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ABSTRACT: Within the domain of low-level vision, enhancing low-light images and removing sand-dust from
single images are both critical tasks. These challenges are particularly pronounced in real-world applications such as
autonomous driving, surveillance systems, and remote sensing, where adverse lighting and environmental conditions
often degrade image quality. Various neural network models, including MLPs, CNNs, GANs, and Transformers, have
been proposed to tackle these challenges, with the Vision KAN models showing particular promise. However, existing
models, including the Vision KAN models use deterministic neural networks that do not address the uncertainties
inherent in these processes. To overcome this, we introduce the Uncertainty-Aware Kolmogorov-Arnold Network
(UAKAN), a novel structure that integrates KAN with uncertainty estimation. Our approach uniquely employs
Tokenized KANs for sampling within a U-Net architecture’s encoder and decoder layers, enhancing the network’s ability
to learn complex representations. Furthermore, for aleatoric uncertainty, we propose an uncertainty coupling certainty
module that couples uncertainty distribution learning and residual learning in a feature fusion manner. For epistemic
uncertainty, we propose a feature selection mechanism for spatial and pixel dimension uncertainty modeling, which
captures and models uncertainty by learning the uncertainty contained between feature maps. Notably, our uncertainty-
aware framework enables the model to produce both high-quality enhanced images and reliable uncertainty maps,
which are crucial for downstream applications requiring confidence estimation. Through comparative and ablation
studies on our synthetic SLLIE6K dataset, designed for low-light enhancement and sand-dust removal, we validate the
effectiveness and theoretical robustness of our methodology.

KEYWORDS: Kolmogorov-arnold network; uncertainty-aware; distribution attention; image enhancement; feature
selection

1 Introduction

The presence of sand-dust in the atmosphere severely degrades image quality through complex optical
interactions [1]. Sand particles scatter and absorb light, which causes reduced contrast, hazy appearance, and
color distortion in images. These degradations profoundly impact subsequent visual tasks [2,3]. For example,
in object detection, obscured edges and diminished visibility hinder accurate object identification and
localization. In instance segmentation, unclear boundaries due to sand-dust interference result in inaccurate
pixel-level classification. In scene recognition, the weakening of critical visual cues such as texture and
color gradients leads to unreliable semantic interpretation. Insufficient lighting compounds these issues
by introducing high noise, narrow dynamic range, and loss of fine details that render feature extraction
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unreliable, as seen in low-light object detection where inadequate illumination challenges the detection of
small or dark objects [4-6]. The core challenge arises when sand-dust degradation and low-light conditions
coexist. Existing methods either focus on dust removal under natural light or low-light enhancement without
addressing dust contamination. These methods, however, are ill-equipped to disentangle the synergistic dete-
riorations caused by dust-induced light scattering and low-light photon starvation, as the two phenomena
exacerbate each other in complex ways. Addressing this gap is critical for real-world applications, which
include autonomous driving in desert sandstorms and remote sensing in arid regions. In these regions, both
dust and low light frequently compromise camera visibility. Developing a method to jointly mitigate dust
contamination and enhance low-light visibility while preserving fine details is essential.

To tackle these challenges, various neural network architectures have been developed. Convolutional
Neural Networks (CNNs) exploit local spatial correlations via convolutional operations, performing well in
many visual tasks. However, their fixed receptive fields limit the capture of long-range dependencies. Multi-
Layer Perceptrons (MLPs), with fully connected structures, model complex nonlinear relationships but
suffer from high computational costs and overfitting. Generative Adversarial Networks (GANs), comprising
generators and discriminators, generate realistic images but face unstable training. Transformers leverage
self-attention mechanisms to model global dependencies, enabling exceptional performance in long-range
contextual reasoning. However, their effectiveness is often constrained by significant data dependency,
necessitating substantial training datasets for optimal results.

