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ABSTRACT: With the advancement of Vehicle-to-Everything (V2X) technology, efficient resource allocation in
dynamic vehicular networks has become a critical challenge for achieving optimal performance. Existing methods
suffer from high computational complexity and decision latency under high-density traffic and heterogeneous network
conditions. To address these challenges, this study presents an innovative framework that combines Graph Neural
Networks (GNNs) with a Double Deep Q-Network (DDQN), utilizing dynamic graph structures and reinforcement
learning. An adaptive neighbor sampling mechanism is introduced to dynamically select the most relevant neighbors
based on interference levels and network topology, thereby improving decision accuracy and efficiency. Meanwhile,
the framework models communication links as nodes and interference relationships as edges, effectively capturing
the direct impact of interference on resource allocation while reducing computational complexity and preserving
critical interaction information. Employing an aggregation mechanism based on the Graph Attention Network (GAT),
it dynamically adjusts the neighbor sampling scope and performs attention-weighted aggregation based on node
importance, ensuring more efficient and adaptive resource management. This design ensures reliable Vehicle-to-Vehicle
(V2V) communication while maintaining high Vehicle-to-Infrastructure (V2I) throughput. The framework retains the
global feature learning capabilities of GNNs and supports distributed network deployment, allowing vehicles to extract
low-dimensional graph embeddings from local observations for real-time resource decisions. Experimental results
demonstrate that the proposed method significantly reduces computational overhead, mitigates latency, and improves
resource utilization efficiency in vehicular networks under complex traffic scenarios. This research not only provides
a novel solution to resource allocation challenges in V2X networks but also advances the application of DDQN in
intelligent transportation systems, offering substantial theoretical significance and practical value.
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1 Introduction
In the context of smart cities, V2X plays a crucial role in intelligent transportation systems. This

technology enables comprehensive communication between vehicles and their surrounding environments,
including V2V, V2I, Vehicle-to-Pedestrian (V2P), and Vehicle-to-Network (V2N) communication [1]. As the
automotive industry advances towards technologies such as autonomous driving, intelligent navigation, and
automated parking, the importance of V2X continues to grow. However, V2X still faces critical challenges in
balancing communication performance and safety constraints.

To address these issues, various V2X technologies have been developed. Recently, among these tech-
nologies, Cellular Vehicle-to-Everything (C-V2X) has been recognized as a critical technology [2]. It offers

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.065860
https://www.techscience.com/doi/10.32604/cmc.2025.065860
mailto:sj103063@163.com


5428 Comput Mater Contin. 2025;84(3)

higher data transmission rates, lower latency, and better reliability than IEEE 802.11p technology. Addi-
tionally, the 3rd Generation Partnership Project (3GPP) has standardized New Radio Vehicle-to-Everything
(NR-V2X) technology in its Release 16 standards [3]. However, with the deployment of these advanced
technologies, new challenges arise. One key challenge is the resource allocation problem, which is crucial
to support the substantial wireless communication demands of V2X. This problem is NP-hard, making it
difficult to simultaneously satisfy the reliability requirements of V2V links and the rate requirements of
V2I links in vehicular networks. Traditional resource allocation methods rely on accurate Channel State
Information (CSI), which is difficult to obtain in high-speed vehicular environments.

These new challenges are difficult to address with traditional methods, prompting research to shift
towards advanced algorithms [4]. In recent years, deep learning methods have developed rapidly, particularly
Deep Reinforcement Learning (DRL), which leverages the powerful function approximation capabilities of
deep learning. Reference [5] addresses the spectrum sharing problem in vehicular networks using multi-
agent reinforcement learning, where multiple V2V links share a frequency spectrum with V2I links. DRL
is particularly effective for solving resource allocation problems, especially in environments where CSI is
unreliable. By continuously learning through trial and error to develop strategies that maximize long-term
rewards, DRL ultimately enhances the performance of distributed resource allocation systems. DRL has
also been explored as a tool for enhancing energy efficiency in vehicular communications. For instance,
references [6] and [7] demonstrate how reinforcement learning can minimize transmission power or reduce
energy consumption while maintaining communication reliability, highlighting the growing importance of
energy-aware decision-making in V2X resource allocation.

