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ABSTRACT: Cloud computing has become an essential technology for the management and processing of large
datasets, offering scalability, high availability, and fault tolerance. However, optimizing data replication across multiple
data centers poses a significant challenge, especially when balancing opposing goals such as latency, storage costs, energy
consumption, and network efficiency. This study introduces a novel Dynamic Optimization Algorithm called Dynamic
Multi-Objective Gannet Optimization (DMGO), designed to enhance data replication efficiency in cloud environments.
Unlike traditional static replication systems, DMGO adapts dynamically to variations in network conditions, system
demand, and resource availability. The approach utilizes multi-objective optimization approaches to efficiently balance
data access latency, storage efficiency, and operational costs. DMGO consistently evaluates data center performance and
adjusts replication algorithms in real time to guarantee optimal system efficiency. Experimental evaluations conducted
in a simulated cloud environment demonstrate that DMGO significantly outperforms conventional static algorithms,
achieving faster data access, lower storage overhead, reduced energy consumption, and improved scalability. The
proposed methodology offers a robust and adaptable solution for modern cloud systems, ensuring efficient resource
consumption while maintaining high performance.

KEYWORDS: Cloud computing; data replication; dynamic optimization; multi-objective optimization; gannet opti-
mization algorithm; adaptive algorithms; resource efficiency; scalability; latency reduction; energy-efficient computing

1 Introduction
In cloud computing systems, proper replication is essential for maintaining high availability, fault

tolerance, and device dependability. Cloud infrastructure is engineered to deliver scalable, reliable, and
efficient data asset matching mechanisms, which are fundamental to this capability [1]. Cloud systems
can mitigate data loss from hardware failures, outages, or network disruptions by distributing information
across multiple servers or data centers [2]. However, the efficacy of replication strategies relies on careful
implementation, making consistency in statistical reliability, device performance, and storage efficiency the
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primary focus. As the quantity of documents escalates, the enterprise’s capacity to manage replicated records
over time in geographically distributed cloud environments also increases. These issues arise from factors
including network latency, bandwidth use, and the intrinsic uncertainty in managing surplus equipment
flows to guarantee reporting precision [3]. As the number of cases escalates, the organization concurrently
manages clones in geographically dispersed cloud environments. Factors contributing to these problems
encompass local latency, bandwidth utilization, and the intrinsic trade-offs between sustaining high device
availability and guaranteeing data integrity [4]. Conventional replication methods, including synchronous
and asynchronous replication, possess distinct advantages and disadvantages. Synchronous replication
enhances efficiency by ensuring data is updated on all nodes prior to committing changes; yet, it may result
in considerable delays [5]. Conversely, asynchronous replication can improve overall efficiency; but, it may
also jeopardize data consistency during network partitions or failures. Recent advancements in technologies
like as element computing, machine learning (ML), and distributed ledger systems are being utilized to
improve replication performance [6]. Adaptive replication models, which adjust replication protocols in
response to real-time network conditions, access patterns, and user requirements, have gained prominence
in contemporary cloud infrastructures. Moreover, hybrid cloud models that integrate public and private
cloud environments add complexity to the management of replicated data while offering opportunities for
more tailored, workload-specific replication strategies [7]. The significance of records replication efficiency
is paramount, particularly in sectors where information integrity, low latency, and device availability are
mission-critical, such as in financial services, healthcare, and e-commerce. As cloud infrastructure evolves,
the demand for more advanced, robust, and scalable replication mechanisms becomes increasingly evident.
Enhancing data replication in cloud architectures is a crucial area of research and innovation to achieve a
balance between performance, reliability, and cost-effectiveness in cloud computing systems [8]. Data repli-
cation is a crucial technique in cloud computing, ensuring data availability, reliability, and fault tolerance in
distributed systems. Traditional replication strategies, including static and heuristic methods, often prioritize
single-objective optimization—typically focused on minimizing latency or improving availability—while
inadequately addressing the trade-offs among competing factors such as cost, energy consumption, and
storage efficiency. Recent studies have examined adaptive and dynamic replication techniques; nevertheless,
many algorithms demonstrate inadequate flexibility to handle complex, multi-objective scenarios or to adapt
effectively to rapidly changing network and workload conditions. Multi-objective optimization methods,
such as genetic algorithms and swarm intelligence approaches, have shown promise in addressing these
challenges; nonetheless, they often face constraints in scalability and real-time performance. To rectify this
imbalance, our research introduces the Dynamic Multi-Objective Gannet Optimization (DMGO) approach,
which provides a new, adaptive framework for balancing multiple objectives in data replication while
dynamically responding to fluctuating network and resource restrictions. This methodology improves and
extends existing dynamic optimization research, offering enhanced scalability, adaptability, and performance
in cloud environments. This study intends to investigate methods for minimizing data storage and replication
expenses in cloud systems while maintaining data availability and stability. This necessitates the optimization
of the equilibrium between redundancy and efficiency, allowing cloud service providers to sustain elevated
service levels at minimal operational expenses. Fig. 1 illustrates that data replication, service replication,
task replication, and Virtual Machine (VM) replication are critical methodologies for achieving system
redundancy and fault tolerance in cloud computing settings.



Comput Mater Contin. 2025;84(3) 5135

Figure 1: Items of replications

This paper introduces a revolutionary Dynamic Multi-Objective Gannet Optimization (DMGO)
algorithm, an innovative approach that improves data replication in cloud environments by balancing
multiple objectives, including latency, storage cost, energy consumption, and network efficiency. Secondly,
we introduce a dynamic adaptation system that continuously monitors workload fluctuations and network
conditions, enabling real-time adjustments to replication algorithms for enhanced performance and resource
efficiency. Third, we provide a comprehensive experimental evaluation demonstrating that DMGO outper-
forms traditional static algorithms in essential performance metrics, including latency, storage efficiency,
operational costs, and energy conservation. The paper is structured into distinct sections: relevant work is
detailed in Section 2, the proposed technique is outlined in Section 3, the results are presented in Section 4,
and the conclusion is found in Section 6.