Recently, Kolmogorov-Arnold Networks (KANs) have emerged as a promising alternative to traditional
MLPs. Rooted in the Kolmogorov-Arnold superposition theorems, KANs offer distinct advantages in
accuracy and interpretability. Unlike MLPs, KANs employ a more compact architecture to represent complex
functions, thereby reducing computational complexity. Their design enables superior feature representation,
enhancing performance in visual tasks. Moreover, KANs’ interpretability allows researchers to decipher how
the network processes information.

However, within the domain of low-level vision, the application of KANs remains relatively unexplored,
and their potential benefits are yet to be fully harnessed. In the realm of low-level vision, complex tasks
that encompass substantial uncertainty, such as simultaneous low-light image enhancement and single-
image sand-dust removal, have received scant attention in research. These tasks pose unique challenges due
to the inherent variability and unpredictability of the data. Specifically, traditional methods often fail to
adequately address these complexities. To address the aforementioned challenges, this paper introduces an
uncertainty-aware KAN framework, designated as UAKAN. Specifically, we propose Downsample Tokenized
KAN (DTKAN) and Upsample Tokenized KAN (UTKAN) that utilize KAN for the downsampling and
upsampling process in U-Net. Unlike the interpolate operation in traditional U-Net, our DTKAN and
UTKAN offer enhanced flexibility and interoperability. Concurrently, to tackle aleatoric uncertainty in joint
low-light image enhancement and sand-dust removal, we introduce an uncertainty coupling certainty mod-
ule. This mechanism leverages distribution modeling that is used to capture the uncertainty and a residual
learning branch for certainty. By coupling these two branches, our module effectively utilizes uncertainty
and certainty across data dimensions. Furthermore, to address the epistemic uncertainty associated with
model dimensions, we propose an uncertainty-aware distributional spatial modulator. This mechanism
selectively filters features through uncertainty modeling, identifying and discarding redundant features with
high uncertainty to refine the model’s feature selection.

In summary, the primary contributions of this paper can be categorized into four main aspects:

o To the best of our knowledge, we are the first to explore the task of single-image Joint Low-Light Image
Enhancement and Sand-dust Removal (JLLIESR), we are also the first to utilize uncertainty estimation
and KAN for this task.
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o This is the first work to utilize tokenized KAN in the low-level vision task and we propose Downsample
Tokenized KAN (DTKAN) and Upsample Tokenized KAN (UTKAN) implanted in a U-Net.

«  We propose an Uncertainty Coupling Certainty Module (UCCM) to handle the data uncertainty of the
JLLIESR task, and we propose an Uncertainty-aware Distributional Spatial Modulator (UDSM) to model
the uncertainty in the epistemic dimension for our model.

+  We propose a framework called Uncertainty-Aware KAN (UAKAN) for accurate single-image joint low-
light image enhancement and sand removal. Through comprehensive experiments conducted on our
proposed SLLIE6K dataset, we demonstrate that our proposed method outperforms current state-of-
the-art techniques.

2 Related Works
2.1 Sand Images Formulation

The widely utilized physical model for explaining the formation of an image affected by light transmis-
sion hazed [7] is typically defined as follows:

I(x) = J(x)t(x) + A(1 - £(x)) ey

where I(x) represents the observed hazy image, ¢(x) signifies the medium transmission map, A denotes
the global atmosphere light, and J(x) corresponds to the haze-free image. Further, ¢(x) can be expressed
as: t(x) = e P4*) where B represents the scattering coefficient of the atmosphere, and d(x) signifies the
scene depth between the digital camera and the captured object for each pixel x in the image. During
periods of dusty conditions, the varying degradation rates of red, green, and blue color components result
in characteristic attributes like displacement, density, and temporal variance in the affected images. It can be
formulated as:

A=<Ap,Ag, Ap > )

where Ag = kjAg + by, Ap = kaAg + by, A is the global color deviation value of the sand dust image, b
is the disturbance amount, and k is the spatial distribution coefficient of the atmospheric light value of
the three basic color spectrums. Based on the above formula, various degrees and types of sandy images
can be synthesized. Then, with the help of these sand-dust images, we can get low-light degraded images.
Specifically, for the generation of synthetic low-light images, we initially apply gamma correction to attenuate
the luminance of the images. This process can be mathematically encapsulated by the following formula:

I(x)n = B x (axI(x))’ 3)

where I(x);; is the low-light sand-dust image, «, 8 and y are the parameters of gamma correction. We
randomly select these parameters to generate different levels of illumination for low-light images. «, 8 and y
are defined as U(0.65,0.7), U(0.65,0.7) and U(1.5,1.6), respectively. The visual examples of synthetic low-
light sand-dust images are shown in Fig. 1. Furthermore, visual examples of real-world and synthetic dust
images and their pixel distribution histograms are shown in Fig. 2. The top two rows represent real sand dust
images and the corresponding RGB (Red, Green, Blue) distribution histograms; The bottom two rows are the
synthetic degraded images and the corresponding histograms. In Fig. 2, we find the same pattern as in [8],
that is, the distribution of sand dust images has obvious prior characteristics for shifting, concentration, and
sequential. It can be seen that the distribution of the synthetic image satisfies all the properties of the real
sandstorm image, proving the correctness and superiority of our method for synthesizing dust image data.
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Figure 1: Visual examples of the used synthetic low-light sand-dust images in this paper
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Figure 2: (Continued)
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Figure 2: Pixel distribution comparison examples of real-world and synthetic sand dust images

2.2 Image Recovery from Degraded Weather

Lietal. [9] introduced AOD-Net, a pioneering end-to-end CNN model for image dehazing, highlighting
its potential for enhancing computer vision tasks in hazy conditions. Chen et al. [10] present NAFNet, a
pioneering approach that simplifies image restoration by eliminating nonlinear activations, achieving com-
parable state-of-the-art results with reduced computational complexity. Cui et al. [11] introduced OKNet, an
efficient convolutional network for image restoration that leverages an omni-kernel module to capture multi-
scale receptive fields, demonstrating state-of-the-art performance across various restoration tasks including
dehazing, desnowing, and defocus deblurring. Gao et al. [12] propose a single-stage design, based on a
simple U-Net architecture, with a mountain-shaped structure. The DSANet proposed by Cui and Knoll [13]
enhances representation learning through spatial and frequency strip attention units, offering a significant
advancement in image restoration efficiency and effectiveness. Gao et al. [14] introduced ECFNet, an efficient
image restoration framework that combines spatial and frequency attention mechanisms with multi-scale
blocks to adaptively handle varying degradation levels across image regions, achieving superior performance
on multiple benchmark datasets. Cui et al. [15] introduced FSNet, an image restoration framework that
employs frequency selection mechanisms to dynamically decompose and emphasize frequency components
for effective image recovery.

2.3 Uncertainty-Aware Probabilistic Modeling

Data uncertainty and model uncertainty in deep learning are key factors influencing performance, and
probabilistic modeling approaches to address data and model uncertainty are gaining growing attention.
Bayesian SegNet [16] leverages Monte Carlo Dropout [17] at test time to approximate posterior distributions,
offering a measure of uncertainty crucial for decision-making in applications such as autonomous driving
and robotic interaction. Wang et al. [18] introduce a data-uncertainty guided multi-phase learning approach
for semi-supervised object detection that effectively leverages unlabeled data across varying difficulty levels.
Zhou et al. [19] introduced an Uncertainty-Aware Edge Detector (UAED) that leverages the ambiguity in
multiple annotations to enhance edge detection performance, representing a significant advancement in
the field. Yang et al. [20] present UGTR, a pioneering approach that integrates Bayesian learning with
Transformer-based [21] reasoning to enhance camouflaged object detection. Zhang et al. [22] introduced
GLENet, a generative framework for modeling label uncertainty in 3D object detection using condi-
tional variational autoencoders, which improves detection accuracy by capturing the diversity of potential
bounding boxes for objects. Tang et al. [23] proposed UA-Track, an uncertainty-aware framework for 3D
multi-object tracking that introduces probabilistic attention, query denoising, and uncertainty-reduced
query initialization to address tracking challenges in complex scenarios. Dong et al. [24] proposed UAC, a
semi-supervised learning method that combines multi-perturbation strategies and uncertainty estimation
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to improve medical image segmentation performance. Shao et al. [25] proposed UA-Fusion, an uncertainty-
aware multimodal data fusion framework for 3-D object detection in autonomous vehicles. This framework
effectively addresses challenges related to uncertainty in dynamic traffic environments through probabilistic
cross-modal attention and query denoising strategies.