To address these challenges, researchers have explored various machine learning methods, such as CNN,
DNN, LSTM, and GNN [8]. Among them, GNN has demonstrated exceptional performance. Reference [9]
proposes an edge-update mechanism for GNNs to efficiently manage radio resources in wireless networks.
This approach improves the sum rate and reduces computation time compared to state-of-the-art methods
while demonstrating strong scalability and generalization.

Although recent studies have applied GNNs to resource allocation in vehicular networks, such efforts
remain limited in scope and number [10]. These approaches often model the network as a complete graph,
assuming that all communication links mutually influence each other. While such modeling can be effective
under moderate traffic conditions, it becomes computationally infeasible in high-density scenarios, resulting
in excessive complexity and unacceptable decision latency for real-time applications. Furthermore, most
existing GNN-based methods rely on fixed or predefined neighbor sampling strategies, which are ill-suited
to the dynamic and heterogeneous interference patterns characteristic of vehicular environments. This
limitation often leads to suboptimal resource allocation outcomes.

In addition, few GNN-based solutions consider the trade-off between communication performance
and energy efficiency—an increasingly important issue as vehicular networks move toward electric and
autonomous systems. Recent studies [11] have shown that graph-based representations can support not only
interference modeling but also energy-efficient decision-making in large-scale networks. Parallel to these
challenges, traditional DQN-based reinforcement learning frameworks suffer from overestimation bias due
to the shared use of a single network for both action selection and evaluation. This issue compromises
training stability and weakens policy robustness in complex, dynamic environments [12]. In addition to
communication and energy-related constraints, resource allocation in vehicular networks must also address
task-level requirements, particularly in multi-agent systems. For instance, integrated task assignment and
path planning under capacity constraints, such as those studied in capacitated multi-agent pickup and
delivery problems, are highly relevant to cooperative vehicular environments. These problems involve
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combinatorial complexity and inter-agent dependencies, directly influencing how communication and
computational resources should be dynamically distributed.

To overcome the aforementioned limitations, this paper proposes an innovative framework that inte-
grates GNNs and DRL to enhance the efficiency of distributed resource allocation and mitigate the impact of
inaccurate local observations. Specifically, the framework constructs a dynamic graph with communication
links as nodes and inter-link interference as edges, enabling adaptive adjustments to the network topology. It
incorporates three key innovations: adaptive graph construction with dynamic neighbor sampling based on
interference and spatial relevance, GAT-based personalized feature aggregation, and the integration of GNN
with Double DQN to improve stability and decision quality in dynamic vehicular environments.

2 System Model and Problem Formulation

2.1 Basic Structure
Building on the challenges discussed earlier, this section focuses on modeling the V2I and V2V com-

munication scenarios in the V2X paradigm, particularly targeting efficient resource allocation in dynamic
vehicular networks. As shown in Fig. 1, the system is modeled based on a vehicular traffic scenario at an
intersection, where the Base Station (BS) is located at the center. Vehicles enter the roads with randomly
selected speeds and maintain a constant velocity. V2V communication is primarily used for exchanging
safety-critical messages between vehicles, while V2I links support high-throughput data transmission to
the BS, such as infotainment content. The resource allocation mechanism follows C-V2X mode-4, where
vehicles, as agents in the system, use DDQN to determine the best subchannel and power level [13]. A shared
reward function is designed to jointly optimize the selection of spectrum and power levels in the network.
This decentralized resource allocation framework leverages local vehicle interactions and learned policies to
ensure efficient and effective resource utilization in dynamic vehicular environments.

Figure 1: System model

In this model, resource allocation is divided into channel selection and power level selection. The
efficient use of channel resources is key to maximizing system efficiency, as congestion on some channels
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can lead to underutilization of others. Vehicles, when selecting channels, must consider not only their
own communication needs but also the potential impact on other vehicles, especially in cases where the
available channel is limited. Power level selection follows channel selection and is crucial for balancing
the trade-off between minimizing interference and ensuring reliable communication. Lower transmission
power reduces interference but can cause signal failure, whereas higher power increases interference and
energy consumption.

