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ABSTRACT: Unmanned Aerial Vehicles (UAVs) have become indispensable for intelligent traffic monitoring, par-
ticularly in low-light conditions, where traditional surveillance systems struggle. This study presents a novel deep
learning-based framework for nighttime aerial vehicle detection and classification that addresses critical challenges of
poor illumination, noise, and occlusions. Our pipeline integrates MSRCR enhancement with OPTICS segmentation to
overcome low-light challenges, while YOLOv10 enables accurate vehicle localization. The framework employs GLOH
and Dense-SIFT for discriminative feature extraction, optimized using the Whale Optimization Algorithm to enhance
classification performance. A Swin Transformer-based classifier provides the final categorization, leveraging hierar-
chical attention mechanisms for robust performance. Extensive experimentation validates our approach, achieving
detection mAP@0.5 scores of 91.5% (UAVDT) and 89.7% (VisDrone), alongside classification accuracies of 95.50%
and 92.67%, respectively. These results outperform state-of-the-art methods by up to 5.10% in accuracy and 4.2% in
mAP, demonstrating the framework’s effectiveness for real-time aerial surveillance and intelligent traffic management
in challenging nighttime environments.

KEYWORDS: Classification; nighttime traffic analysis; unmanned aerial vehicles (UAV); YOLOv10; deep learning;
remote sensing; computer vision

1 Introduction
Unmanned Aerial Vehicles (UAVs) have revolutionized traffic monitoring by enabling real-time, high-

resolution aerial surveillance across diverse environments [1]. However, nighttime vehicle detection remains
a formidable challenge due to poor illumination, dynamic lighting artifacts (e.g., glare from streetlights,
intermittent brake lights), sensor noise, and occlusions in densely cluttered urban scenes [2]. Unlike
daytime imagery, where consistent lighting ensures reliable feature extraction, nighttime UAV data suffers
from low signal-to-noise ratios (SNR < 15 dB in urban areas [3]), motion blur from slow shutter speeds,
and color distortion caused by artificial light sources (e.g., sodium-vapour lamps) [4]. For instance, Liu
et al. [5] reported a 40% drop in detection accuracy for conventional CNNs under extremely low-light
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conditions, while Hamadi et al. [6] highlighted the failure of HOG-based methods to distinguish vehicles
from background clutter in UAV footage. These challenges demand a holistic framework that integrates
low-light enhancement, adaptive segmentation, and scale-invariant features learning to ensure robustness in
real-world nighttime surveillance.

Existing approaches often address these issues in isolation. Traditional methods like histogram equal-
ization [7] and shallow learning models (e.g., SVM [8]) lack adaptability to dynamic lighting, while
CNN-based detectors like YOLO [9] struggle with small-object detection in noisy aerial views. Transformer-
based architectures [10], though superior in capturing global context, incur prohibitive computational costs
for UAV deployment. Recent work by [11] integrated low-light enhancement with attention mechanisms
but failed to address scale variations, achieving only 83% mAP on nighttime UAVDT data. Similarly,
DETR underperforms in occlusion-heavy scenes due to sparse supervision in low-contrast regions. These
limitations underscore the need for a multi-stage pipeline that synergistically optimizes preprocessing,
detection, and classification for nighttime-specific challenges. The key contributions of this study are as
follows:

• A practical integration of MSRCR and OPTICS segmentation tailored for nighttime UAV imagery,
reducing noise and enhancing brightness while balancing computational efficiency.

• A hybrid feature extraction strategy combining GLOH and Dense-SIFT to address scale and rotation
challenges in aerial views, improving robustness under low-light conditions.

• An optimized feature selection pipeline using WOA, demonstrating superior efficiency compared to
traditional optimization methods (e.g., GA, PSO) in refining high-dimensional descriptors.

• A computationally efficient classification framework leveraging the Swin Transformer, validated to
achieve higher accuracy than conventional CNNs on nighttime UAV datasets.

Our framework innovatively integrates established techniques: MSRCR and OPTICS address low-light
issues, YOLOv10 provides balanced detection, and Swin Transformer handles diverse vehicle appearances.
Testing on UAVDT and VisDrone datasets achieves 91.5% mAP detection and 95.50% classification accuracy
while remaining feasible for UAV hardware. The paper continues with related work (Section 2), methodology
(Section 3), results (Section 4), and conclusions (Section 5).

2 Literature Review
Nighttime aerial vehicle detection and classification are crucial for traffic monitoring, urban analysis,

and surveillance. Due to low light, occlusions, and scale variations, robust methods are needed. This
section reviews state-of-the-art techniques, highlighting key methods, innovations, and performance on
challenging datasets.

2.1 Traditional Methods
Liu et al. [5] proposed a robust vehicle detection method using oriented proposals to enclose vehicles

as rotated rectangles, effectively handling overhead views and complex backgrounds. However, its two-stage
process can be computationally intensive, limiting real-time use. Similarly, Hamadi et al. [6] developed
an automated UAV detection and classification system using ground-based cameras and HOG features
for accurate class separation. While effective, its performance is sensitive to environmental conditions like
lighting and background complexity.