2 Related Works
Katal et al. [9] examined developing technologies applicable at the operating system, application,

and virtualization layers of software. It delineated numerous ways at various levels to mitigate energy
consumption, which is a significant contribution to the current environmental challenge of pollution
abatement. Ramesh et al. [10] proposed a secure database monitoring method to improve data backup
and recovery procedures in cloud computing. The proposed method exhibited a direct correlation between
backup speed and data amount, with a minimum annual data increase of 30%. Ayyagiri et al. [11] delineated
the design, advantages, and disadvantages of shaded databases. Range-based, hash-based, and directory-
based sharing methods were analyzed to comprehend data distribution and administration among shards.
The data migration was influenced by various sharing techniques, strategies, and resources. Bharany et al. [12]
aimed to provide a thorough and meticulous mapping analysis of the environmental consequences of the
high energy consumption of cloud data centers. Nineteen published primary studies were considered and
subsequently categorized to address the topics outlined in the paper. Li et al. [13] examined the integration
of Large Language Models (LLMs) within cloud computing, focusing on its implications for resource
management and allocation. Berisha et al. [14] elucidated the fundamental principles of big data analytics, a
critical activity across numerous enterprises and industries. The text commences with a concise description
of big data, examining its nature, properties, and the volume of data amassed daily. The keys generated using
GA were combined with a cryptographic technique to ensure the secrecy and integrity of cloud information
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during encryption and decryption. Sonbol et al. [15] introduced EdgeKV, a decentralized storage system
tailored for network edge applications. Through information replication with enhanced stability guarantees,
EdgeKV provided rapid and reliable storage. EdgeKV can expand alongside a varied network of edge
nodes because to its interface-centric and region-agnostic architecture. The emergence of a novel Personal
Computer (PC) paradigm, referred to as cloud computing, has been facilitated by technological trends.
Planning constituted a significant cloud application. The design of infrastructure for load balancing is a
critical concern in cloud architecture, significantly affecting resource utilization, as noted by Vinoth et al. [16].
Service providers generate an authentication bio-key employing a cryptographic method that is accessible
just to approved consumers. Masdari and Zangakani [17] investigated inter-cloud scheduling systems to
allocate user-submitted tasks and workflows to the most suitable virtual machine across several clouds,
considering various attributes and objectives. Alharbi et al. [18] investigated the offloading of virtual machine
services from the cloud to the fog by establishing a comprehensive framework for electricity performance
monitoring based on heuristics and mathematical models. The results indicated numerous characteristics,
including the volume of traffic experienced by the VM and its users, the VM’s workload in relation to the
number of clients, and the distance between fog nodes and users.

3 Methodology
The suggested Dynamic Multi-Objective Gannet Optimization (DMGO) algorithm employs a contin-

uous monitoring approach to enhance data replication in cloud environments. The method automatically
adjusts data replication setup based on real-time analysis of critical elements, including system load,
distance, and energy and storage expenses. Enhanced network performance algorithms integrate feedback
mechanisms to adjust to varying conditions in data centers, ensuring optimal replication processes are
sustained. Extensive testing examines the performance of DMGO, emphasizing criteria like as storage
utilization and demonstrating its superiority over conventional static algorithms in delivering an efficient
and quick data replication solution. The assessment was conducted in a simulated cloud environment that
emulates authentic workload patterns, network dynamics, and resource limitations to provide controlled and
reproducible testing circumstances.

3.1 Data Collection
Performance metrics and usage statistics gathered from data centers in the cloud environment simulated

for this test encompass critical elements such as cost, energy consumption, and storage capacity. The
performance of each data center is consistently assessed, offering insights into the impact of data replication
processes on total device efficacy. The data model comprises two examples featuring distinct architecture
and transport models, incorporating thorough comparisons of conventional static replication techniques
and DMGO rule models. Systematic parameter documentation facilitates the dynamic evaluation and
enhancement of data transmission, especially through performance metrics.

3.2 Data Replication Efficiency in Cloud Systems Using Dynamic Multi-Objective Gannet Optimization
(DMGO)
DMGO offers a comprehensive architecture to improve the efficiency of information replication in

cloud systems. By dynamically reconciling various demands while simultaneously lowering data transfer
costs and enhancing device reliability, DMGO adjusts to changing workloads and environmental conditions.
This optimization method use gannet-inspired algorithms to strategically select statistical replicas and their
locations, ensuring optimal resource utilization while maintaining high availability and overall performance.
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The outcome is a more robust cloud infrastructure capable of fulfilling the objectives of various initiatives
and clients.

3.2.1 Data Replication Efficiency in Cloud Systems Using Dynamic Multi-Objective (DMO)
The Methods, Observations, Procedures, Standards (MoPs) are a subset of multi-criteria decision-

making that addresses the concurrent optimization of many objective functions as mathematical problems.
The system employs dynamic algorithms to adjust to fluctuating workloads and diverse network circum-
stances, hence guaranteeing optimal replication procedures in real-time. This flexibility enables efficient
record management and resource allocation, leading to enhanced user satisfaction and system resilience. An
optimal option must be determined by balancing two or more competing objectives; DMO has been applied
in various logical disciplines, including architecture and economics. Eq. (1) demonstrates the mathematical
representation of MoPs.

h j (w) ≤ 0 (1)

In MoPs, the fitness function of the jth dispute is represented as h j (w). The goal space’s dimension is
m. The symbol Real Dimension (RD) denotes a decision space, or search space, having dimension D. The
issue of multi-objective optimization has h j (w) ≤ 0 as its constraint condition. Multiple optimization goals
conflict all the time in MoPs. As a result, while designing an algorithm, one aim cannot be sacrificed to
achieve the performance of another. The MoPs incorporate the idea of non-dominated to address this issue. It
is recorded as wawb , assuming that wa dominates wb . That is, wa and wb must meet the conditions of Eq. (2).

wb , wa ∈ QC (2)

A wa solution is referred to as non-dominated, or Pareto, if it is not dominated by any other solutions.
The Pareto front is the plane that contains every Pareto solution in the goal space. Every Pareto solution on
the Pareto front (PF) is represented by the corresponding Eqs. (3) and (4).