The system employs a decentralized approach for V2X resource allocation, assuming that V2I resources
are allocated by the BS, and the number of subchannels and power levels is predefined [14]. Vehicles make
their own decisions regarding resource allocation, with each V2V link having multiple possible resource
choices. The goal is to minimize interference to V2I links while meeting latency and reliability requirements
for V2V communication, thereby optimizing the overall system performance [15].

To achieve this, the interaction between the model and the environment occurs at two time scales:
a larger time scale for determining neighbor relationships and a smaller time scale for gathering local
observations and neighbor data. The vehicles process this information through a GNN model to generate
low-dimensional feature vectors representing global information. These vectors are then used by DRL to
make decisions about channel and power level selections.

2.2 Interference Calculation Method
We assume there are m cellular users (CUEs) and k V2V user pairs (VUEs), denoted by sets

M = {1, 2, . . . , m} andK = {1, 2, . . . , k}, respectively. V2V links reuse the uplink spectrum that is orthogo-
nally allocated to V2I links.

The Signal-to-Interference-plus-Noise Ratio (SINR) for the i-th CUE and j-th VUE is calculated as
follows:

γc[i] = Pc
i hi

σ 2 + ∑ j∈K ρ j[i] Pv
j h̃ j

(1)

γv[ j] =
pv

j ⋅ g j

σ 2 +∑i∈M ρ j[i]pc
i gi , j +GV 2V

(2)

GV 2V = ∑
i∈M

ρ j[i] ∑
j′∈K , j′≠ j

ρ j′[i]pv
j′ g

v
j′ j (3)

Based on Shannon’s capacity formula, the achievable communication rates for the i-th CUE and the
j-th VUE are given by:

Cc[i] = B ⋅ log(1 + γc[i]), Cv[ j] = B ⋅ log(1 + γv[ j]) (4)

All related symbols used in the above equations are summarized in Table 1.

Table 1: Symbol definitions in SINR and capacity calculations

Symbol Description
Pc

i Transmit power of the i-th CUE
Pv

j Transmit power of the j-th VUE

(Continued)
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Table 1 (continued)

Symbol Description
hi Uplink channel gain from CUE i to the BS
h̃ j Uplink channel gain from VUE j to the BS
g j Direct channel gain of the j-th VUE link (VUE-Tx to VUE-Rx)

gi , j Interference channel gain from CUE i to VUE j
gv

j′ , j Interference channel gain from VUE j′ to VUE j
ρ j[i] Indicator: 1 if VUE j shares spectrum with CUE i; 0 otherwise

σ 2 Noise power
B Channel bandwidth

GV2V Total interference from other VUEs on the same subchannel

Note: All gain values follow path-loss and shadowing models consistent with 3GPP TR 36.885 channel model-
ing assumptions.

3 Graph Neural Network Models

3.1 Neighbor Sampling and Graph Construction
In V2X networks, the dynamic nature of vehicle movement and interference makes efficient graph

construction essential for real-time resource allocation. Traditional approaches often use fixed neighbor
sampling or model the network as a complete graph, which results in excessive complexity and decision
latency in high-density environments.

To address this, we propose an adaptive neighbor sampling method that evaluates the importance of
each neighbor based on two factors: interference level and distance to the BS. Let V = {v1 , v2, . . . , vS}denote
the set of vehicles. For each vehicle vi , the importance of a neighboring vehicle v j is calculated as:

I j = w1 ⋅ fint(γv , i j) +w2 ⋅ fdist(d j) (5)

where γv , i j denotes the estimated interference level between vehicles vi and v j, while d j represents the
Euclidean distance from v j to the BS. The functions fint(⋅) and fdist(⋅) are normalization functions that
scale their respective inputs to the range [0, 1]. The weights w1 and w2 respectively represent the relative
importance of interference and spatial proximity, subject to the constraint w1 +w2 = 1.

Each node selects the top five neighbors based on this score. A graph is then constructed where V2V
links are nodes and interference relationships form the edges [16]. We apply GAT to aggregate node features
efficiently. This adaptive approach limits graph size, preserves critical interference relationships, and supports
scalable learning in dense vehicular scenarios.