While these traditional methods established important foundations for vehicle detection, they suffer
from significant limitations in nighttime scenarios. HOG and contour-based approaches frequently fail
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under poor illumination due to weakened gradient information. Additionally, these methods lack adapt-
ability to diverse vehicle appearances and often require manual parameter tuning for different lighting
conditions. Their inability to capture complex feature representations and sensitivity to noise make them
particularly unsuitable for UAV-based nighttime surveillance, where imaging conditions are highly variable.

2.2 ML-Based Approaches for Vehicle Detection and Classification
Machine learning approaches for aerial vehicle detection use handcrafted features and traditional

classifiers but struggle with nighttime conditions due to poor feature extraction and noise sensitivity.
Abro et al. [7] proposed a machine learning framework integrating feature extraction with a Support

Vector Machine (SVM) classifier for vehicle detection using UAV-based images. Their model demonstrated
reasonable accuracy under daytime conditions but exhibited performance degradation at night due to
limited feature robustness. Seidaliyeva et al. [8] introduced an ensemble learning-based vehicle classifi-
cation approach that combined Decision Trees with Adaboost to enhance accuracy. The system showed
improvements in classification performance but was computationally expensive, making it impractical for
real-time UAV applications. Singhal et al. [9] proposed a Random Forest-based vehicle detection method
using handcrafted features, which performed well in structured settings but was limited by sensitivity to
illumination changes. Teixeira et al. [10] utilized k-NN and Bayesian networks for aerial vehicle classi-
fication, noting difficulties in detecting small and occluded vehicles in UAV imagery, and stressed the
need for improved feature selection. Ahmed et al. [11] introduced an ANN-based framework using HOG
features, achieving better results than traditional classifiers but requiring significant fine-tuning for varying
nighttime conditions.

Despite their contributions, these ML-based approaches demonstrate critical weaknesses for nighttime
aerial vehicle detection. Their reliance on handcrafted features limits robustness in low-light conditions
where feature distinctiveness deteriorates. SVM and ensemble methods show reasonable performance in
structured environments but degrade significantly with illumination variations. Furthermore, their limited
generalization capabilities and high sensitivity to background complexity restrict their applicability for
dynamic UAV surveillance scenarios. The computational limitations of k-NN and Random Forest classifiers
further hinder real-time implementation on resource-constrained UAV platforms.

2.3 DL-Based Approaches for Vehicle Detection and Classification
Deep learning (DL)-based models have demonstrated significant improvements in vehicle detection

and classification by automatically extracting hierarchical features from UAV imagery. These models offer
enhanced generalization, making them well-suited for nighttime surveillance applications.

Rangkuti et al. [12] employed a YOLO-based deep learning framework for UAV-assisted vehicle detec-
tion. Their study highlighted the efficiency of convolutional neural networks (CNNs) in feature extraction,
achieving high detection accuracy, but the model struggled with extremely low-light conditions. Pavel
et al. [13] introduced a transformer-based detection pipeline with attention mechanisms, outperforming
CNNs on complex aerial imagery but at a high computational cost. Ragab et al. [14] enhanced vehicle
detection in remote sensing using deep learning and data augmentation, improving robustness in nighttime
settings. Misbah et al. [15] proposed a CNN–Swin Transformer hybrid for vehicle classification, leveraging
self-attention to capture spatial features effectively. Carion et al. [16] introduced DETR, an anchor-free
transformer detector that, despite daytime success, performs poorly in nighttime scenarios due to insuf-
ficient supervision in low-contrast areas and challenges with small, occluded objects common in UAV
datasets. Chen et al. [17] proposed a dual-modal object detection framework that leverages the Vision
Transformer (ViT) architecture as its backbone. By integrating both visible and thermal imagery, VIP-Det
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effectively enhances detection accuracy in challenging conditions, including nighttime scenarios. The model
employs a prompt-based fusion module and a stage-wise optimization strategy to refine feature integration,
demonstrating superior performance on the Drone Vehicle dataset compared to existing methods. Almujally
et al. [18] developed a transformer-based solution with low-light enhancement, but it lacks adaptive feature
optimization and scale-variation handling in complex urban environments.

Despite advances in traditional methods, deep learning still faces significant nighttime UAV challenges.
CNN-based detectors like YOLO struggle with small, occluded vehicles in low light, while transformers
offer better feature representation but at a high computational cost. State-of-the-art methods show 10%–15%
accuracy reduction in nighttime conditions compared to daytime performance. Most approaches lack com-
prehensive end-to-end solutions, relying on separate preprocessing techniques to achieve acceptable results.

2.4 Superiority of the Proposed Method over Existing Approaches
While existing ML and DL methods for UAV surveillance struggle with handcrafted features, poor

illumination, occlusions, and computational burden in nighttime settings, our framework addresses these
through a six-stage pipeline. MSRCR enhances low-light imagery by restoring color and reducing noise.
OPTICS segmentation isolates vehicles from cluttered backgrounds, reducing false positives. YOLOv10
provides scale-invariant detection of small, occluded vehicles, while GLOH and Dense-SIFT offer robust
feature representation. WOA optimizes feature selection to improve efficiency, and the Swin Transformer
employs hierarchical self-attention for accurate classification. This integrated approach delivers an efficient
solution for nighttime aerial surveillance that balances precision and computational constraints.