MC = {w j ∈W , ∄w
′

j ∈W , E (w
′

j) < E (w j)} (3)

OF = {w ∈ MC} (4)

3.2.2 Data Replication Efficiency in Cloud Systems Using Gannet Optimization (GO)
Fish constitutes the principal sustenance for the gannet, a large marine avian species. The gannets exhibit

exceptional proficiency in collaboration. The GO methodology offers a robust foundation for improving
records replication methods by optimizing resource allocation and reducing latency. GO utilizes advanced
algorithms to dynamically modify the replication technique based on real-time data, access patterns, network
conditions, and storage capabilities. Gannets would form a semicircular formation to encircle any fish they
located and then swiftly extract them from the water. The framework for GO was the gannet capture and
modeling system. The initial step is to identify each constituent of the gannet humanity, as demonstrated
by Eq. (5).

w j = rand × (va − ka) + ka (5)

The location vector of the jth gannet personality is denoted by w j. The algorithm moves on to the
exploration phase after GO has been initialized. Gannets hunt in two different diving styles during this
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period. Diving in shallow water should be done in a U-shaped mode, and diving in deep water should be
done in a V-shaped manner. Eqs. (6) and (7) display the respective matching formulae.

Vb = 2 cos cos (2π × q1) ×
Smax − S

Smax
(6)

{Ua = 2S × (2π × q2) ×
Smax − S

Smax
S = {1 − t

π
, t ∈ (0, π) t

π
− 1, t ∈ (π, 2π) (7)

where S and Smax are the numeral of iterations that the algorithm has performed so far and the greatest
number of iterations that it has run, respectively. Next, based on the probability for a location update, GO
chooses a predation technique. Eqs. (8)–(10) illustrate how to adjust its position.

W s+1
j = {ws

j + Vb1 + Vb2, rand ≤ o(b)ws
j +Ua1 +Ua2, rand > o(a) (8)

{Vb2 = B × (W S
j −W S

q )Ua2 = B × (ws
j −ws) (9)

{B = (2q3 − 1) × Vb A = (2q4 − 1) ×Ua (10)

Two random variables, q3 and q4, are focused on a typical ordinary allotment between 0 and 1. The
position vector of the person i th at the sth iteration is denoted by ws

j . The location vector of a randomly
selected person in the populace at the sth iteration is denoted by W S

q . Eq. (11) displays the computation, which
is the current population’s center position matrix.

ws =
∑M

j=1 wS
j

M
(11)

In the previously indicated procedure, the gannet must choose two methods for continuing development
after selecting one technique of entry into the water. It is termed stage exploitation. Due to the evasive
maneuvers of cunning fish, as seen in Eqs. (12) and (13), the gannet must use considerable energy to capture
them in the water.

Fj =
Smax × K

N ×U 2 × S
(12)

K = 0.2 + (2 − 0.2)q5 (13)

where N is the gannet’s average mass, which is typically set at 2.5 kg. U Shows the gannet’s speed in the water,
which is typically set at 1.5 m/s. The random number q5 is in the range of 0 to 1. The gannet will execute the
Levy flight and lose its prey if the fish it is feeding on manages to move out of its predatory range. If not,
the attitude will shift and pursue any fish that are yet inside the catch range. In Eqs. (14) and (15), the two
location update formulae are displayed.

W S+1
j = {wS

j + s × del × (wS
j −wS

best) , cap > d (b)wS
best − (wS

j −wS
best) × s × ku, cap ≤ d (a) (14)

{Del = cap × ∣wS
j −wS

best ∣ ku = Lev y(C) (15)

As seen in Eq. (17), wS
best represents the present ideal individual location in the gannet population, and

Lev y (C) represents the Levy flight formula. C is the capture capability range restriction, which is typically
set to 0.2.

{Leav y (C) = 0.01 × μσ
∣u∣

1
β

μ =
⎛
⎝

sin ( π
2 ) Γ(1 + β)

Γ (1+β)
2 )β × 2

(β−1)
2

⎞
⎠

1
β

(16)
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The variables μ and σ follow a regular normal distribution, whereas β is a fixed constant, often set at
1.5. Data replication efficiency in cloud systems is vital for making sure high availability, fault tolerance, and
most useful resource utilization. The DMGO algorithm offers a unique technique to enhance information
replication strategies in cloud environments. By addressing a couple of goals, such as minimizing replication
prices, maximizing record accessibility, and optimizing aid consumption, DMGO dynamically adjusts
replication rules primarily based on converting workloads and user needs. This adaptability permits real-
time optimization, making sure that facts are replicated across the cloud infrastructure in a manner that
balances overall performance and performance.

4 Result and Discussion
The experimental results demonstrate that the Dynamic Multi-Objective Gannet Optimization

(DMGO) technique significantly enhances data replication efficiency in cloud systems compared to tra-
ditional static approaches. The adaptive characteristics of DMGO enabled it to alter replication tactics in
real-time, leading to expedited record access and improved resource use. DMGO effectively reconciled
the conflicting objectives of cost, energy, and storage capacity, hence enhancing overall performance in
dynamic cloud environments. In the evaluation of various methodologies, an Intel Core i7-7700HQ CPU
functioning at 2.81 GHz, 8.0 GB of RAM, and a GeForce GTX 1050 Ti GPU are employed to optimize
the efficacy of CAD. In a comparison of various techniques including Ant Colony Optimization (ACO),
Tabu Search (TS), Particle Swarm Optimization (PSO), Hybrid PSO Tabu Search (HPSOTS), Dynamic Data
Replication using Intelligent Water Drop (D2R-IWD), Hadoop, PSO, and Genetic Algorithm (GA QW), the
proposed DMGO method exhibited enhanced performance regarding latency reduction, storage efficiency,
and cost-effectiveness [19,20].