3.2 GAT
Since we assumed there are k pairs of VUEs, the nodes in the graph can be represented as

P = [p1 , p2, . . . , pk]. For node p, it contains a list storing the indices of its neighboring nodes as well as
an initial feature vector xp. The vector xp encapsulates the local observations of the vehicle’s channel and
interference information. We assume that the number of subchannels is equal to the number of CUEs,
denoted as m. On the i-th subchannel, the instantaneous channel power gain of the V2V link is Gt[i], the
subchannel power gain of the V2V link is Ht[i], and the interference signal strength for the one-time slot is
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It−1[i]. Therefore, the feature of node p can be expressed as:

xp = {Gt ∣∣Ht ∣∣It−1} (6)

The aggregation function of the GAT introduces a self-attention mechanism, assigning a weight to each
neighboring node. This weight reflects the influence of the neighbor on the information propagation to the
target node; the larger the weight, the stronger the influence of the neighbor. Unlike conventional graph
convolution methods, GAT enables each node to dynamically compute attention weights based on neighbor
features, thereby facilitating structure-aware and adaptive feature aggregation.

For each node pi ∈ P, the influence of neighboring nodes p j ∈ P during information aggregation is
determined by calculating attention weights that reflect the feature similarity between pi and p j. Assume
that Ni contains the node coefficients excluding i. These attention weights are computed via a Feed-Forward
Neural Network (FFNN) as follows:

For node pi and neighbor p j, their feature vectors are concatenated and transformed through a learnable
weight matrix W, followed by a LeakyReLU activation function to capture nonlinear relationships. This
process is formalized as:

ei j = LeakyReLU (W[xpi ∣∣xp j]), j ∈ Ni (7)

where [xpi ∣∣xp j] denotes the feature vectors of xpi and xp j, respectively, and W represents the concatenated
feature vector.

The attention coefficient αi j between vi and v j is derived by normalizing the transformed features via
softmax:

αi j =
exp(ei j)

∑y∈Ni exp(ei y)
(8)

Here, αi j quantifies the influence of neighbor v j on vi during feature aggregation, ensuring that all
weights sum to 1 across the neighborhood.

With the attention weight αi j for each neighboring node, we aggregate the features of the neighboring
nodes using a weighted sum to generate the new feature representation zpi for node pi :

zpi = LeakyReLU
⎛
⎝∑j∈Ni

αi jW p j
⎞
⎠

(9)

In this manner, the node pi updates its features based on the features of its neighbors and their corre-
sponding attention weights. This process can be viewed as the propagation and aggregation of information
within the graph, as shown in Algorithm 1.

Algorithm 1: GAT-based feature aggregation
Input: Node features H = [h1 , h2, ..., hN]; NeighborhoodN(i) for each node i
Output: Updated node features H′ = [h′1 , ..., h′N]
1 for each node i ∈ {1, ..., N} do
2 for each neighbor j ∈N(i) do
3 Concatenate features: hi j ← [hi ∣∣h j];

(Continued)
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Algorithm 1 (continued)
4 Compute attention score: ei j ← LeakyReLU(a⊺ ⋅ hi j);
5 Normalize attention scores: αi j ← exp(ei j)

∑k∈N(i) exp(eik)
;

6 Aggregate features: h′i ← σ (∑ j∈N(i) αi j ⋅Wh j);
7 return H′ = [h′1 , ..., h′N]

The GAT enhances node relationship capture by assigning personalized weights to neighboring nodes,
effectively modeling complex dependencies in vehicular networks [17]. This approach improves resource
allocation accuracy by prioritizing reliable links with good channel quality and high communication success
rates, optimizing network performance. GAT adapts to dynamic environmental changes by adjusting weights
in real-time, ensuring continuous and effective resource allocation. Furthermore, we adopt the LeakyReLU
activation function in the GAT aggregation process to address the issue of vanishing gradients and neuron
inactivity commonly associated with ReLU. LeakyReLU allows a small, non-zero gradient for negative input
values, which helps maintain learning dynamics and stabilizes the training process. This choice follows the
original GAT design and has been shown to improve convergence speed and model robustness in dynamic
graph environments [18].