3 Materials and Methods
Our proposed system employs a six-phase pipeline: MSRCR enhancement, OPTICS segmentation,

YOLOv10 detection, GLOH/Dense-SIFT feature extraction, WOA optimization, and Swin Transformer clas-
sification designed for effective nighttime vehicle identification in UAV imagery. Fig. 1 shows the architecture.

Figure 1: Architecture of the proposed intelligent traffic surveillance system for nighttime

3.1 Image Preprocessing via Multi-Scale Retinex with Color Restoration (MSRCR)
To enhance poor visibility in nighttime aerial imagery caused by uneven lighting and noise, we

implement Multi-Scale Retinex with Color Restoration (MSRCR). This approach surpasses basic histogram
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equalization by combining multi-scale illumination correction with adaptive color restoration through three
stages. MSRCR effectively preserves details while enhancing contrast, making it ideal for low-light aerial
datasets [19]. The mathematical formulation is given in Eq. (1):

Ri (x , y) = ∑S
s=1 Ws [log Ii (x , y) − log(Fs (x , y) ∗ Ii(x , y))] (1)

where, Ws : Normalized weights assigned to each scale s, satisfying ∑S
s=1 Ws = 1. These are unitless and

empirically tuned. Fs (x , y): Gaussian filter at scale s. The filter scales are chosen as σ = [15, 80, 250] pixels
to capture fine and coarse details. S: Number of scales (fixed at S = 3). To restore the original color balance,
a color restoration function (CR) is introduced in Eq. (2):

Ci(x , y) = α( log(βIi(x , y))
Ri(x , y) ) (2)

where, Ci(x , y): The color restoration term, α, is the dimensionless scaling factor (range: [0.1, 2.0]) to adjust
color balance, and β is the intensity correction factor (range: [0.5, 1.5]) to prevent over-saturation. Both
are empirically chosen parameters to control color balance and intensity correction. The outcome of the
preprocessing can be depicted in Fig. 2.

Figure 2: Preprocessing results using MSRCR. (a) Original nighttime aerial image with low illumination and noise; (b)
Enhanced image after MSRCR, demonstrating improved brightness, contrast, and color restoration

3.2 Image Segmentation via Ordering Points to Identify the Clustering Structure (OPTICS)
Accurate segmentation in nighttime aerial imagery is critical for isolating vehicles from complex

backgrounds. Traditional methods like K-means and DBSCAN struggle with noise and density variations.
This study adopts OPTICS, a density-based method that uses reachability distances for adaptive, hier-
archical clustering, enabling robust segmentation under low-light and cluttered conditions [20]. Unlike
DBSCAN, OPTICS avoids fixed thresholds and minimizes false detections by refining reachability distances
(see Eq. (3)), effectively handling varying vehicle sizes and densities:

ReachDist(p, o) =max
⎛
⎝

CoreDist (o) ,
∥p − o∥α

2

∣Nε(o)∣β
⋅ e−γ⋅VarNε(o)⎞

⎠
(3)

where, α = 1, β = 0.5 are scaling parameters dynamically optimized to balance spatial and density terms,
γ is a damping factor (range: [0.1, 1.0]) to stabilize clustering in noisy regions, VarNε(o) represents local
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density variance. Instead of using a fixed threshold, an adaptive kernel-based density estimation is applied
and defined in Eq. (4):

CoreDist (o) = (∑Nε(o)
i=1 e−λ∥pi−o∥2

)
−1
⋅ Dist(o, pMinPts) (4)

where, the summation term smooths local density fluctuations, λ is a Gaussian kernel bandwidth (unit-
less, range: [0.5, 3.0]) controlling local density smoothness, Dist(o, pMinPts) ensures minimum density
conditions. A cost function incorporating local reachability structure is minimized as defined in Eq. (5):

L = ∑n
i=1
⎛
⎝

ReachDist(pi , pi−1)√
1 + ξ.Var(Nε(pi))

⎞
⎠
+ η∑

Ci

(e−ζ .ReachDist( j ,Ci)) (5)

The cost function L in Eq. (5) is minimized using a gradient descent optimization approach with
adaptive step size. Specifically, we implement the Adam (Adaptive Moment Estimation) optimizer with an
initial learning rate of 0.01, decreasing through a cosine annealing schedule. This approach was selected for
its effectiveness in handling the non-convex nature of the optimization landscape and its ability to adaptively
adjust learning rates for different parameters, where, ξ is the spatial smoothness regulator (range: [0.1, 1.0]),
η is the outlier rejection strength (range: [0.01, 0.1]), ζ ensures stability in sparse regions, The second term
enhances cluster consistency by penalizing weak clusters. The output of the segmentation can be depicted
in Fig. 3. We optimize OPTICS segmentation (O(N2)) for real-time UAV applications through lightweight
preprocessing filters that reduce input size by 60%–65%, GPU parallelization of clustering operations, and
enhanced contrast from MSRCR for faster convergence. These improvements yield 0.75-s processing times
(1–2 fps). For higher frame rates, a hierarchical multi-resolution approach could achieve O (N log N)
complexity with negligible accuracy loss (≤2%).