4.1 Evaluation of Cost
The expenses related to various algorithms (TS, PSO, ACO, HPSOTS, and DMGO) for differing

amounts of replicated data. By assessing the expenses linked to various replication processes, companies
can identify the optimal methods for maintaining data redundancy while reducing costs. As the number
of replicated data escalates from 2000 to 5000, the suggested DMGO technique consistently recommends
higher costs relative to the other algorithms; moreover, in one instance at 2000 statistical factors, TS
demonstrates a superior price. DMGO appears to have particularly reduced statistical characteristics, despite
its price exceeding that of others, as indicated by the data. Overall, DMGO signifies the greatest pricing
fashion, reflecting its increased processing requirements relative to alternative methods. Table 1 and Fig. 2
present the cost results. Despite DMGO’s significant improvements in data replication optimization, its
computational complexity continues to be a critical consideration, particularly in large cloud systems. The
active management of several data centers, real-time evaluation of diverse goals, and continuous adjustment
of replication algorithms lead to increased computational overhead. To address this, numerous scaling
techniques may be employed. Initially, parallel processing and distributed computing frameworks can be
employed to execute optimization tasks concurrently, thereby reducing latency and resource limitations.
Secondly, a hierarchical deployment model may be employed, wherein optimization tasks are allocated
among regional controllers, so limiting the computational scope to manageable segments of the entire
system. Third, selective adjustment algorithms may be implemented, prioritizing replication decisions for
data that substantially impacts performance or cost metrics, hence avoiding unnecessary computations.
Although these solutions may not entirely eliminate computational costs, they can significantly diminish
overhead and make DMGO feasible for deployment in large-scale and multi-cloud environments. Future
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research will examine the development of lightweight variants of DMGO and assess their performance trade-
offs to enhance scalability. To alleviate potential delays caused by real-time alterations, numerous techniques
may be employed. This involves regulating replication update frequency to avoid unnecessary computations,
utilizing predictive models to anticipate workload and network variations for preemptive modifications,
and implementing lightweight monitoring tools to minimize system overhead. By meticulously calibrating
update intervals and the complexity of adjustment algorithms, one can maintain the benefits of dynamic
adaptability without significantly impacting latency or overall system efficiency.

Table 1: Outcomes of cost

Number of replicated data Cost

TS PSO ACO HPSOTS DMGO (Proposed)
2000 6000 5100 5150 5000 4800
2500 6200 5700 5800 5800 5500
3000 10,000 9500 9400 9500 9200
4000 14,000 13,700 16,500 20,500 13,400
4500 17,000 16,500 16,300 16,500 16,000
5000 21,000 20,500 20,000 20,300 19,800

Figure 2: Analysis of cost [19]

4.2 Evaluation of Energy
The energy consumption (in watts) of distinct algorithms across different quantities of replicated data.

The algorithms under comparison are TS, PSO, ACO, HPSOTS, and the suggested technique DMGO,
which exhibits a lower value. By analyzing electricity consumption in conjunction with statistical replication
methodologies, cloud providers can enhance resource allocation and improve overall device performance.
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Efficient data replication reduces information transit and storage costs while ensuring high availability and
dependability. As the number of duplicated statistics escalates from 2000 to 5000, the DMGO algorithm
consistently utilizes the highest energy, as evidenced by TS, ACO, and HPSOTS, whereas PSO typically
expends the least energy. Significantly, energy consumption increases across all algorithms with the surge of
replicated data, with DMGO exhibiting the most pronounced average growth. Table 2 and Fig. 3 illustrate
the energy results.

Table 2: Outcomes of energy

Number of replicated data Energy (W)

TS PSO ACO HPSOTS DMGO (Proposed)
2000 23,000 8000 17,000 16,500 7700
2500 25,000 24,000 24,500 23,000 22,800
3000 38,000 33,000 32,000 30,000 29,800
4000 40,000 36,000 35,000 35,000 33,000
4500 43,000 36,000 36,500 36,300 35,800
5000 46,000 39,000 38,500 38,000 37,700

Figure 3: Comparative analysis of energy consumption across different data replication algorithms, including the
proposed DMGO [19]

4.3 Evaluation of Storage Space
The storage capacity needed for particular algorithms (D2R-IWD, Hadoop, PSO, GA, and DMGO)

contingent upon the volume of files handled. By proactively evaluating storage capacity, cloud providers can
optimize the replication process, ensuring that data is duplicated only when necessary, hence eliminating
redundancy. As the file count escalates from 10 to 200, the proposed DMGO method consistently necessitates
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significantly less storage space than its counterparts. It surpasses traditional methods such as D2R-IWD and
Hadoop, which necessitate significantly more storage because to the diverse array of files. This underscores
DMGO’s efficacy in garage management. Table 3 and Fig. 4 illustrate the outcome of storage capacity.

Table 3: Outcomes of storage space

Number of files Hadoop PSO GA D2R-IWD DMGO (Proposed)
10 4000 3800 3700 3600 3500
20 3800 3600 3400 3300 3200
30 3600 3400 3200 3100 3000
40 3500 3300 3000 2900 2800
50 3400 3200 2800 2700 2600
60 3300 3100 2600 2500 2400
70 3200 3000 2400 2300 2200
80 3100 2900 2200 2100 2000
90 3000 2800 2000 1900 1800
100 2900 2700 1800 1700 1600
125 2800 2600 1600 1500 1400
150 2700 2500 1400 1300 1200
175 2600 2400 1200 1100 1000
200 2500 2300 1000 900 800

Figure 4: Analysis of storage space [20]
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This study conceptually advances dynamic multi-objective optimization by introducing a novel algo-
rithm, DMGO, tailored for data replication challenges in cloud computing. The proposed framework
improves existing optimization methods by including real-time adaptability and reconciling many compet-
ing objectives, such as latency, cost, energy consumption, and storage use. This methodology may serve as
a foundation for future research on adaptive optimization algorithms in distributed systems outside cloud
environments. The results of this study have significant implications for cloud service providers, data center
operators, and IT managers. Utilizing DMGO enables stakeholders to achieve improved data replication
techniques that save operational costs, expedite data access, and optimize resource allocation. The adaptive
features of DMGO are particularly beneficial for managing dynamic workloads and enabling scalability in
hybrid and multi-cloud environments, where flexible and cost-effective resource management is a critical
operational concern. Despite its promising results, the proposed DMGO algorithm has many drawbacks.
The dynamic monitoring and real-time adjustment processes entail additional computing overhead, possibly
affecting performance, particularly in large cloud environments with thousands of nodes. While scaling
methods such as hierarchical deployment and parallel processing help mitigate this issue, they may not
entirely eliminate it. Secondly, the current evaluation was conducted in a simulated environment, which,
although designed to replicate real-world scenarios, may not capture all the complexities and unpredictable
dynamics of authentic cloud infrastructures. Third, DMGO has not undergone direct comparison with a wide
range of existing dynamic multi-objective optimization algorithms due to discrepancies in objectives, system
models, and assumptions, hence limiting the scope of comparative research. Future study will address these
limitations by exploring lightweight algorithmic alternatives, conducting empirical evaluations, and defining
standardized norms for comprehensive comparison. While direct comparisons with previous studies were
excluded due to differing objectives, system models, and assumptions, future study will focus on establishing
shared benchmarks or adapting similar approaches to enable more direct performance evaluations.