3.3 Real-Time Deployment Considerations of GAT Aggregation
While the GAT enables dynamic and personalized feature aggregation by assigning learnable weights

to neighboring nodes, its real-time deployment raises concerns regarding computational complexity, partic-
ularly in high-density vehicular networks. In each GAT layer, attention weights are computed for every pair
of neighboring nodes, leading to a time complexity of O(E) per layer, where E denotes the number of edges.
In scenarios with N nodes and average degree D, this translates to approximately O(N⋅D) operations. We
mitigate the overhead through two mechanisms:

1. Incomplete Graph Construction: By limiting each node to at most 5 neighbors through importance-
based sampling, the number of edges per node remains bounded, thereby capping the attention
computation cost.

2. Parallelization: The GAT computation is implemented using TensorFlow’s parallelized matrix opera-
tions, which enables real-time inference within 30 ms per decision round in a simulated environment with
100 vehicles. GAT introduces additional overhead compared to traditional graph convolutions, our design
ensures bounded graph size and efficient computation, making it suitable for time-constrained vehicular
applications. Since each node maintains a fixed number of neighbors, the total graph complexity increases
linearly with the number of vehicles, making the framework structurally scalable to higher-density scenarios
without incurring exponential computational growth. Therefore, the proposed approach is also feasible for
deployment on modern edge computing devices, which typically have limited computational resources but
demand real-time performance.

4 The GNN-DDQN Model For Resource Allocation Problems
DRL combines deep learning and reinforcement learning to enable an agent to learn from its interac-

tions with the environment by optimizing cumulative rewards, treating learning as a heuristic evaluation
process [19]. Problems are typically modeled as Markov Decision Processes (MDPs), where the agent
observes the state, makes decisions based on a policy, executes actions, and receives rewards that update the
state [20]. However, the Deep Q-Network (DQN) suffers from an overestimation bias due to using the same
network for both action selection and evaluation, which can degrade learning stability and performance. To
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mitigate this issue, the DDQN was introduced as an enhanced variant of the original DQN. By decoupling
the action selection and value estimation processes, DDQN effectively mitigates the overestimation problem
and achieves better performance, particularly in vehicular networks.

Next, we will sequentially introduce the details of the state space, action space and reward in the
DDQN network.

State Space: for the V2X environment considered in this study, the true state information primarily
includes the vehicle’s observations of the environment and the low-dimensional features zp extracted by the
GNN model from these observations. To assist the agent in making better decisions, each vehicle sends its
channel selection information to the target vehicle [21]. Accordingly, each agent collects the previous channel
selection information Nt−1 from its neighboring agents and calculate the ratio of the remaining bits to be
transmitted to the total bits to be transmitted Lt , as well as the remaining transmission time Ut under the
delay constraint. Combining these pieces of information, the state representation obtained by the agent is as
follows:

St
p = {zt

p∣∣xt
p∣∣N

p
t−1∣∣L

p
t ∣∣U

p
t } (10)

Action Space: based on the collected and observed state information, the DDQN network selects an
action at from the action space A according to the policy π [22]. Since the agent needs to simultaneously
choose a sub-channel and a power level, we combine these two types of actions into a composite action. The
selected composite action is mapped to two dimensions, corresponding to the choice of sub-channel and
power level. In the scenario considered in this paper, we simplify the case by defining n power levels and m
resource blocks. Thus, there are a total of nm possible action combinations in the action space. If the agent
selects an action at , we can decompose it as follows:

at
r = at%m (11)

and

at
p = at/m (12)

at
r denotes the sub-channel selection action based on the action at and the number of resource

blocks m, while at
p denotes the power level selection action. The specific forms of these two functions

are designed according to the characteristics of the DDQN model and the practical requirements of the
V2X communication resource allocation problem. The goal is to ensure that the agent can make precise
decisions within the action space, thereby achieving efficient resource allocation that meets the performance
requirements of V2V and V2I links [23]. This includes ensuring low latency and high reliability for V2V
communication while maximizing the transmission rate of the V2I link.

