)

E[wkvi , l
T] = 0,∀k, l ∈ N, i , j = 1, 2, 3, . . . , N

The initial state x0 is a zero-mean Gaussian random vector with a positive definite covariance matrix
Π0 > 0. It is assumed to be statistically independent of both the noise wk and the noise vi ,k for all k ≥ 0.

When sensors transmit observations to a centralized fusion unit, the system behaves equivalent to that of
a single sensor directly communicating with a remote estimator under real-time conditions [24]. By defining

C ≜ [ CT
1 CT

2 CT
3 ⋅ ⋅ ⋅ CT

N ]T

yk ≜ [ yT
1,k yT

2,k yT
3,k ⋅ ⋅ ⋅ yT

N ,k ]T

vk ≜ [ vT
1,k vT

2,k vT
3,k ⋅ ⋅ ⋅ vT

N ,k ]T



4544 Comput Mater Contin. 2025;84(3)

R ≜ diag{R1 , R2, R3, ⋅ ⋅ ⋅ , RN}

The total measurement equation is

yk = Cxk + vk (3)

vk denotes a zero-mean Gaussian noise sequence with covariance matrix R [25]. The system is assumed
to satisfy the detectability condition for the pair (A, C), the controllability condition holds for the pair
(A,

√
Q).

2.2 Remote Estimation
Given the demands of real-time performance and high accuracy, it is computationally inefficient for

each sensor to independently calculate its prior estimate using only local information. Consequently, the
centralized prior estimate feedback mechanism employed in this study provides significant advantages that
outweigh the minor increase in communication overhead.

At each discrete time step, sensors transmit their local measurements to the remote estimator over a
wireless communication network. The estimator employs a Kalman filter to perform real-time state esti-
mation by minimizing mean squared error. This technique operates by recursively updating state estimates
through the fusion of prior predictions and incoming measurements The Kalman filtering process involves
two key steps: predicting the system state and correcting it using the latest observations.

x̂k∣k−1 = Ax̂k−1

Pk∣k−1 = APk−1AT + Q
Kk = Pk∣k−1CT(CPk∣k−1CT + R)−1

x̂k = x̂k∣k−1 + Kk(yk − Cx̂k∣k−1)
Pk = (I − Kk C)Pk∣k−1

where x̂k∣k−1 and x̂k are the a priori and the a posteriori minimum mean squared error (MMSE) estimates
of the state xk in the Kalman filter, and Pk∣k−1 and Pk are the corresponding estimation error covariances.
The recursion is initialized with x̂0 = 0 and P0 = Π0 > 0. The gain matrix Kk determines the weighting of
the current measurement in updating the state estimate For notational clarity in the following analysis, we
introduce:

h(X) ≜ AXAT + Q
g̃i(X) ≜ X − XCT

i (Ci XCT
i + Ri)−1Ci X

g̃(X) ≜ X − XCT(CXCT + R)−1CX

Although Kalman filter employs a time-varying gain Kk , both the estimation error covariance and
the gain matrix converge exponentially to a unique steady-state solution, irrespective of the initial con-
ditions, provided that the pair (A, C) is detectable and (A,

√
Q) is controllable. The steady-state values

corresponding to the local and centralized Kalman filters are defined as follows:

Pi ≜ lim
k→∞

Pi ,k∣k−1 , Pi ≜ lim
k→∞

Pi ,k

P ≜ lim
k→∞

Pk∣k−1 , P ≜ lim
k→∞

Pk
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The matrices Pi , Pi , P, P represent the unique solutions to the corresponding equations, each being
positive semi-definite:

h ○ g̃ i(X) = X , g̃ i ○ h(X) = X
h ○ g̃(X) = X , g̃ ○ h(X) = X

The fixed-gain representations for both local and centralized Kalman filter are derived below, without
loss of generality:

Ki ≜ Pi CT
i (Ci Pi CT

i + Ri)−1

K ≜ PCT(CPCT + R)−1

Under these conditions, Kalman filter operates with a fixed gain, recursive update of x̂k is given by the
following expression.

x̂k = x̂k∣k−1 + K(yk − Cx̂k∣k−1) (4)

In absence of attack, the communication link between sensors and remote estimator is assumed to be
ideal, meaning that no packet loss, delay, or quantization distortion occurs under normal conditions. All
transmitted innovation sequences are reliably received by the estimator. This assumption guarantees that any
anomalies detected in the innovation statistics can be attributed solely to potential malicious attacks, rather
than network-related factors.