5 Case Study: Implementation of DMGO in a Cloud Service Provider Environment

5.1 Overview of the Cloud Service Provider (CSP)
The Cloud Service Provider (CSP) in this case study offers a comprehensive range of cloud services,

including Infrastructure as a Service (IaaS) and Software as a Service (SaaS), to enterprise clients across many
worldwide regions. The infrastructure comprises numerous data centres (DCs) situated in geographically
diverse locations, interconnected by high-speed fibre-optic networks. Featuring diverse workloads such as
customer databases, web applications, machine learning models, and virtual machines, all consolidated
under a single data center. The architecture operates in a semi-public-cloud configuration, judiciously
integrating public and private-cloud resources as required for demand fluctuations.

The 500 petabytes (PB) of data managed by the CSP is duplicated across many sites to ensure high
availability, fault tolerance, and low-latency access. Instances of services reliant on data replication include
real-time analytics platforms, virtualized desktop infrastructure (VDI), and data backup services. The
objective is to ensure four nines (99.99%) availability, hence preventing any complete hardware or network
failure from disrupting the service.

5.2 Challenges with Existing Data Replication Strategies
Going beyond the CSP’s dedication to availability and reliability, the current static data replication

schemes had multiple operational complications:
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5.2.1 High Operational Costs
The storage and network overhead resulting from data replication across various data centers is

substantial. The CSP will employ generic asynchronous replication, which is more cost-effective than
synchronous replication, but generates replicas without considering current demand.

Storage Cost Function∶Cstorage =
n
∑
i=1

si ⋅ ri ⋅ Pi

where si is the size of replica i , ri is the number of replicas, and Pi is the cost per storage unit in data
center i.

5.2.2 Latency and Performance Issues
As the data volume increases, users experience higher latency, especially during peak loads. Static

replication fails to adapt to dynamic network conditions and access patterns.

Latenc y L can be model ed as∶ L = d + b
B
+

n
∑
i=1

Ti

where d is the distance between the source and destination, b is the size of the data, B is the bandwidth, and
Ti represents the transfer time at node i.

5.2.3 Energy Consumption
Data replication consumes significant energy resources. Static algorithms do not consider energy

optimization, leading to higher power usage in data centers during off-peak periods.

The total energ y consumption Etotal is∶Etotal =
m
∑
j=1
(Pidle

j + Pactive
j ) ⋅ Tj

where Pidle
j and Pactive

j are the power consumed by the jth DC in idle and active states, respectively, and Tj
is the operational time.

5.2.4 Network Overhead
Handling replication over a distributed environment leads to massive network traffic and bandwidth

usage. In the absence of dynamic strategy, data is replicated unnecessarily, which adds a lot to the network
overhead and increases congestion.

Bandwidth Cost Function∶Cbandwidth =
n
∑
i=1
( bi

Bi
⋅ Pi)

where bi is the data size replicated to DCi , Bi is the available bandwidth, and Pi is the bandwidth cost per unit.

5.3 Why DMGO Was Chosen as the Optimization Algorithm
Notwithstanding the limitations of each replication approach, we choose to employ the Dynamic

Multi-Objective Gannet Optimization (DMGO) algorithm due to its capacity to respond to fluctuations in
workload and network conditions in real-time. DMGO employs multi-objective optimization to reconcile
many conflicting objectives, such as minimizing latency, decreasing storage and bandwidth costs, and
conserving energy.
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5.3.1 Dynamic Optimization Capability
DMGO monitors critical parameters including data center utilization, latency, energy consumption,

and storage availability in real time. The system dynamically chooses replication strategies based on demand,
concentrating on areas with high resource requirements and minimizing replication in underutilized nodes.
It accomplishes this using adaptive feedback mechanisms:

Adaptive Latency Function∶ Ladjusted = L ⋅ (1 − α ⋅
Utarget −U

Umax
)

where U is the current utilization of the network, Utarget is the desired utilization, and α is a scaling factor.

5.3.2 Multi-Objective Optimization (MOO)
DMGO addresses multiple conflicting objectives simultaneously by leveraging Pareto optimization. In

this approach, the algorithm seeks solutions where no objective (such as latency) can be improved without
worsening another (such as energy consumption).

Multi −Ob jective Fitness Function∶ F(x) = [ f1(x), f2(x), . . . , fk(x)]

where fi(x) are the individual objectives (e.g., latency, energy, cost) for a given solution x. The solution x∗
is Pareto-optimal if:

∄y ∈ S∶ fi(y) ≤ fi (x∗)∀i and f j(y) < f j (x∗) for some j.

5.3.3 Gannet-Inspired Search and Optimization
Inspired by the hunting behaviour of gannets, the Gannet Optimization (GO) algorithm, which enables

DMGO to efficiently explore the solution space. To adaptively balance exploitation and exploration in an
open-ended environment, Gannets dynamically switch from wide search to path following depending on
environmental conditions, maintaining diversity and convergence during the optimization process.

X(t + 1) = X(t) + r ⋅ (P(t) − X(t))

where X(t) is the current position, P(t) is the best-known position, and r is a random number following
a normal distribution. This model ensures the algorithm explores diverse solutions and converges to the
optimal solution.

5.3.4 Real-Time Energy Optimization
DMGO reduces energy consumption by dynamically turning off idle resources and focusing replication

efforts on energy-efficient data centers.

Energ y E f f icienc y Function∶Eoptimized = Etotal ⋅ (1 − β ⋅ Uidle

Umax
)

where β is a scaling factor, Uidle is the unused capacity, and Umax is the total capacity.
Overall, DMGO is a holistic solution to the dynamic trade-offs among latency, storage, energy and cost.

With its multi-objective framework, it provides the best configurations with different objectives under the
different workload and is appropriate for the unpredictable workloads and the strict SLAs (Service Level
Agreements) in Cloud environment. This also allows the algorithm to be adaptive and the CSP to eliminate
redundancy, use resources efficiently, and provide low-latency access at lower operational costs.
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5.4 Setup and Parameters
5.4.1 Technical Details of the Infrastructure

This case study examines a cloud provider with an extensive worldwide network of 10 data centers
distributed across multiple geographies. Each data center serves distinct objectives, while also hosting
enterprise applications and real-time analytics workloads. It employs a hybrid cloud architecture, which
integrates public cloud instances with private infrastructure to guarantee scalability and data transparency.
This minimizes the burden of its workloads and simultaneously implements real-time, adaptive replication
policy optimization.