Reward Function: in the reinforcement learning framework, designing an appropriate reward function
is crucial for guiding the agent toward optimal decision-making. In the context of V2X communication
resource allocation, our objective is to maximize the V2V link’s ability to meet low latency and high reliability
communication requirements while minimizing interference to the V2I link in order to maximize the V2I
link’s transmission rate [24]. The reward function is expressed as follows:

rt = λc ∑
i∈M

Cc[i] + (1 − λc)∑
j∈K

Cv[ j] − λp(T0 −Ut) (13)

where rt represents the immediate reward obtained by the agent at time step t, λc represents the weight of the
V2I link. Ut represents the remaining time, while T0 denotes the transmission delay limit. Thus, (T0 −Ut)



Comput Mater Contin. 2025;84(3) 5435

indicates the elapsed transmission time. Based on the immediate reward formula, the long-term discounted
return can be expressed as:

Rt = E [
∞

∑
n=0

βnrt+n] (14)

where β ∈ [0, 1] denotes the discount factor for the reward. A higher value of β suggests that the agent
prioritizes long-term returns, whereas a lower value indicates a preference for immediate rewards.

Fig. 2 illustrates the structure of the GNN-DDQN framework, which integrates deep reinforcement
learning with graph neural networks for resource allocation in vehicular networks. The overall architecture
comprises two main modules: the DDQN and the GNN. The DDQN model utilizes a three-layer neural
network with 500, 250, and 120 neurons in each layer, respectively. This network structure was chosen based
on empirical tuning to balance model complexity and training performance. The initial learning rate is
0.01, and a β-greedy exploration strategy is employed. The DDQN framework includes agents interacting
with the vehicular environment, where at each time step t, an agent observes the current state st and
selects an action at from the action space A based on its policy π [25]. This action, typically involving the
selection of a transmission channel and power level for the V2V link, is guided by the state-action value
function Q(st , at), which is approximated using deep neural networks to adapt to complex environmental
dynamics. Following the action execution, the environment transitions to a new state st+1 and provides
a reward rt that is derived from the interruption probability of the V2V link and the throughput of the
V2I link, as shown in Algorithm 2.

Algorithm 2: Training procedure of GNN-DDQN
Input: Replay bufferD, discount factor γ, learning rate α, update interval C
Output: Trained Q-network Qθ
1 Initialize Q-network Qθ and target network Qθ− ;
2 Initialize replay bufferD;
3 for episode = 1 to M do
4 Reset environment and get initial state s0;
5 for t = 1 to T do
6 Construct communication graph and extract node features using GAT;
7 Select action at via ε-greedy strategy based on Qθ(st , a);
8 Execute at, observe reward rt and next state st+1;
9 Store (st , at , rt , st+1) intoD;
10 Sample mini-batch fromD;
11 foreach sample (s, a, r, s’) in batch do
12 Compute target: y ← r + γ ⋅max

a′
Qθ−(s′, a′);

13 Update Qθ by minimizing loss: L← (y − Qθ(s, a))2;
14 if t mod C = 0 then
15 Update target network: Qθ− ← Qθ ;
16 return Qθ
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Figure 2: The structure of GNN-DDQN

The GNN module operates in two steps: constructing a graph that captures the global network
topology and extracting low-dimensional feature embeddings that represent global information [26]. These
embeddings, combined with local observations such as channel state and interference data, enhance the
agent’s decision-making process. A replay memory module stores experience tuples (s, a, r, s′) generated
during interactions, which are subsequently used to train the network. At the core of the framework, the
Q-Network approximates Q(s, a, θ) to guide action selection, while a periodically updated Target-Network
provides stable target Q-values. Additionally, a GAT aggregates node features using attention coefficients
computed from local observations, resulting in low-dimensional embeddings that effectively capture the
global context.

This integrated structure, which combines global context awareness with temporal decision-making,
enables adaptive and efficient resource allocation in high-density vehicular networks.

5 Simulations
In this section, we present simulation setup and simulation results to show the performance of the

proposed GNN-DDQN based resource allocation framework in terms of computational complexity, latency,
and resource utilization efficiency, and compare it with other methods.