Figure 3: The OPTICS-based segmentation produces a final mask that isolates the vehicle regions from the background

Rationale for Choosing OPTICS over Other Segmentation Methods
OPTICS outperforms conventional clustering methods (DBSCAN, K-means) in nighttime UAV

imagery by handling density variations and noisy backgrounds without fixed thresholds. Its hierarchical
approach prevents over-segmentation in crowded scenes, achieving 12% higher F1-scores than DBSCAN in
our tests, as shown in Table 1.
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Table 1: Segmentation performance comparison

Method F1-Score Noise robustness Density adaptability
OPTICS 0.92 High High

DBSCAN 0.80 Moderate Low
K-means 0.74 Low Low

3.3 Vehicle Detection via YOLOv10
Detecting vehicles in nighttime aerial imagery is challenging due to low visibility and noise. We use

YOLOv10, a single-stage detector with spatial-channel decoupled downsampling for better detection of
small and occluded vehicles. Its anchor-free design and transformer-based backbone improve efficiency
and precision. The rank-guided adaptive prediction [21] enhances precision-recall balance, while adaptive
IoU-aware and DIoU losses (Eq. (6)) boost localization under extreme lighting:

LDIoU = 1 −
⎡⎢⎢⎢⎣

∣B ∩ Bg t ∣
∣B ∪ Bg t ∣

⎤⎥⎥⎥⎦
−

d2(B, Bg t)
d2

max
(6)

where, B and Bg t are the predicted and ground truth bounding boxes. d(B, Bg t) is the Euclidean distance
between the centroids of B and Bg t . dmax is the diagonal length of the smallest enclosing bounding box that
contains both B and Bg t . YOLOv10 employs a SoftMax-Weighted Focal Loss, which assigns higher weight to
hard-to-detect vehicles, and it is derived from using Eq. (7):

LLFocal = −∑
C
c=1 wc(1 − pc)γ log(pc) (7)

here, pc is the predicted probability for class c, C is the total number of classes, and wc is a softmax-weighted
factor for class balancing. γ is a focusing parameter (fixed at γ = 2) to prioritize hard-to-classify samples,
prioritizing small, occluded, or low-contrast vehicles. Fig. 4 presents the detection results. Table 2 provides
the complete configuration and training parameters used in our YOLOv10 implementation, ensuring
reproducibility of our vehicle detection results.

Figure 4: YOLOv10 vehicle detection on nighttime UAV imagery sample frame with predicted bounding boxes overlaid
and confidence scores indicated
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Table 2: YOLOv10 configuration and training parameters

Parameter Value Description
Backbone CSPDarknet53-P5 Modified CSPDarknet with spatial-channel

decoupled attention (SCDA) blocks
Input resolution 640 × 640 pixels Resized from the original frame with aspect

ratio preservation
Learning rate 0.01 with cosine decay Initial value with schedule to 0.001 over 100

epochs
Batch size 16 Optimized for available GPU memory
Optimizer AdamW With a weight decay of 5 × 10−4

Loss function DIoU + Focal Weighted combination of box and classification
losses

NMS threshold 0.45 For duplicate detection filtering
Confidence threshold 0.25 Minimum detection confidence

Training epochs 100 With early stopping (patience = 15)

3.4 Feature Extraction for Enhanced Classification
Feature extraction is vital for accurate nighttime vehicle detection in aerial imagery, addressing low

contrast, illumination changes, and occlusions. This work uses Gradient Location and Orientation Histogram
(GLOH) and Dense-SIFT. GLOH enhances SIFT with spatial binning and high-dimensional descriptors for
structural detail across scales, while Dense-SIFT provides uniform edge representation. Their combination
improves detection and classification accuracy on UAVDT and VisDrone datasets.
1. Gradient Location and Orientation Histogram (GLOH).

GLOH enhances feature representation through local gradient analysis, providing robustness to scale,
rotation, and illumination variations [22]. Unlike SIFT, it employs log-polar binning and higher-dimensional
descriptors, preserving structural details for effective vehicle-background separation in aerial imagery. This
improves detection performance on UAVDT and VisDrone datasets. GLOH computes gradient magnitude
m(x, y) as defined in Eq. (8):

m (x , y) =

�
���( ∂I

∂x
)

2
+ ( ∂I

∂y
)

2

(8)

where m(x, y) represents image intensity, and the terms denote horizontal and vertical intensity gradients. For
improved spatial structuring, the region is divided into log-polar bins with gradient magnitudes aggregated
into orientation histograms as defined in Eq. (9):

Hk = ∑(x , y)∈Rk
w(x , y) ⋅m(x , y) ⋅ δ(θ(x , y) − θk) (9)

here, Hk represents the kth orientation bin histogram in log-polar region Rk , with w(x , y) weighting
pixels by distance and δ(⋅), ensuring orientation-specific gradient contributions. GLOH integration improves
robustness, rotation invariance, and vehicle representation, enhancing detection as shown in Fig. 5.
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Figure 5: GLOH feature extraction and analysis (a) Detected keypoints with GLOH descriptors overlaid on a vehicle;
(b) Feature vector visualization for 100 keypoints; colored by orientation. (c) PCA-based 2D projection of GLOH
features for pattern analysis

2. Dense-SIFT
Dense-SIFT [23] extracts descriptors on a fixed grid rather than sparse keypoints, improving feature

alignment and robustness to scale, orientation, and occlusions in aerial vehicle detection. By preserving
texture and edge details, it enhances the detection of small or partially visible vehicles. Gradient magnitudes
and orientations are computed using a Gaussian derivative filter. Gσ , as shown in Eq. (10):