For local Kalman filters, the innovation corresponding to sensor i is defined as zi ,k ≜ yi ,k − Ci x̂i ,k∣k−1.
In practical scenarios, each intelligent sensor processes its own raw measurement locally and then sends
the resulting innovation to remote estimator. In distributed multi-sensor systems, individual sensors are
unable to independently compute their local a priori estimates x̂i ,k∣k−1 due to the absence of information
from other nodes. To address this, a more efficient strategy involves the remote estimator broadcasting
a centralized a priori estimate x̂k∣k−1 at each time instant, thereby significantly reducing communication
overhead [26]. Under this strategy, the innovation for each sensor is redefined as zi ,k = yi ,k − Ci x̂k∣k−1.
During nominal conditions, the innovation sequence follows an independent and identically distributed
(i.i.d.) pattern, characterized by a zero-mean Gaussian distribution with a specific covariance structure. In
the case of centralized Kalman filtering, the corresponding innovation can be concisely expressed as follows:

zk = yk − Cx̂k∣k−1

Transmitting innovations instead of raw measurements offers significant advantages, as innovations
typically demonstrate lower average signal amplitudes. This leads to reduced communication bandwidth
requirements and decreased sensor energy consumption, thereby improving overall communication effi-
ciency [27]. Additionally, because the innovation sequence inherently follows a zero-mean white Gaussian
distribution, it offers a statistical foundation for false data detectors to reliably ascertain whether the system
is subject to cyber-attacks or data anomalies.

2.3 False Data Detector
Although machine learning-based detection methods have gained popularity in recent years due to

their flexibility and adaptability, the χ2 detector remains better suited to the problem addressed in this
study. χ2 detector is constructed based on statistical distribution properties of the innovation sequence,



4546 Comput Mater Contin. 2025;84(3)

with clear mathematical derivations and explicit assumptions and χ2 detection typically computed as
gk = z⊺k P−1zk , involves only simple matrix operations, ensuring low computational complexity that is well
suited for real-time and embedded system applications. In contrast, machine learning methods gener-
ally impose considerable computational burdens, making them less appropriate for resource-constrained
environments. Moreover, the Chi-square detector does not require large volumes of training data, thereby
avoiding common issues associated with machine learning, such as data availability challenges, overfitting,
and generalization errors. Since the innovation sequence itself is a key statistical quantity derived from the
Kalman filter, the Chi-square detector naturally integrates with the estimation framework. But machine
learning methods require additional feature extraction and data processing steps, which increase system
complexity. Therefore, the Chi-square detector offers a more efficient, reliable, and theoretically grounded
choice for anomaly detection in multi-sensor remote estimation systems.
Theorem 1. Consider the LTI system governed by Eqs. (1) and (2) under Kalman filtering. In this setting,
the innovation zi ,k corresponding to the i-th local Kalman filer follows a steady-state Gaussian distribution.
N (0, Ci Pi CT

i + Ri) and E[zi ,k zT
i , l ] = 0 for all k ≠ l .

Proof of Theorem 1. Noting êk = xk − x̂k∣k−1, according to Eq. (2), rewrite zi ,k :

zi ,k = yi ,k − Ci x̂k∣k−1

= Ci xk + vi ,k − Ci x̂k∣k−1

= Ci êk + vi ,k

The error covariance becomes

E[zi ,k zT
i ,k] = Ci E[êk êT

k ]CT
i + E[vi ,kvT

i ,k]
= Ci Pi CT

i + Ri

◻
In the same way, in the centralized Kalman filter framework, the innovation term zk = yk − Cx̂k∣k−1 also

follows N (0, CPCT + R) with cross-time expectations E[zk zT
l ] = 0 for all k ≠ l .

The χ2 detector identifies anomalies by evaluating the cumulative sum of the normalized innovation
sequence. The detection procedure adheres to a hypothesis testing criterion at each step k

gk =
k
∑

j=k−J+1
zT

j P−1z j
H0
≶
H1

η (5)

where P = CPCT + R, J represents the detection window size, and η denotes an appropriately chosen
detection threshold. With the aim of regulate the false alarm rate of detection strategy, the threshold η
is determined according to a predefined significance level α.η is selected as the (1 − α) quantile of the
Chi-squared distribution χ2(mJ), such that it satisfies the specified confidence requirement

P(gk > η ∣ H0) = α

Null hypothesis H0 indicates that system operates under normal conditions, whereas alternative hypoth-
esis H1 corresponds to an ongoing attack. The normalized detection statistic defined in Eq. (5) follows the χ2

distribution with mJ degrees of freedom where m = ∑N
i=1 mi [28]. If the statistic gk exceeds the predefined

η, the detector issues an alarm. Otherwise, the measurement is considered normal and passes detector.
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3 Linear Attack Strategy
This section formulates a linear deception attack and revisits conventional feasibility constraint. To

account for the variability of the χ2 detection statistic, we propose a generalized extension of the original
constraint and its impact on system performance is analyzed. Finally, establish an objective function in
conjunction with the selected deviation from the distribution of the innovation to determine specific
attack parameters.