In this study, the code is configured using Python 3.6.13 and TensorFlow 2.3.1. We consider a single-cell
system with a carrier frequency of 2 GHz. The simulation follows the Manhattan scenario setup described in
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3GPP TR 36.885 [27], which includes 9 blocks and employs both line-of-sight (LOS) and non-line-of-sight
(NLOS) channels. More detailed parameter settings are provided in Table 2. The parameters such as “Carrier
frequency”, “Bandwidth of single subchannel”, “Height of BS Antenna”, and others are adapted from [28].

Table 2: System parameters

Description Specification
Carrier frequency 2 GHz

Bandwidth of single subchannel 1.5 MHz
Height of BS Antenna 25 m

Gain of BS antenna 8 dBi
Noise figure of BS receiver 5 dB

Gain of vehicle antenna 3 dBi
Vehicle speed 36 to 54 km/h

Neighbor vehicles distance threshold 150 m
Number of lanes 4 per direction, total 16 lanes

Noise power –114 dBm
Maximum delay for V2V link 100 ms

V2V transmission power level list [23, 10, 5] dBm
[λc , λp] [0.3, 1]

Vehicle positions are initialized according to a spatial Poisson process, and their movements follow
random waypoint mobility across a 9-block urban grid. Speeds are randomly chosen within the range of
36–54 km/h, consistent with typical city driving. Although no real traffic datasets were used directly, we
validated the simulation parameters by comparing with characteristics from benchmark traffic datasets such
as TAPAS Cologne and the Luxembourg SUMO dataset. These comparisons ensured that our synthetic setup
reflects realistic vehicle density, spacing, and mobility patterns commonly observed in urban environments.
The modular design of the proposed GNN-DDQN framework enables it to adapt to varying urban layouts
and traffic conditions. Experimental settings can be adjusted to simulate different topologies and mobility
models, indicating the model’s potential generalization capability across diverse city scenarios.

Building on this simulation environment, we implement the proposed GNN-DDQN model. A GAT
with two layers is used to extract structural features, where each node selects up to five neighbors based on
an adaptive importance score. The node input feature is 60-dimensional, including channel gain, subchannel
gain, and past interference. The GAT outputs a 20-dimensional embedding through attention-weighted
aggregation. This embedding, combined with auxiliary features such as remaining transmission time and
neighbor activity, forms a 102-dimensional input to a three-layer DDQN network. The network outputs
Q-values for 60 discrete subchannel-power actions using the activation function.

Fig. 3 shows how the number of selected neighbors affects the average scaled reward in the GNN-DDQN
framework. As the number increases from 1 to 5, the reward improves steadily and peaks at 5 neighbors,
suggesting that aggregating information from a moderate set of nearby nodes helps enhance decision-
making. Beyond this point, performance declines, likely due to added noise from less relevant neighbors.
This highlights the need to choose a suitable neighbor count that balances useful information and noise in
dynamic vehicular environments.
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Figure 3: Decision time comparison between complete graph and incomplete graph

Fig. 4 demonstrates the performance of the GNN-DDQN network at different training iterations
in a simulated environment. It can be seen that as the number of training iterations increases, the V2I
communication rate and the average V2V communication success rate gradually improve and eventually
converge. This validates that the model’s performance is continuously optimized during the training process,
reflecting the positive impact of training on enhancing communication effectiveness.

Figure 4: Training effect of V2I communication rate and training effect of V2V communication success rate

Fig. 5 illustrates the impact of increasing vehicle numbers on the average V2I throughput and V2V
communication success rate under different resource allocation strategies. As the number of participating
vehicles increases, all schemes exhibit a decline in V2I throughput due to intensified interference from
V2V links. Simultaneously, V2V communication reliability also decreases as a result of growing channel
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contention and congestion. Despite these challenges, the proposed GNN-DDQN method significantly
outperforms other approaches in both metrics. Across all vehicle densities, GNN-DDQN improves V2I
throughput by 22.1% over DQN and by 149.6% over the random baseline. In the high-density scenario
with 120 vehicles, it outperforms the four benchmark methods by 310.43%, 36.37%, 34.97%, and 8.81%,
respectively. Regarding V2V communication, GNN-DDQN consistently maintains a higher success rate
across all densities, with improvements of up to 0.96% over DQN and 9.78% over the random scheme.
Under high-density conditions, it achieves V2V reliability gains of 19.53%, 2.08%, 1.91%, and 1.20% compared
to the four baselines. These results demonstrate the effectiveness of graph-based structural modeling and
attention-guided policy learning in enhancing both V2I and V2V communication performance in dense
vehicular networks.