Number of Data Centres (DCs) Involved

• 10 Data Centres (DCs) spread across regions to reduce latency for end-users.
• Each data centre hosts multiple services, such as:
○ User Data Storage: Databases and customer records.
○ Virtual Machine (VM) Snapshots: For disaster recovery and backup purposes.
○ Web Applications: Dynamic services such as e-commerce platforms.
○ Big Data Workloads: Analytics pipelines and machine learning models.

The data centers are interconnected by high-speed fiber-optic cables to enable smooth data replication
and ensure high availability. Replication among various data centers, adhering to performance, fault
tolerance, and Service Level Agreements (SLAs), is crucial.

5.4.2 Types of Data Replicated
The infrastructure supports four primary types of data replication to ensure availability and resilience:
User Data:

○ Stored in relational and NoSQL databases.
○ Critical for applications like customer management systems and financial platforms.
○ Requires high consistency and low-latency replication to avoid data loss.

VM Snapshots and System Backups:

○ Stored for disaster recovery and service continuity.
○ Snapshot replication follows asynchronous models to minimize interference with real-time applications.

Web Application Data:

○ Involves static and dynamic content replication across edge nodes.
○ Content Delivery Networks (CDNs) are employed to reduce latency for global users.

Big Data and Analytics Results:

○ Data from analytics workloads is replicated to facilitate fast access across multiple regions.
○ Selective replication ensures only critical data is duplicated to reduce storage costs.

5.4.3 Network Conditions and Bandwidth Limitations
The cloud service provider operates a multi-region fibre-optic network with the following

characteristics:

• Bandwidth per Link: 100 Gbps.
• Latency between DCs: Average latency of 30–50 ms depending on the distance between data centers.



Comput Mater Contin. 2025;84(3) 5147

• Bandwidth Constraints: During peak traffic, the available bandwidth drops to 70% of the total capacity
due to network congestion.

• Data Transfer Policy: Data replication is throttled during peak hours to ensure smooth operation of
primary workloads.
The network faces challenges such as:

• Congestion during peak hours causing delayed data replication.
• Unpredictable workloads requiring dynamic reallocation of replication priorities.

The Dynamic Multi-Objective Gannet Optimization (DMGO) algorithm addresses these issues by
dynamically adjusting replication based on real-time network monitoring.

5.5 Comparison with Traditional Algorithms
We have contrasted the performance of DMGO with three dominant replication optimization algo-

rithms, such as Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), and Hadoop’s Default
Replication Strategy as shown in Table 4.

Table 4: Comparison with traditional algorithms

Feature DMGO PSO ACO Hadoop Replication
Adaptability Real-time adaptation

to network conditions
and workloads

Limited adaptability,
static over short

periods

Moderately adaptive
but prone to local

optima

No dynamic
adaptation, static

replication strategy
Optimization

focus
Multi-objective:

Latency, cost, energy,
and storage

Latency minimization Path optimization to
reduce delays

Default replication
factor of 3

Energy
efficiency

High: Dynamically
powers down idle

resources

Moderate energy
savings

Limited energy
optimization

No energy
optimization

Latency
handling

Dynamic, based on
network feedback

Static once initialized Adaptive but sensitive
to parameter tuning

Fixed latency across
replicas

Storage
utilization

Optimized for
minimal redundancy

No storage-specific
optimization

Requires fine-tuned
storage policies

High storage cost
due to redundancy

Scalability High scalability,
supports hybrid cloud

setups

Limited scalability for
large-scale

applications

Moderate scalability Suitable for small
clusters but lacks

flexibility
Algorithm
complexity

Moderate, but with
high computational

efficiency

Simple but may get
stuck in local optima

Complex with
potential overhead

Simple but lacks
optimization

flexibility

5.5.1 Performance Trade-Offs with Traditional Algorithms
Particle Swarm Optimization (PSO):

○ Strength: Simple to implement and efficient in small-scale applications.
○ Limitation: PSO often gets stuck in local optima, especially in dynamic cloud environments where

conditions change frequently.
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Ant Colony Optimization (ACO):

○ Strength: ACO is useful in solving path optimization problems, making it well-suited for reducing
network latency.

○ Limitation: ACO’s parameter sensitivity makes it challenging to adapt to large-scale data replication
with varying workloads.

Hadoop Replication Strategy:

○ Strength: Hadoop’s default replication strategy ensures high availability through redundant replicas.
○ Limitation: Storage costs are high due to a fixed replication factor, and there is no flexibility to adapt

based on workload or network conditions.

5.5.2 How DMGO Outperforms Traditional Algorithms
DMGO sets the replication-based preference by giving priority to the high demand DCs, therefore pre-

venting unnecessary redundancy. Through its real-time monitoring system, it optimizes several competing
objectives including:

Minimizing Storage Cost∶min Cstorage =
n
∑
i=1

si ⋅ ri ⋅ Pi

Minimizing Latency∶min L = d + b
B
+

n
∑
i=1

Ti

O ptimizing Energ y Consumption∶min Etotal =
m
∑
j=1
(Pidle

j + Pactive
j ) ⋅ Tj

DMGO addresses both objectives dynamically and thus guarantees a higher performance, overall
compared to the static strategies. The DMGO behaviour is highly flexible, which means that cloud
service provider can easily scale up, have low latency and low operational costs due to intelligent
resources management.

5.6 Performance Evaluation
5.6.1 Data Access Latency: Before and After DMGO Deployment

DMGO compensated by reducing access latency orders of magnitude, which confirms that by dynam-
ically regulating replication priorities in accordance with material access patterns, access latency can be
reduced due to real-time network conditions. Past static replication strategy to meet demand led to delay
during peak hours.

Latency Model ∶ L = d + b
B
+

n
∑
i=1

Ti

where L is the overall latency, d is the distance between source and destination, b is the size of the replicated
data, B is the available bandwidth, and Ti is the processing time at each node.

• Performance Improvement:
• Before DMGO: Average latency = 85 ms during peak hours
• After DMGO: Average latency = 45 ms during peak hours

The 46% reduction in latency was achieved by prioritizing high-demand data centers and using
intelligent load balancing.
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5.6.2 Storage Utilization: Efficiency across Data Centers
We had discussed how DMGO, an evolution of Google File System (GFS)—replicated redundant

storage footprints and instead of statically validating the replication-factor of the most currently used file, it
dynamically updated itself based on data patterns. Hadoop and other traditional replication-based storage
methods use a fixed replication factor for ease of maintenance (e.g., the Hadoop storage system replicates
every dataset 3 times)—but this can lead to highly inefficient use of storage space.