3.1 Linear Deception Attack
Consider an attacker with full knowledge of the system model and the capability to intercept and modify

measurement data in real time. Given this assumption, the attacker can manipulate the innovation sequence
to any desired value [29]. The corresponding strategy is expressed as

z̃k = fk(zk) + bk

z̃k denotes the innovation term that has been altered by the attacker, fk represents a general function
defined over a suitable domain, and bk ∈ Rm is a Gaussian random vector that is independent of zk .

However, if the function fk is nonlinear, it becomes difficult to rigorously analyze the impact of
the attack, as statistical properties of modified innovation sequence cannot be precisely characterized. In
contrast, adopting a linear attack strategy enables explicit quantification of both the stealthiness constraint
and the attack’s effect, thereby facilitating the design of effective stealth attacks. Consequently, this study
focuses on linear deception attacks, where fk is defined as a linear operator acting on the innovation signal
zk . The corresponding attack mechanism is as follows:

z̃k = Tkzk + bk (6)

Tk ∈ Rm×m denotes a configurable attack matrix. The attacker can compute the steady-state Kalman
filter configuration along with the corresponding innovation statistics. Under this assumption, the forged
innovation z̃k follows an i.i.d. zero-mean Gaussian distribution with covariance TkPT T

k +B. Attacker is
capable of intercepting and altering innovation sequences in real time, without incurring observable delays.
Given limited disruption capacity, the attacker may only target a subset of sensor channels by imposing
structural constraints on Tk . If forged innovation z̃k matches statistical profile of nominal innovation zk ,
then the linear attack defined in Eq. (6) can evade detection, as it satisfies the test condition of Eq. (5). That
is to say, z̃k must conform to the N (0, P) which means that attack condition can be defined as

TkPT T
k +B = P (7)

In previous work, the feasibility condition for stealthy attacks was defined as a zero-deviation constraint,
indicating that the residual distribution during an attack must precisely align with the normal case. But the
detection statistic gk defined in Eq. (5) is a random variable that inherently fluctuates due to its underlying
χ2 distribution with mJ degrees of freedom. Even under normal conditions, the statistic exhibits a mean of
E[gk] = mJ and a variance of Var(gk) = 2mJ, implying that gk does not remain constant but varies within a
probabilistic confidence interval. As long as the statistics after the attack satisfy P(g̃k ≤ η) ≈ P(gk ≤ η), the
purpose of bypassing the detector can be achieved. We express the new constraint as follows:

∥Tk PT⊺k +B −P∥F ≤ ε



4548 Comput Mater Contin. 2025;84(3)

After attack, P̃ = TkPT T
k +B is the covariance of z̃k . The expected detection statistics are as follows:

E[g̃k] =
k
∑

j=k−J+1
E[z̃⊺j P−1 z̃ j] =

k
∑

j=k−J+1
tr(P−1P̃) = J ⋅ tr(P−1P̃)

The deviation can be estimated by the trace inequality

∣E[g̃k] − mJ∣ = J ⋅ ∣tr(P−1(P̃ −P))∣ ≤ J ⋅ ∥P−1∥F ⋅ ∥P̃ −P∥F (8)

From Eq. (8), deviation of the expected detection statistic is proportional to the Frobenius norm of the
covariance perturbation. Thus, by choosing ε

ε ≤
√

2mJ
J ⋅ ∥P−1∥F

(9)

Eq. (9) ensures that the detection statistics after the attack are still within the fluctuation range of normal
system operation, thereby maintaining the concealment of the attack in a statistical sense.

3.2 Performance Analysis
Malicious attackers often formulate strategies aimed at undermining system reliability by introducing

substantial estimation errors into the remote estimator. Given the LTI system described in Eqs.(1) and (3),
and considering a linear deception attack as specified in Eq. (6), the resulting state estimate evolves as follows:

x̃k∣k−1 = Ax̂k−1 (10)
x̃k = x̃k∣k−1 + Kz̃k (11)

When the χ2 detector fails to identify an anomaly, and the system is mistakenly considered to be
operating normally, allowing the remote estimator to continue functioning. In such cases, due to the use of
compromised data, the estimated state gradually deviates from the true state, ultimately degrading overall
system performance.

To quantify this deviation, we define a priori error ẽk∣k−1 as difference between xk and a priori state
estimate x̃k∣k−1 after an attack, one has ẽk∣k−1 = xk − x̃k∣k−1. Similarly, the a posteriori error ẽk is defined as
the deviation between the xk and the updated estimate x̃k , given by ẽk = xk − x̃k .