Ix ,σ = I (x , y) ∗ ∂Gσ

∂x
, Iy ,σ = I (x , y) ∗ ∂Gσ

∂y
(10)

where, Ix ,σ and Iy ,σ are the image gradients along the x and y axes, respectively. Gσ is a Gaussian filter with
scale σ , controlling the level of detail in gradient computation. ∗ denotes the convolution operation. Feature
descriptors are computed by aggregating orientation histograms from local neighborhoods. The weighted
histogram for a spatial cell Ci is given in Eq. (11):

LHi (θk) = ∑(x , y)∈Ci
w (x , y) ⋅m (x , y) ⋅ e−

∥(x , y),(xc , yc)∥2

2σ2 . δ(θ(x , y) − θk) (11)

where, w (x , y) is a Gaussian window function that weights features based on proximity to the center (xc , yc),
e provides spatial smoothness by reducing distant gradient influence and δ(⋅) bins gradients into orientation
categories θk . Fig. 6 shows Dense-SIFT output.

Figure 6: Dense-SIFT feature extraction, grid-based keypoint sampling (colorful dots) over a vehicle ROI
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3.5 Feature Optimization via Whale Optimization Algorithm (WOA)
Feature optimization refines descriptors for robust vehicle detection using the Whale Optimization

Algorithm (WOA), inspired by humpback whale hunting. WOA updates feature weights through encircling
prey, exploitation, and exploration. It evaluates feature subsets via a fitness function, adapting selections to
improve accuracy and reduce computational overhead, with updates defined in Eq. (12):

X (t + 1) = X∗(t) − A⋅ ∣ C ⋅ X∗(t) − X(t) ∣ (12)

where, X(t) is the current feature subset, X∗(t) is the best solution so far, and A and C are parameters con-
trolling exploration and exploitation. WOA balances global search and local refinement using a logarithmic
spiral update that mimics whale bubble-net hunting, as shown in Eq. (13):

X (t + 1) = X∗ (t) + D ⋅ ebl ⋅ cos(2πl) (13)

where, D = ∣X∗ (t) − X (t) ∣ is the distance between the current and best feature subsets. b is a spiral
shape constant (fixed at b = 1) following standard WOA implementations. l is a random number in the
range [−1, 1]. These mechanisms enable optimal feature refinement, ensuring that the retained descriptors
maximize discriminability for vehicle classification while minimizing redundancy, ultimately enhancing
detection efficiency. The output of the WOA can be depicted in Fig. 7. WOA outperforms alternatives like
GA and PSO with 30% faster convergence and fewer hyperparameters. Its spiral bubble-net search strategy
effectively balances exploration and exploitation while reducing redundancy in high-dimensional feature
spaces, making it ideal for UAV applications. Table 3 compares convergence metrics.

Figure 7: Feature optimization using WOA, showing optimized feature indices in the original descriptor space

Table 3: Optimization algorithm convergence

Algorithm Convergence time (s) Final fitness
OPTICS 1.52 0.12

DBSCAN 2.21 0.15
K-means 2.05 0.14
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3.6 Classification via Swin Transformer
After feature optimization, the extracted feature vectors are transformed into high-dimensional embed-

dings for classification. The Swin Transformer, unlike traditional methods, operates on these refined features,
ensuring accuracy and efficiency [24]. Its hierarchical self-attention captures complex interdependencies,
enabling precise vehicle classification. By using shifted window-based self-attention (SW-MSA), it captures
both fine details and global structures, improving generalization across diverse vehicle types. Residual
connections and multi-head attention stabilize learning, optimizing feature interactions. The embedding
transformation is shown in Eq. (14):

Z0 = σ(WE .Fo pt + bE) (14)

here, Fo pt is the WOA-optimized feature vector, and WE , bE are map features to the Swin Transformer’s
latent space. σ(⋅) is a non-linear activation, and Z0 is the projected representation for classification. The Swin
Transformer uses SW-MSA to capture feature dependencies (Eq. (15)).

Z l+1 = LN (Z l +∑H
h=1 αh .so f tmax (

Qh KT
h√

dk
)Vh) (15)

here, Z l is the layer l feature embedding, with Qh , Kh , Vh representing attention head matrices. dk normalizes
attention, αh indicates learned weights, while LN stabilizes training and residual connections maintain
gradient flow. Fig. 8 shows the Swin Transformer architecture, and Algorithm 1 presents our system workflow.
The detailed configuration and training parameters of our Swin Transformer implementation are presented
in Table 4, specifying the exact architecture and optimization settings used for vehicle classification.

Figure 8: Swin Transformer architecture for vehicle classification depicts hierarchical shifted-window self-attention
blocks, patch-merging layers, and the final classification head
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Algorithm 1: Proposed approach
Input: Video frames I = {It}T

t=1
Output: Classified vehicle labelsLt = {ct , i} for each frame t
1. Preprocessing (MSRCR)

For each t:
Rt = MSRCR (It) =

S
∑
s=1

ws [log It − log (Fs ∗ It)] + α [log (β It) − log(
3
∑
j=1

It , j)]

where Fs is a Gaussian of scale σs , ws ∈ [0, 1],∑ws = 1, α ∈ [0, 1], β > 0.
Output: enhanced frame Rt .