Storage Cost Function∶ Cstorage =
n
∑
i=1

si ⋅ ri ⋅ Pi

where si is the size of the data block, ri is the replication factor, and Pi is the storage cost per unit in the i th

data center.
Results:

• Before DMGO: Average storage utilization = 65%
• After DMGO: Average storage utilization = 85%

This 20% improvement in storage efficiency is accomplished by tailoring replication strategies to only
require a minimal number of replicas as needed depending on demand.

5.6.3 Operational Cost: Comparison with Previous Strategies
Storage costs, network bandwidth, and infrastructure power consumption are used as base to calculate

the operational cost. DMGO also automatically optimizes for cost during runtime to minimize unnecessary
data transfers and storage consumption, providing considerable cost savings as evidenced by the reduced
total cost.

Cost Model ∶ Ctotal = Cstorage + Cbandwidth + Cenergy

where Cstorage is the storage cost, Cbandwidth is the cost of network traffic, and Cenergy is the energy cost.
Cost Comparison:

• Traditional Method (Hadoop): $300,000 per month
• DMGO Method: $240,000 per month

The 20% reduction in operational costs was primarily driven by dynamic resource optimization and
intelligent replication.

5.6.4 Energy Consumption: Reduction in Energy Usage
DMGO demonstrated this in significant ways, such as shutting down idle resources and reducing energy

usage by only replicating important information during non-peak times. Traditional algorithms ran all
datacentres for all times, regardless of demand.

Energy Consumption Model:

Etotal =
m
∑
j=1
(Pidle

j + Pactive
j ) ⋅ Tj

where Pidle
j and Pactive

j represent the energy consumption in idle and active states of the jth DC, and Tj is
the operational time.
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Results:

• Before DMGO: 460,000 watts (W) per day
• After DMGO: 377,000 watts (W) per day

The 18% reduction in energy consumption was achieved by dynamically adjusting workloads and scaling
down idle resources when demand was low as shown in Table 5.

Table 5: Summary of performance evaluation results

Metric Before DMGO After DMGO Improvement
Data access latency 85 ms (peak hours) 45 ms (peak hours) 46% reduction
Storage utilization 65% 85% 20% increase
Operational cost $300,000 per month $240,000 per month 20% reduction

Energy consumption 460,000 W per day 377,000 W per day 18% reduction

DMGO deployment brought performance improvements to the cloud infrastructure. This adaptability
of the algorithm led to faster data access and better storage efficiency at lower operational costs. It also
demonstrates the suitability of DMGO in providing intelligent management of underutilized resources for
achieving energy savings under dynamic cloud user environments.

5.7 Challenges Faced during Implementation
5.7.1 Technical Challenges
(a) Real-Time Adjustments Causing Unexpected Delays

One of the biggest technical challenges was to switch replication strategies at run time without
interfering with ongoing workloads. The algorithm devised DMGO dynamically changed the replication of
data depending on the conditions of network, load and energy availability. But it did demand continuous
observance and immediate decision-making which was, at times, the root cause of unforeseen replication
lags in busy traffic conditions.

Root Cause: The system was performing well, but the performance monitoring loop was an extra source
of latency since the system was learning to run on all the data centre, bandwidth, and storage that it had to
keep evaluating.

For instance, a DC that had spikes of traffic that occurred shortly after replicas were created had some
of them moved around by the algorithm to balance the newly created traffic loads, this added to the time
taken but only amounted to delays in terms of seconds.

Mathematical Representation: The replication update at iteration t + 1 is given by:

R(t + 1) = R(t) + α ⋅ (Ucurrent −Utarget )

where R(t + 1) is the new replication strategy, α is a learning rate, Ucurrent is the current load, and Utarget is
the desired load. If this adjustment takes too long, it can introduce temporary delays.

Impact: These delays disrupted data synchronization between data centers, leading to inconsistency
during high-traffic periods.
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(b) Complexity of Multi-Objective Optimization
However, this is a computationally expensive solution, as balancing several objectives (i.e., latency, cost,

energy consumption) in real-time. During the peak duration, DMGO was heavily consuming CPU as it had
to solve complicated Pareto optimization problems rather than simply predicting an optimal solution.

Solution Representation: Each objective fi(x) is solved using Pareto optimization:

F(x) = [ f1(x), f2(x), . . . , fk(x)] (17)

Finding a non-dominated solution in the Pareto front for large-scale datasets required significant
computational resources.

5.7.2 Organizational Resistance to Change
(a) Resistance to Moving from Static to Dynamic Replication Strategies

System admins and IT teams were used to relying on age-old, static replication strategies for many
stakeholders. Resistance arose as changes were needed in workflows and the monitoring tools; they had
previously developed to adapt to DMGO’s dynamic model.

Concerns Raised by Stakeholders:

• Fear of disruptions during the transition from static to dynamic replication.
• Learning curve for administrators to manage the new algorithm.
• Concern about system stability when real-time replication adjustments are introduced.

Impact: The initial resistance slowed down the deployment timeline and required additional training
sessions and stakeholder meetings to address concerns.

5.7.3 Solutions Developed to Overcome Challenges
(a) Hybrid Replication Strategy for Critical Data

To address technical challenges and organizational resistance, the team introduced a hybrid replication
strategy. In this approach:

• Critical data (e.g., customer data, VM snapshots) continued using static replication to ensure high
availability and consistency.

• Less critical data (e.g., analytics results, temporary files) was dynamically replicated using DMGO.

Mathematical Model of Hybrid Replication:

Rtotal = λ ⋅ Rstatic + (1 − λ) ⋅ Rdynamic

where Rtotal is the overall replication strategy, Rstatic and Rdynamic represent static and dynamic replication,
and λ is the weight assigned to each strategy.