Then, the a priori error covariance matrix P̃k∣k−1 can be expressed as P̃k∣k−1 = E[ẽk∣k−1 ẽT
k∣k−1]. And the

a posteriori error covariance matrix P̃k can be expressed as

P̃k = E[ẽk ẽT
k ]

= E[(xk − x̃k)(xk − x̃k)T]
= E[((xk − x̃k∣k−1) − Kz̃k)((xk − x̃k∣k−1) − Kz̃k)T]
= P̃k−1 + K(TkPT T

k +B)KT − E[Kz̃k(xk − x̃k∣k−1)T] − E[(xk − x̃k∣k−1)z̃T
k KT]

(12)
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To obtain the last two terms of Eq. (12), substituting Eq. (11) into ẽk∣k−1 = xk − x̃k∣k−1, we can obtain

ẽk∣k−1 = xk − x̃k∣k−1

= Axk−1 + wk−1 − Ax̃k−1

= A(xk − x̃k−1∣k−2) − AKz̃k−1 + wk−1

= Ak(x0 − x̂0∣−1) +
k
∑
i=1

Ai−1wk−i −
k
∑
i=1

Ai Kz̃k−i

(13)

Introducing the a priori error êk∣k−1 between the xk and the a priori state estimate x̂k∣k−1, one has

êk∣k−1 = xk − x̂k∣k−1

= Axk−1 + wk−1 − Ax̂k−1

= Axk−1 + wk−1 − A(x̂k−1∣k−2 + Kzk−1)
= A(I − KC)(xk−1 − x̂k−1∣k−2) + wk−1 − AKvk−1

(14)

Substituting Eqs. (3) and (14) into Eq. (6) for expansion and iteration, we can get

z̃k = Tkzk + bk

= Tk(Cxk + vk − Cx̂k∣k−1) + bk

= TkC(A(I − KC)(xk−1 − x̂k−1∣k−2) + wk−1 − AKvk−1) + Tkvk + bk

= TkC(A(I − KC))k(x0 − x̂0∣−1) +
k
∑
i=1

Tk C(A(I − KC))i−1wk−i

−
k
∑
i=1

Tk C(A(I − KC))i−1AKvk−i + Tkvk + bk

(15)

It is known that E[z̃k z̃T
l ] = 0 for all k ≠ l , so the last term of Eq. (13) and z̃k are independent of each

other. Since x0, wk , vk and bk are mutually independent, the last three terms of Eq. (15) and the first two
terms of Eq. (13) are also independent of each other.

Based on the above analysis, the third term of Eq. (12) is obtained

E[Kz̃k(xk − x̃k∣k−1)T] = E[K(Tk C(A(I − KC))k(x0 − x̂0∣−1)

+
k
∑
i=1

Tk C(A(I − KC))i−1wk−i) × (Ak(x0 − x̂0∣−1) +
k
∑
i=1

Ai−1wk−i)T]

= KTk C((A(I − KC))k × E[(x0 − x̂0∣−1)(x0 − x̂0∣−1)T](Ak)T

+
k
∑
i=1

(A(I − KC))i−1E[wk−iwT
k−i](Ai−1)T)

= KTk C((A(I − KC))k P(Ak)T +
k
∑
i=1

(A(I − KC))i−1Q(Ai−1)T

= KTk CP (16)

Similarly, the fourth term of Eq. (12) follows:

E[(xk − x̃k∣k−1)z̃T
k KT] = PCT T T

k KT (17)
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Therefore, the error covariance can be expressed as follows:

P̃k = AP̃k−1AT + Q + K(TkPT T
k +B)KT − KTk CP − PCT T T

k KT (18)

3.3 Computation of the Optimal Attack Strategy
When TkPT T

k +B ≠ P , to achieve optimal impact, attacker aims to maximize P̃k , as defined
in Eq. (18), under linear deception attack. Specifically, the objective is to maximize tr(P̃k).

Attacker predefines the random variable bk to follow a Gaussian distribution characterized by zero mean
and covariance B. By selecting a minor deviation from the innovation distribution, the attack matrix Tk can
be determined under the widening constraint by formulating the objective function presented in Eq. (19).

max
Tk∈Rm×m

tr(P̃k) (19)

s.t.∣∣TkPT T
k +B −P ∣∣F = ε

where ε represents the deviation from the distribution of the innovation chosen by the attacker and given
by Eq. (9).