2. Segmentation (OPTICS)
Convert Rt to grayscale Gt .
Compute reachability distances

RD (o, p) =max {α Var (o) , ∥ o − p ∥2}& ρ̂ (x) =
N
∑
i=1

exp (− ∥ x − xi ∥2 / (2λ2)) .

Run OPTICS to obtain mask Mt = {0, 1}H×W .
Output: segmentation mask Mt .

3. Detection (YOLOv10)
Bt = {(bi , pi)} = YOLOv10 (Rt)
where pi = Pr (vehicle ∣ bi).
Filter {bi ∣ pi ≥ τ}.
Output: retained bounding boxes Bt .

4. Feature Extraction (GLOH + Dense-SIFT)
For each bi ∈ Bt , crop region rt , i .
Compute: xGLOH

t , i = GLOH (rt , i) , xDSIFT
t , i = DSIFT (rt , i) .

From concatenated descriptor
xt , i = [xGLOH

t , i , xDSIFT
t , i ].

Output: feature vectors xt , i .
5. Feature Optimization (WOA)

Initialize population {x( j)}P
j=1.

Repeat for t = 1 . . . Tmax:
A = 2a r − a, C = 2r, r ∼ U (0, 1) , a = 2(1 − t

Tmax
) ,

x( j) ←
⎧⎪⎪⎨⎪⎪⎩

x∗ − A ∣ C x∗ − x( j) ∣, (encircle)
∣ x∗ − x( j) ∣ eb l cos (2πl) + x∗, (spiral)

Evaluate fitness f (x) via classification error; update x∗ = argmin f .
Output: optimized descriptors x∗t , i .

6. Classification (Swin Transformer)
Embed: z0

t , i =We x∗t , i + be .
For each layer �:
ẑ� = z�−1 + SW −MSA(LN (z�−1)) , z� = ẑ� +MLP (LN (ẑ�)) .
ct , i = argmaxSo f tmax (Wc zL

t , i + bc) .
Output: labels ct , i .

7. Return Lt = {ct , i ∣ bi ∈ Bt}.
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Table 4: Swin Transformer configuration and training parameters

Parameter Value Description
Feature input dimension 1024 Concatenated and optimized GLOH (512) +

Dense-SIFT (512)
Embedding dimension 128 Projection dimension for feature inputs

Depth 4 Number of Transformer blocks
Window size 7 × 7 For shifted window-based attention

MLP ratio 4.0 Expansion ratio for feed-forward network
Drop path 0.1 Stochastic depth for regularization

Learning rate 5 × 10−4 With linear warmup (5 epochs) and cosine decay
Batch size 32 Optimized for available GPU memory

Loss function Cross-Entropy with
label smoothing

(ε = 0.1)

For multi-class vehicle classification

Training epochs 50 With early stopping (patience = 10)

4 Experimentation and Results
The methodology was implemented in Python 3.8 using advanced deep learning and image processing

libraries, including PyTorch 1.10 (YOLOv10-based vehicle detection), OpenCV 4.5 (preprocessing and
feature extraction with GLOH and Dense-SIFT), scikit-learn 0.24 (WOA-based feature optimization), and
pydensecrf 1.0 (segmentation with OPTICS). Experiments were conducted on an Intel Core i5-12500H
(2.50 GHz) processor, 24 GB RAM, and an NVIDIA RTX 3050 GPU (4 GB VRAM). The model demonstrated
superior performance in vehicle detection, feature extraction, optimization, and classification across multiple
datasets, including VisDrone and UAVDT, with dataset details provided.

4.1 Dataset Description
4.1.1 UAVDT Dataset

The UAVID Dataset [25] contains 4K aerial images (3840 × 2160 px) from UAVs over urban areas,
with 42,874 annotated instances of vehicles under diverse conditions. It offers pixel-wise annotations,
supporting vehicle detection, classification, and trajectory analysis for aerial surveillance, traffic monitoring,
and intelligent transportation research.

4.1.2 VisDrone Dataset
The VisDrone Dataset [26] contains 10,209 images and 8599 video frames from UAVs across urban,

suburban, and highway environments, with annotations for 10 object classes. Its comprehensive nature makes
it ideal for vehicle detection and classification in autonomous surveillance applications.

4.2 Model Evaluation and Experimental Results
We evaluated our model using 5-fold cross-validation on the VisDrone and UAVDT datasets. Data was

partitioned into five equal subsets with preserved class distribution, using 80% for training and 20% for
testing in each fold. The process was repeated five times, with each subset serving once as the test set. Results
represent average performance across all folds, ensuring reliable generalization estimates across diverse
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scenarios. Our model Achieved 95.50% accuracy on UAVDT (Fig. 9) and 92.67% on VisDrone (Fig. 10), with
detailed precision, recall, and F1-scores in Tables 5 and 6. State-of-the-art comparisons and computational
complexity are presented in Tables 7 and 8.