Figure 5: Relationship between number of vehicles and communication performance

Fig. 6 compares the decision-making time when constructing the GNN using a complete graph vs. an
incomplete graph, across varying numbers of participating vehicles. As the number of vehicles increases,
the decision time under the complete graph configuration rises significantly—from 0.0054 s at 20 vehicles
to 0.0078 s at 120 vehicles, representing a 44.44% increase. In contrast, the incomplete graph maintains a
relatively stable decision time, fluctuating slightly from 0.0056 to 0.0061 s, with only an 8.93% increase over
the same range. At higher vehicle densities, the computational advantage of the incomplete graph becomes
more evident. Specifically, at 120 vehicles, the incomplete graph achieves a 21.79% reduction in decision time
compared to the complete graph. This stability is primarily attributed to the limited and fixed number of
neighbors in the incomplete graph, which avoids the linear growth in computation caused by the increasing
number of nodes in the complete graph.

Fig. 7 illustrates the average reward per epoch during training for five model configurations: DQN,
DDQN, GCN-DQN, GAT-DDQN and the proposed GAT-DQN. The results show that GAT-DDQN
achieves the highest reward and most stable convergence, demonstrating the effectiveness of combin-
ing graph attention mechanisms with the DDQN framework for improved learning performance in
dynamic environments.
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Figure 6: Decision time comparison between complete graph and incomplete graph

Figure 7: Total reward obtained per epoch during training for different model

6 Conclusions and Future Work
In this paper, we integrate Graph Neural Networks (GNN) with Double DDQN for resource allocation

in V2X networks. To curb the exponential growth of computation in dense traffic, we introduce an
interference- and location-based neighbor sampling method that limits graph size while retaining critical
links. We then build dynamic graphs without additional communication overhead and apply a GAT to
weight neighbor features via self-attention. Simulation results demonstrate that GNN-DDQN consistently
outperforms standalone DQN. Compared to industrial standards such as Qualcomm’s C-V2X solution, our
method demonstrates higher flexibility in decentralized V2V communication scenarios and provides better
adaptability to dynamic environments due to its learning-based design. Future work will focus on adapting
the framework to varying vehicle densities.

While our model addresses channel and power allocation under latency and interference constraints,
future work could explore integrated spatio-temporal constraints such as joint vehicle scheduling and
trajectory-aware spectrum assignment. Such extensions may benefit from recent progress in multi-agent
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task routing under capacity and coordination constraints, as investigated in pickup-and-delivery or drone
delivery networks. For instance, integrated task assignment and path planning for capacitated multi-agent
systems has been shown to offer valuable insights into how spatial-temporal constraints and agent limitations
can be jointly optimized [29]. These methodologies could inspire new directions in V2X resource allocation,
particularly in scenarios involving mobility prediction, multi-hop relaying, or joint scheduling and routing.

Although the proposed GNN-DDQN framework demonstrates superior performance in simulated
high-density vehicular environments, it is important to acknowledge the ethical and safety implications
of applying RL in safety-critical V2V communications. The trial-and-error nature of RL may result in
suboptimal or unsafe decisions, particularly in early training stages or in highly dynamic, unseen environ-
ments. To mitigate these risks, our approach conducts all training in a controlled simulation environment
and incorporates latency and reliability constraints directly into the reward function to discourage unsafe
behavior. Previous research has shown that properly designed DRL frameworks with safety-aware reward
shaping can maintain acceptable QoS levels in vehicular networks [30]. Moreover, the adoption of Graph
Neural Networks enhances the model’s generalization ability and reduces the chance of unexpected decisions
caused by insufficient observations. In future work, we plan to explore safe RL techniques such as Constrained
Policy Optimization and hybrid decision architectures to further enhance reliability, interpretability, and
regulatory compliance in real-world deployments. We also recognize that the current model has limitations
in handling non-stationary environments and scaling to city-level deployments, which will be important
directions for our future research.
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