Further analysis of Eqs. (18) and (19), it can be seen that maximizing the trace of the error covariance
matrix in Eq. (18) is mathematically equivalent to optimizing the objective function tr(K(TkPT T

k +
B)KT − KTk CP − PCT T T

k KT). As a result, the problem of solving the attack strategy under the widening
constraint shown in Eq. (19) can be transformed into an optimization problem as follows:

max
Tk∈Rm×m

tr(K(TkPT T
k +B)KT − KTk CP − PCT T T

k KT) (20)

s.t.∣∣TkPT T
k +B −P ∣∣F = ε

The attacker through several means, such as insider threats or the leakage of system parameters by staff
can obtain system matrices A and C. The noise covariances Q and R can be estimated through statistically
analyzing the measurement sequences collected during periods of normal system operation. With knowledge
of these parameters, the attacker is able to compute the steady-state covariance matrix P by solving the
associated Riccati equation. Additionally, the attacker can derive the innovation sequence, which is modeled
as a Gaussian distribution with zero mean and covariance P . In practical engineering applications, when
dimensions of attack matrix Tk ∈ Rm×n are moderate, obtaining a closed-form solution for the optimization
problem can be computationally challenging. Here a gradient-based numerical optimization approach is
employed to approximate the optimal solution of the attack matrix.

To facilitate optimization, we present a Lagrangian formulation

L (Tk , λ) = tr(KMK⊺ − KTk CP̄ − P̄C⊺T⊺k K⊺) + λ (∥M −P∥2
F − ε2) (21)

where M = TkPT⊺k +B and E = M −P . The Eq. (21) becomes

L (Tk , λ) = tr(KTk PT⊺k K⊺) − 2tr(KTk CP̄) + λ ⋅ tr(E⊺E) + tr(KBK⊺)

The gradient is obtained by differentiating the objective function L with respect to Tk

∂L

∂Tk
= ∂

∂Tk
(tr(KTkPT⊺k K⊺) − tr(KTk CP̄) − tr(P̄C⊺T⊺k K⊺) + λ ⋅ tr(E⊺E))

= 2K⊺KTkP − K⊺CP̄⊺ − K⊺CP̄⊺ + 2λ(E)PTk
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= K⊺KTkP − K⊺CP̄⊺ + 2λ(TkPT⊺k +B −P)PTk

where E = TkPT⊺k +B −P . A gradient descent scheme is then applied, updating Tk iteratively as follows:

T(i+1)
k = T(i)

k − η ⋅ ∇Tk L (T(i)
k , λ)

The step size η determines the magnitude of each update during the iterative optimization. The
procedure is terminated when any of the following conditions is met: Frobenius norm of the gradient
satisfies ∥∇Tk L ∥F < δ; or the constraint ∥Tk PT⊺k +B −P∥F ≈ ε is approximately fulfilled. This design of
optimized attack strategies is of broad relevance in CPS security, particularly in domains such as electric
vehicle infrastructure [30].

The proposed attack framework does not require simultaneous interference with all sensor chan-
nels. Instead, the attacker can selectively target a subset of sensor innovations by strategically combining
attack resources. While the attack matrix Tk ∈ Rm×m is obtained though solving the optimization problem
in Eq. (20), the problem formulation itself is under the attacker’s control. Structural constraints can be
imposed on Tk to enable structured attacks.

The solution obtained is denoted as T∗k . The attack algorithm at Algorithm 1.

Algorithm 1: Attack Algorithm
Input: x̂0, P0, B
Output: x̃k , P̃k
/*During normal operation of the system*/
for k = 1 ∶ step do

x̂k∣k−1 = Ax̂k−1;
Pk∣k−1 = APk−1AT + Q;
Kk = Pk∣k−1CT(CPk∣k−1CT + R)−1;
x̂k = x̂k∣k−1 + Kk(yk − Cx̂k∣k−1);
Pk = (I − KkC)Pk∣k−1;

end
/*System reaches steady state*/
P = Pk∣k−1;
P = CPCT + R;
K = PCT(CPCT + R)−1;
/*System reaches steady state*/
for k = 1 ∶ step do

if Launch Attack then
Obtain the T∗k by solving Eq. (21);
Replace the original innovation zk by z̃k = T∗k zk + bk ;

else
Keep the original innovation at step k;

end
end

After solving Eq. (20) to obtain T∗k and designing a specific attack strategy based on z̃k = T∗k zk + bk ,
the attacker can first compute the value of the χ2 detection function under attack using Eq. (5) to determine
whether it falls within the normal fluctuation range before deciding to execute the attack. If an attack occurs
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and the χ2 detection function value remains below the threshold established by the system, the detector will
interpret the system as operating normally.