3 Proposed Method
3.1 Overall Pipeline

We propose UAKAN for the removal of sand-dust in a single-image under low-light conditions, as
shown in Fig. 3. To expand the application of Kolmogorov-Arnold Networks (KANs) in low-level vision,
we propose novel Tokenized KAN modules, namely the Downsampling Tokenized KAN (DTKAN) and
Upsampling Tokenized KAN (UTKAN) modules. These modules leverage Patch Embedding and Patch
Unembedding techniques for tokenization, followed by the application of KAN layers for further embedding,
thereby enhancing the representational capabilities of the network. Furthermore, to tackle the aleatoric
uncertainty inherent in the data dimensions of the concurrent task of single-image low-light enhancement
and sand-dust removal, we introduce a module that couples uncertainty awareness with deterministic repre-
sentation termed the Uncertainty Coupling Certainty Module (UCCM). The UCCM achieves the integration
of uncertainty and determinism by feature coupling between a distribution modeling representation module
and a residual learning module, thereby characterizing the fusion of uncertainty and determinism. Finally,
addressing uncertainties of the epistemic dimension, we introduce the Uncertainty-aware Distributional
Spatial Modulator (UDSM) and integrate it into the backbone of our framework, which we term the
Uncertainty-aware Feature Modeling Block (UFMBlock). The incorporation of UFMBlock equips our
framework with the capability to model comprehensive uncertainty, subsequently augmenting its ability to
encapsulate the intrinsic uncertainties associated with the dual tasks of low-light image enhancement and
image sand-dust removal. Our network adopts the same MIMOUNet [26] architecture, which is a multi-
input multi-output U-shaped encoder-decoder structure. The total structure of our proposed UAKAN is
shown in Fig. 3.

3.2 Tokenized KAN for Sampling

Analogous to a Multilayer Perceptron (MLP), a KAN with K layers can be described as a composition
of successive KAN layers, this process can be formulated as following:

KAN(I): ((DN_l(Dq)N_z @"'@q)l@q)o) (4)
where I is the input feature; ®; denote the i-th layer of the KAN framework. Each KAN-Layer, with #;,-

dimensional input and n,,,-dimensional output, ® compries n;, x n,,; learnable activation functions ¢:

D= {‘pq,p},P:1,2,""”1‘;1,6]:1,2,'”, Nout (5)

where ¢, is the parameter that can be learned, and the computing process of the i-layer to the i + 1-layer
can be formulated in matrix from I;,; = ®;I;, where:

br1.1() br12() o brin ()

O, = ¢k,2:,1(‘) </5k,2:,2(‘) ¢k)2):nk(') ()

Bnent() Pomna() e B ()
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by employing edge-learned activation functions and parameterized activation functions in place of weights,
KAN distinguishes itself from traditional MLP, thereby eliminating the need for linear weight matrices. The
architectural design bolsters the interpretability of KAN while maintaining high performance, rendering
them apt for a broad spectrum of applications. The detailed framework of KAN layers is shown in Fig. 3d.
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(a) Our proposed UAKAN framework (d) Mustration of KAN Layers

Figure 3: Overall structure of the proposed method. Our UAKAN employs the classic MIMOUNet [26] as its basic
framework. MIMOUNet is a multi-input multi-output UNet architecture that is commonly seen in recent image
restoration frameworks. The encoder accepts input images at three scales, and the decoder outputs images at three
scales. We use UFMBlocks as the backbone network. In the encoder stage, we use DTKAN for feature downsampling,
and in the decoder stage, we use UTKAN for feature upsampling