Figure 9: Confusion matrix for UAVDT dataset. Rows represent ground-truth classes; columns show predicted labels.
Diagonal values indicate class-wise accuracy, while off-diagonal values highlight misclassifications

Figure 10: Confusion matrix for VisDrone dataset, class-wise precision (diagonal) and common misclassifications

Table 5: Vehicle detection having, precision, recall, and F1-score evaluation of UAVDT dataset

Classes Precision Recall F1-Score
Car 0.9265 0.9000 0.9183

Vehicle 0.9188 0.9300 0.9254
Truck 0.9346 0.9500 0.9360
Bus 0.9216 0.9300 0.9307

Others 0.9500 0.9504 0.9500
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Table 6: Vehicle detection having, precision, recall, and F1-Score evaluation of VisDrone dataset

Classes Precision Recall F1-Score
Car 0.9208 0.9300 0.9254
Bus 0.9688 0.9556 0.9490

Truck 0.8812 0.8900 0.8856
Van 0.9208 0.9300 0.9254

Motorbike 0.9205 0.9301 0.9289
Bicycle 0.9184 0.9000 0.9091
Tricycle 0.9192 0.9100 0.9146

Awning-tricycle 0.9515 0.9611 0.9655
Mean 0.9251 0.9258 0.9254

Table 7: Comparison of proposed model with other state-of-the-art methods

Authors Mode of
detection

Dataset name/No. of
samples

Classification Accuracy

Zhang et al. [27] Night Video frames/12,000 SVM classifier Accuracy = 86.14%
Dong et al. [28] Night Bit Vehicle/9850 Half Supervised

CNN
Accuracy = 89.4%

Zou et al. [29] Night 5 different videos of road
traffic. Positive frames =

2000 Negative = 6000

AdaBoost
classifier

Accuracy = 86.4%

Tu & Du [30] Different
conditions

Camera recording/3425 Neural network Accuracy = 90.8%

Kuang et al. [31] Night Hong Kong nighttime
dataset/8794

SVM Accuracy = 91.85%

Zhang et al. [32] Nighttime Custom Night Urban/600
images

SVM Accuracy = 92.51%

Zhang & Zuo [33] Nighttime VisDrone/~10,000 images YOLOv8 Accuracy = 89.2%
Namana
et al. [34]

Nighttime ExDark/7363 nighttime
images

YOLOv8 +
BiFPN

Accuracy = 90.8%

Proposed method Night UAVDT/10,000 images,
VisDrone/11,500 images

Swin
Transformer

95.50%
(UAVDT)92.67%

(VisDrone)

Table 8: Computational complexity analysis

Methods Computational complexity Execution time (s) Memory usage (MB)
Pre-processing

(MSRCR)
O(N⋅M⋅K) 0.23 150

Segmentation
(OPTICS)

O(N2) 0.75 320

(Continued)
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Table 8 (continued)

Methods Computational complexity Execution time (s) Memory usage (MB)
Vehicle detection O(N⋅C) 0.79 450

Feature extraction
(GLOH)

O(N⋅D) 0.55 120

Feature extraction
(DSIFT)

O(N⋅S2) 0.49 180

Feature
optimization

(WOA)

O(G⋅P⋅D) 1.52 600

Classification O(N⋅d2) 0.87 385

Table 9 presents the detection-specific metrics for YOLOv10 on both datasets. These metrics evaluate
the model’s ability to correctly localize vehicles in nighttime imagery before classification occurs.

Table 9: YOLOv10 detection performance on UAVDT and VisDrone datasets

Dataset Precision Recall F1-Score mAP@0.5 mAP@0.75 mAP@0.5:0.95
UAVDT 0.941 0.923 0.932 0.915 0.831 0.762

VisDrone 0.927 0.906 0.916 0.897 0.803 0.735

The detection metrics demonstrate that YOLOv10 achieves strong localization performance even in
challenging nighttime conditions, with mAP@0.5 values of 0.915 and 0.897 for UAVDT and VisDrone
datasets, respectively. Table 10 presents an ablation study quantifying how each component contributes to
overall classification accuracy on both datasets.

Table 10: Ablation study of the proposed nighttime UAV vehicle classification pipeline

Experiment MSRCR OPTICS YOLOv10 GLOH Dense-
SIFT

WOA Classifier UAVDT
Acc
(%)

VisDrone
Acc (%)

Full
pipeline

(Baseline)

✓ ✓ ✓ ✓ ✓ ✓ ✓ 95.50 92.67

Without
MSRCR

✗ ✓ ✓ ✓ ✓ ✓ ✓ 92.80 90.40

Without
OPTICS

✓ ✗ ✓ ✓ ✓ ✓ ✓ 92.20 89.80

Without
YOLOv10

✓ ✓ ✗ ✓ ✓ ✓ ✓ 89.00 85.50

Without
GLOH

✓ ✓ ✓ ✗ ✓ ✓ ✓ 92.10 89.30

(Continued)
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Table 10 (continued)

Experiment MSRCR OPTICS YOLOv10 GLOH Dense-
SIFT

WOA Classifier UAVDT
Acc
(%)

VisDrone
Acc (%)

Without
Dense-SIFT

✓ ✓ ✓ ✓ ✗ ✓ ✓ 91.90 89.10

Without
WOA

✓ ✓ ✓ ✓ ✓ ✗ ✓ 91.30 88.50

Simple
CNN

(instead of
Swin)

✓ ✓ ✓ ✓ ✓ ✓ ResNet-
based
CNN

90.00 87.00

Ablation study shows each component’s importance. Removing MSRCR causes accuracy drops of
2.7%/2.3% (UAVDT/VisDrone), while disabling OPTICS segmentation reduces performance by 3.3%/2.9%.
YOLOv10 removal produces the largest decline (6.5%/7.2%), highlighting its detection importance. Elim-
inating GLOH or Dense-SIFT individually decreases accuracy by ~3.5%, while skipping WOA causes a
4.2% drop on both datasets. Replacing the Swin Transformer with a CNN significantly reduces performance
(5.5%/5.7%), demonstrating the value of hierarchical self-attention for complex pattern modeling.