The proposed attack strategy relaxes the traditional strict feasibility constraint by introducing a small
deviation bounded by a tolerance parameter ε, as shown in Eq. (20). Traditional detection schemes based
on residual monitoring are insufficient, because they assume strict adherence to the nominal distribution
and lack mechanisms to detect small but systematic deviations. The attack discussed in this paper precisely
exploits this statistical uncertainty. Effective defense would either require significantly tightening the
detection thresholds, which would inevitably lead to a higher false alarm rate, or introducing complex
multi-dimensional detection frameworks, which increase the risk of missed detections due to difficulties in
parameter tuning.

Moreover, the attack formulation explicitly integrates a bounded relaxation of the detection feasibility
constraint. As defined in Eq. (20), the objective is to maximize the degradation of remote estimator’s error
covariance, subject to the relaxed constraint ∣TkPT⊺k +B −P ∣F ≤ ε. The parameter ε explicitly controls
the allowable statistical deviation, thus providing a trade-off mechanism: a larger ε permits more powerful
attacks but increases the risk of detection, whereas a smaller ε ensures better stealthiness but limits the attack
impact. This design enables the attacker to flexibly balance between effectiveness and stealth.

Real-world CPS face several practical constraints, such as communication noise, limited computational
resources, and strict real-time requirements. However, the proposed methods remain practical. Matrix
operations involved in Eqs. (8) and (21), such as trace evaluations and Frobenius norm calculations, scale
quadratically with the number of sensors, which keeps the computational burden manageable for embedded
processors typically used in smart grid substations.

4 Detection of Linear Attack
As previously discussed, a linear attack can evade detection by conventional detectors. To determine

whether any sensors have been compromised, a Kalman filter can be employed to estimate the measurements
of each individual sensor.

At each time k, note Δx̂i j ,k = x̂i ,k − x̂ j ,k = (x̂i ,k − xk) − (x̂ j ,k − xk) where x̂i ,k represents the
a posteriori state estimate of the i-th sensor and x̂ j ,k represents the a posteriori state estimate of the
j-th sensor.

In the absence of attacks and under steady-state conditions, we are able to obtain that x̂i ,k − xk and
x̂ j ,k − xk are zero-mean Gaussian. Based on statistical knowledge, Δx̂i j ,k follows Gaussian distribution
N (0, Pi j ,k) where the covariance term Pi j ,k can be obtained in advance through process simulation.
However, in presence of an attack, the a posteriori compromised sensor will deviate from its nominal distri-
bution, causing a statistically significant shift in the value of Δx̂i j ,k . This shift disrupts the expected Gaussian
consistency between sensors, allowing anomalies to be detected through inter-sensor discrepancies.

Therefore, we consider the security issues in this case and propose a method to detect whether the system
is under attack by comparing the change of a new detection indicator. Specifically, any pair of distinct sensors,
denoted as the i-th and j-th sensors (i , j = 1, 2, . . . , N , i ≠ j), can be arbitrarily selected. The corresponding
detection indicator is defined as follows:

GJ
i j ,k =

k
∑

h=k−J+1
(Δx̂i j ,h)T P−1

i j ,h(Δx̂i j ,h)
H0
≶
H1

δi j ,k (22)

Let J denote the detection window size, and δi j ,k denotes the threshold. For the two sensors, the
normalized sum in Eq. (22) conforms to a χ2 distribution with nJ degrees of freedom under normal
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conditions. However, if an attack occurs, the distribution characteristics are expected to deviate from
the nominal pattern. Eq. (22) does not directly rely on the innovation sequence, it utilizes the statistical
consistency among multiple sensors by comparing the posterior estimates x̂i ,k and x̂ j ,k obtained from
different sensors.

Combined with Eq. (22), we propose a dual-stage detection method to balance these trade-offs by
adjusting the detection window length L, the effective rejection threshold M, and the single-sample detection
threshold η maintain a low false positive rate while minimizing the probability of missed detections.

Firstly, according to Algorithm 2, we need to set the parameters maximum detection window length L
and effective rejection threshold M. The choice of L should reflect the dynamic characteristics of the system.
For systems with rapidly varying states, a smaller L enables prompt detection of anomalies to ensure timely
detection of anomalies. But systems with higher noise levels require a larger L to effectively smooth out
random fluctuations. The optimal value of L can be determined empirically through simulation under the
assumed attack model. The parameter M controls the rejection threshold, a lower value (e.g., M = [L/2]) is
suitable for systems requiring higher sensitivity. Conversely, for applications that prioritize reliability and
low false alarm rates, a more conservative threshold (e.g., M = ⌊2L/3⌋ to L − 1) is recommended. When L
and M are determined, the detection procedure incrementally increases the window length J from 1 to L,
allowing the detector to adaptively accumulate evidence over multiple time scales.