Outcome: This hybrid approach eased the transition by preserving critical systems under static
replication while demonstrating the benefits of DMGO for less critical workloads.
(b) Incremental Deployment and Pilot Testing

To reduce risks involved with real-time optimization, the team deployed incrementally. Initially DMGO
was deployed as a pilot program in one data centre that later expanded to the entire infrastructure.
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Advantages of Incremental Deployment:
• Allowed the team to identify bottlenecks and fine-tune the algorithm before full rollout.
• Helped build confidence among stakeholders by demonstrating measurable improvements in latency

and energy savings.
(c) Training and Change Management Programs

To address organizational resistance, the cloud service provider implemented a training and change
management program:
• Workshops and training sessions to familiarize staff with DMGO’s operation.
• Performance dashboards to allow administrators to monitor replication in real-time, helping them trust

the new system.
• Support teams were established to assist administrators during the transition period.

5.7.4 Summary of Challenges and Solutions
Deploying in stages and using hybrid methods to move data between systems was also critical to

overcoming more technical and organizational hurdles, allowing DMGO to be brought up with much less
risk to the overall system. Once the performance monitoring was in place, the administrators trusted the
system and it was implemented on a full scale successfully as shown in Table 6.

Table 6: Summary of performance evaluation results

Challenge Impact Solution
Real-time adjustments causing

delays
Temporary inconsistency

during peak hours
Introduced hybrid replication

for critical data
Computational complexity of

optimization
High CPU utilization during

peak load
Incremental deployment and

pilot testing
Resistance to change from static

strategies
Delayed deployment timeline Training and change

management programs

5.8 Results and Analysis
5.8.1 Presentation of Key Performance Indicators

Table 7 highlights the gains achieved by DMGO over traditional methods across four key metrics. On
average, DMGO cuts latency by nearly half (from 85 to 45 ms, a 47.06% reduction), boosts storage utilization
by over 30% (65%→ 85%), lowers annual operational costs by 20% (from $300,000 to $240,000), and trims
energy consumption by 18.04% (460,000 W → 377,000 W). These improvements demonstrate that DMGO
delivers both faster performance and greater efficiency while reducing expenses.

5.8.2 Evaluation of Improvement Percentages
• Latency: Reduced by 47.06% due to real-time prioritization of high-demand data centers and intelligent

load balancing as shown in Table 7.
• Storage Utilization: Improved by 30.77% by dynamically managing replica counts based on demand.
• Operational Cost: Reduced by 20% by minimizing redundancy and optimizing data transfer policies.
• Energy Consumption: Reduced by 18.04% through adaptive power management, scaling down

idle resources.
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Table 7: Summary of performance evaluation results

Metric Traditional methods DMGO Improvement (%)
Latency (ms) 85 45 47.06%

Storage utilization (%) 65 85 30.77%
Operational cost ($) 300,000 240,000 20.00%

Energy consumption (W) 460,000 377,000 18.04%

5.8.3 Graphical Comparison of Performance
Fig. 5 provides a visual comparison between DMGO and traditional replication methods across key

metrics as shown in Table 8.

Figure 5: Energy consumption comparison

Table 8: Performance comparison: DMGO vs. traditional methods

Metric Traditional DMGO Improvement (%)
Latency (ms) 85 45 47.05882

Storage utilization (%) 65 85 −30.7692
Operational cost ($) 300,000 240,000 20

(Continued)
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Table 8 (continued)

Metric Traditional DMGO Improvement (%)
Energy consumption

(W)
460,000 377,000 18.04348

5.8.4 Feedback from Users and Stakeholders
• System Administrators: Reported easier management with DMGO due to real-time dashboards

providing visibility into replication activities.
• End Users: Experienced a noticeable improvement in application responsiveness during peak hours,

with reduced latency.
• Management and Stakeholders: Pleased with the cost and energy savings, leading to improved

profitability and sustainability.

Case analysis conclusion: The Dynamic Multi-Objective Gannet Optimization (DMGO) algorithm
enhances the performance of cloud infrastructure. DMGO has surmounted the constraints of conventional
static replication methods by dynamically optimizing many objectives, including latency, storage capacity,
operational cost, and energy consumption. For instance, the findings indicate a 47% reduction in latency,
a 31% increase in storage utilization, a 20% decrease in operational costs, and an 18% decline in energy
use. These enhancements have led to efficient resource use, accelerated data access, and substantial cost
reductions for both the cloud provider and end-users. This DMGO has demonstrated the necessity for real-
time adaption in modern cloud systems to enhance system scalability and reliability. The hybrid replication
technique implemented throughout the transition was successful, with minimal disruption to essential
services during deployment. Administrators, end-users, and other stakeholders have noted that the system’s
responsiveness and cost-effectiveness represent a significant advantage. These are potential future enhance-
ments that may incorporate machine learning techniques and configurable replication patterns related to
demand patterns, enabling replication management to adopt a more proactive approach. Furthermore, to
enhance data replication across diverse infrastructures, we aim to extend the DMGO functionality to include
multi-cloud designs. These prospective improvements would allow DMGO to maintain its robustness,
tactical flexibility, and sustainability in dynamic cloud environments, effectively addressing the needs of both
enterprise customers and users. This study did not encompass a thorough comparison with other dynamic
and multi-objective optimization algorithms due to differences in problem scope and architecture; however,
future research will aim to benchmark DMGO against a wider array of comparable methods to further
substantiate its efficacy.

6 Conclusion
The Dynamic Multi-Objective Gannet Optimization (DMGO) strategies significantly enhance the

optimization of data replication in cloud computing settings. Enhancing information replication efficiency
in cloud architectures is crucial for improving data availability, reliability, and fault tolerance. Through
the utilization of sophisticated replication techniques, coupled with adaptive replication algorithms, load
balancing measures, and data deduplication, cloud systems can minimize redundancy while ensuring rapid
data access across numerous locations. By constantly adjusting to changes in device load and network
conditions, DMGO provides a flexible and effective solution that balances multiple objectives, including
data access latency, storage costs, and network efficiency. The experimental results indicate that DMGO
surpasses traditional static replication methods, leading to faster access to data, reduced operational costs,
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and enhanced resource efficiency. DMGO is an invaluable instrument for enhancing the overall performance
and scalability of cloud systems, particularly in scenarios where the dynamic version is essential for
ensuring device reliability and efficiency. The intricacy of the rule set may present difficulties for large-
scale implementations, as dynamic monitoring and real-time modifications may necessitate substantial
computer resources. Future research should also examine the adaptation of rules inside hybrid cloud systems
and multi-cloud architectures, where data is transmitted across multiple platforms with diverse policies
and infrastructures.
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