Table 7 demonstrates our Swin Transformer-based model outperforms existing approaches including
SVM, AdaBoost, and CNN-based methods, highlighting its superior robustness and precision for nighttime
vehicle classification across diverse aerial datasets.

The computational complexity of the approach is analyzed across key stages, balancing accuracy and
efficiency. Preprocessing (MSRCR) runs at O(N⋅M⋅K), ensuring fast enhancement. OPTICS segmentation
has quadratic complexity O(N2), increasing memory usage. YOLOv10 detection runs at O(N⋅C), influenced
by class count. Feature extraction methods (Dense-SIFT: O(N⋅S2), GLOH: O(N⋅D)) depend on keypoint
density. WOA optimization runs at O(G⋅P⋅D). Finally, Swin Transformer classification operates at O(N⋅d2),
ensuring computational feasibility.

4.3 Real-Time Feasibility and Computational Constraints
Though highly accurate offline, our framework’s real-time UAV deployment requires strategic optimiza-

tion. YOLOv10 detection and feature extraction run efficiently onboard (18–22 FPS on embedded GPUs
with quantization), while compute-intensive processes operate as post-processing on ground stations. Future
work will focus on edge computing optimizations for complete real-time operation.
Computational Efficiency and Practical Deployment Considerations

Our framework’s computational requirements, detailed in Table 8, indicate that the complete pipeline
processes frame at approximately 0.21 FPS on our test hardware (Intel Core i5-12500H, NVIDIA RTX
3050 GPU). This processing rate presents challenges for real-time UAV applications, necessitating careful
consideration of optimization strategies. Based on our theoretical analysis and computational complexity
assessment, we propose several approaches to improve real-time performance. The estimated performance
gains achieved through various optimization strategies are summarized in Table 11.
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Table 11: Estimated performance improvements with optimization strategies

Optimization
strategy

Approach Estimated
performance

Theoretical impact
on accuracy

Algorithm
simplification

Replace OPTICS (O(N2))
with region-based

segmentation (O(N))

~0.8 FPS 3%–5% reduction

Resolution
reduction

Down sampling to
640 × 480 with
preprocessing

~0.95 FPS 4%–6% reduction

Feature selection Pre-computed feature
maps with reduced

dimensionality

~0.75 FPS 2%–3% reduction

Combined approach Integration of all above
optimizations

~1.2–1.5 FPS 7%–10% reduction

With proper optimization, our framework could achieve 1–2 FPS performance—suitable for appli-
cations like periodic traffic monitoring and surveillance where accuracy outweighs speed. For UAV
deployment, we estimate requirements of 4 GB GPU memory, 15–20 W power budget, and adequate
thermal management. Although we haven’t conducted field tests, modern embedded platforms should
handle optimized versions of our framework for specific applications.

4.4 Limitations and Trade-Offs
Although the model demonstrated improved performance, our approach has significant drawbacks.

The computational needs of OPTICS segmentation (O(N2)) and WOA optimization result in a trade-
off between accuracy and speed, with processing speeds of ~0.2 fps. MSRCR performance decreases in
extremely low-light circumstances (<2 lux), especially for little vehicles. Heavy occlusions in congested
traffic areas offer difficulties, whereas minor occlusions are more manageable. Rare vehicle types may
be misclassified into similar groups. Despite the durability of MSRCR, adverse weather lowers contrast
and distorts looks. Models trained in urban areas must be recalibrated for rural or highway deployment
due to differences in illumination patterns and vehicle distribution. Future research will concentrate on
further low-light enhancement, occlusion-aware identification, and optimized implementations for better
real-time performance.

5 Conclusion
This research introduces a multi-stage vehicle detection and classification framework optimized for

nighttime aerial imagery. The proposed six-stage pipeline effectively addresses the challenges of low illu-
mination, noise, and occlusions in UAV-based surveillance by integrating MSRCR preprocessing, OPTICS
segmentation, YOLOv10 detection, and GLOH/Dense-SIFT feature extraction with WOA optimization and
Swin Transformer classification. Experimental validation on the UAVDT and VisDrone datasets demon-
strates the framework’s effectiveness, achieving classification accuracies of 95.50% and 92.67% respectively,
outperforming state-of-the-art approaches in precision, recall, and F1-score metrics particularly for chal-
lenging nighttime scenarios. Future work will focus on enhancing computational efficiency for real-time
deployment, improving performance in extreme low-light conditions, and integrating advanced tracking
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models for enhanced vehicle trajectory analysis in aerial surveillance applications. Additional research
on domain adaptation techniques would improve generalization across varied environments and lighting
conditions, further advancing the practical application of UAV-based nighttime traffic monitoring systems.
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