In contrast to fixed-window χ2 detection, Algorithm 2 dynamically adjusts the window length. Smaller
windows provide rapid response to strong anomalies, while larger windows accumulate evidence to capture
weak or stealthy deviations. To reduce the risk of misjudgment from a single detection window, a multi-
window voting scheme is used. The system is considered under attack only if at least M out of L window-based
tests report anomalies. The additional overhead compared to traditional χ2 detectors is minor, making
the proposed method suitable for real-time implementation in resource-constrained environments. After
obtaining preliminary results, conduct 100 cycles to confirm the final system status.

Algorithm 2: Detection Algorithm
Step 1: Given 2 ≤ L ≤ 20, L, M ∈ Z+.
Step 2: Let J =1, i , j ∈ N , when G1

i j ,k > δ1
i j ,k , where δ1

i j ,k is the fractile with confidence level α, we reject H0.
Step 3: If G1

i j ,k ≤ δ1
i j ,k , try to test GJ

i j ,k and δJ
i j ,k where J = 2, 3, . . . , L.

Step 4: When L-M of the tests are false, we state H0 cannot be rejected.

While the Algorithm 2 improves sensitivity to stealthy linear attacks by aggregating residual decisions
over a window, certain real-world scenarios may still limit its effectiveness. If the injected attack signals are
correlated, the residual inconsistencies could be masked, violating the statistical assumptions in Eq. (22).
Additionally, if an attacker can adapt its strategy based on detection outcomes in real time, the fixed-length
window aggregation might not react quickly enough to capture rapid changes. Furthermore, our approach
assumes that measurement noise and packet losses across different sensors are independent. In practical
systems where disturbances are correlated or bursty failures occur, the detection sensitivity could degrade.
Although Algorithm 2 improves the detection rate, it inherently introduces a longer decision window to
ensure robustness against random fluctuations. As trade-off between rapid detection and reliable decision-
making is observed, and optimizing this trade-off remains a topic for future investigation.
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5 Simulation Examples
This section presents simulation results that evaluate the effectiveness of the proposed linear deception

attack and its associated detection approach.

5.1 Stable Process under Linear Attack
We consider a dynamic model characterized by the following parameters

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.6 0.4 0 0
0 0.5 0 0
0 0 0.4 0.3
0 0 0 0.2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

C1 = [ 1 0 0 0 ],
C2 = [ 0 1 0 0 ],
C3 = [ 0 0 1 0 ],
C4 = [ 0 0 0 1 ],
R1 = 0.1, R2 = 0.2, R3 = 0.3, R4 = 0.4 and x̂0 = [ 1 1 1 1 ]T .

When the system operates in a safe and steady state, remote estimator employs Kalman filter to perform
state estimation and derives the traces of the system state and its corresponding estimation error covariance,
as illustrated in Figs. 2 and 3.
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Figure 2: System status
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Figure 3: Trace of estimation error covariance

During the interval [0, 50], the remote estimator operates under the Kalman filtering framework
and attains a steady-state condition. To initiate a cyber attack, the adversary injects falsified innovation
signals, specifically z̃k = −Izk and z̃k = T∗k zk , over the interval [83, 93]. The corresponding simulation results,
including the system state estimation and the trace of the error covariance matrix, are illustrated in Figs. 4
and 5.

As shown by the purple and red curves in Fig. 4, it is evident that a linear attack using z̃k = −Izk or
z̃k = T∗k zk results in the state estimate gradually deviating from both the true system state xk and the Kalman
filter estimate x̂k . The red and yellow curves in Fig. 5 indicate that under a linear attack, the tr(P̃k) exceeds
the value observed during normal system operation, and the error covariance will converge. The Figs. 4 and 5
demonstrate that both attack strategies effectively disrupt system performance. Additionally, Fig. 5 shows
that tr(P̃k) under the attack z̃k = T∗k zk is larger than that corresponding to attack with z̃k = −Izk during the
same time period. Although the error covariance increases under attack, it remains bounded, indicating that
the system maintains practical stability without exhibiting divergent behavior.
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Figure 5: The trace of remote estimation error covariance

Detection statistic values based on the Chi-square detector, calculated according to Eq. (5) under
different system operating conditions, are shown in Fig. 6.
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Figure 6: Detection function based on Chi-square detector

As shown in Fig. 6, during normal operation, the maximum detection statistic value reaches 18.8346.
This value is selected as the detection threshold, i.e., η = 18.8346. When an attacker implements the strategy
z̃k = T∗k zk during the interval k = 83 to k = 93, the detection statistic remains below the threshold η. The
detector erroneously classifies the system as operating normally and fails to trigger an alarm, allowing the
remote estimator to continue updating the state estimates using the Kalman filter. This result demonstrates
that, in a stable system, the proposed attack z̃k = T∗k zk can successfully evade the Chi-square detector at
certain time steps, thereby verifying the stealthiness of the proposed attack strategy.
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5.2 Unstable Process under Linear Attack
We consider a dynamic model characterized by the following parameters

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0.1 0 0
0 1 0 0
0 0 1 0.1
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

C1 = [ 1 0 0 0 ],
C2 = [ 0 1 0 0 ],
C3 = [ 0 0 1 0 ],
C4 = [ 0 0 0 1 ],
R1 = 0.1, R2 = 0.2, R3 = 0.3, R4 = 0.4 and x̂0 = [ 1 1 1 1 ]T .

During the interval [0, 50], the remote estimator runs the Kalman filter and reaches a steady state. The
attacker employs false data, specifically z̃k = −Izk and z̃k = T∗k zk , during the period [83, 93] to execute a
cyber attack. The simulation results for the state estimate and the tr(P̃k) are shown in Figs. 7 and 8.

The purple and red curves in Fig. 7 indicate that a linear attack using either z̃k = −Izk or z̃k = T∗k zk
results in a gradual deviation of the state estimate from the true system state xk and the Kalman filter estimate
x̂k . The red and yellow curves in Fig. 8 demonstrate that, under unstable conditions, a linear attack results in a
trace of the error covariance P̃k that exceeds its value under normal system operation, resulting in exponential
divergence of the error covariance. Both Figs. 7 and 8 illustrate that both attack strategies effectively disrupt
system performance. Furthermore, Fig. 8 reveals that the trace of error covariance P̃k for the attack using
z̃k = T∗k zk exceeds that observed under the attack z̃k = −Izk during the same time period. This observation
indicates that, in certain instances, the proposed attack method in this study may lead to a more severe
degradation in the performance of the unstable system.
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Figure 8: The trace of remote estimation error covariance

5.3 Detection of Linear Attack
We consider a dynamic model characterized by the following parameters

A = [ 2 1
0 1 ], C1 = [ 1 0

1 1 ], C2 = [ 1 1
0 1 ],

Q = [ 0.01 0
0 0.01 ], R1 = R2 = [ 0.01 0

0 0.01 ],

x̂0 = [ 1 1 ]T , L = 6 and M = 4.
During the time interval [0, 200], the remote estimator operates under the Kalman filtering algorithm

and gradually reaches a steady-state condition. It is assumed that the attacker employs the false data z̃k to
execute a linear attack on the first sensor at time steps k = 38, k = 39, and k = 40. Subsequently, we utilize two
different algorithms for detection, each executed 100 times. The first approach involves fixing J in Eq. (22)
to 1 and conducting direct detection. The second method employs Algorithm 2. A detection output of
0 indicates acceptance of H0, signifying that no attack has occurred. Conversely, a result of 1 indicates
acceptance of H1, confirming that the system has been compromised. The simulation results for k = 30 and
k = 40 are presented in Figs. 9 and 10.

It can be known from the setting of the simulation parameters that when k = 30, the system is not
actually attacked. From Fig. 9, it can be found that in the 100 tests, the algorithm with J = 1 considers the
number of times that the system is attacked at the current moment is 1. Algorithm 2 considers the number
of times to be 2. Both are within acceptable limits. This figure also illustrates the feasibility of Table 2 when
the system is not attacked. Fig. 10 indicates that when the system is attacked at time 40, Algorithm 2 detects
that the system is attacked significantly more times than the algorithm that only uses J = 1 for detection.
This proves that Algorithm 2 is more efficient in detection and reduce the missed detection rate when the
system is under attack.
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Figure 9: Comparison of the two algorithms (k = 30)

Figure 10: Comparison of the two algorithms (k = 40)

6 Conclusion
To address linear attacks, this study proposes a novel attack parameter design method with a broadened

traditional feasibility constraint. Simulation comparisons demonstrate that at certain time steps, the attack
strategy can successfully evade the χ2 detector, leading to greater deviation in the state estimate of the remote
estimator, which consequently results in more significant damage to system performance. The generalized
feasibility constraint presented in this paper offers a more realistic foundation for modeling stealthy attacks
within real-world detection systems. Furthermore, we propose a new detection algorithm. Analysis through
simulation and comparison indicates that the index of the detection method increases only when the
system is under attack, thereby validating the effectiveness of this algorithm in detecting the presence of an
attack. Future work will focus on enhancing detection efficiency. Additionally, we will explore the system’s
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performance under various attack strategies and investigate new detection schemes to effectively mitigate
these threats.
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