To expand the application of KAN in low-level vision, we introduce a novel approach that integrates
KANs with the sampling layers within the U-Net architecture, specifically the Down-sampling Tokenized
KAN (DTKAN) and Up-sampling Tokenized KAN (UTKAN) modules. These modules utilize Patch Embed-
ding (PE) and Patch Unembedding (PU) techniques for tokenization, followed by the application of KAN
layers for advanced embedding processes, thereby enhancing the network’s capability to handle complex
visual tasks. The detailed structure of DTKAN and UTKAN is shown in Fig. 3b,c. For DTKAN, this process
can be formulated as:

Iyt = KAN(PE(I;,)) (7)
meanwhile, for UTKAN, it can be expressed as:
Iu: = KAN(PU(I;,)) (8)

where I;, and I,,,,; are the input and output features, respectively.
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3.3 Uncertainty Coupling Certainty Module

To address the aleatoric uncertainty inherent in the data dimensions of the intricate visual task
encompassing joint low-light image enhancement and sand-dust removal, we introduce the Uncertainty
Coupling Certainty Module (UCCM). This module is designed to manage the stochastic elements present
in these challenging image-processing tasks, thereby enhancing the robustness and reliability of the visual
system. The detailed structure of our UCCM is shown in Fig. 4. In the UCCM, we employ a coupling
mechanism between an uncertainty modeling branch and a deterministic representation branch to estimate
the stochastic uncertainty present in the data. For the deterministic branch, we utilize a residual block from
the ResNet [27] architecture for certain representations. As a quintessential component within convolutional
neural networks, residual blocks possess formidable learning capabilities. The detailed process of the residual
block can be articulated through the following formula:

Leertainty = Lin + Conv(ReLU(Conv(Iiy))) 9)

meanwhile, for the uncertainty branch, we utilize a distribution modeling module for learning the uncer-
tainty inside data-wise, it can be expressed as:

Iuncertainty :S(fy(lin)‘l'sfa(lin)) (10)

where § is the sampling operator from the Gaussian distribution by the parameterization trick [19], Iccrtainty
and Ipncertainty are the output features of the certainty branch and the uncertainty branch, respectively, and
e~N(0,I). The pseudo-code of the uncertainty-aware sampling processing S is shown in Algorithm 1. We
utilize a learnable distribution in the feature space to introduce uncertainty modeling into the sand-dust
removal task. We use two independent convolutional layers f, and f, to achieve the feature distribution, and
we model the distribution of I;,, at each pixel as Gaussian following [20]. The results are denoted as the mean
u and the variance o of these two layers. Unlike other ordinary convolutional layers, these two convolutional
layers learn a distribution N (¢, o) parameterized by mean y and variance 0. Meanwhile, the representation
of each sample is not a deterministic point embedding but a stochastic embedding sampled from N(y, o).
Finally, we employ a convolutional layer to reduce the dimensionality of the concatenated features from these
two sections, a process we refer to as “coupling’”. This coupling process of our proposed UCCM can be shown
as:

Iout = Conv([Icertaintya Iuncertainty]) (H)

Algorithm 1: Uncertainty sampling process

Input: Input features I,
Output: Sampled features I,certainy from N (u, o)

1 features_mu < f,(I;n) > Convolutional layer for mean
2 features_sigma <« f,(I;,) > Convolutional layer for variance
3 yu < features_mu > Mean calculation
4 0 <« exp(features_sigma) > Variance calculation (exponentiated for positivity)
5e~N(0,1) > Sample from standard normal distribution

6Iuncertainty <~ S(y-‘rE'O') > Sample from N([J,O’)
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Figure 4: Detailed process of the uncertainty coupling certainty module (UCCM), uncertainty-aware distributional
spatial modulator (UDSM), and uncertainty-aware feature modeling block (UFMBIlock) in our UAKAN

3.4 Uncertainty-Aware Distributional Spatial Modulator

In order to make a proper response to the epistemic uncertainty in neural networks, that is, the model
uncertainty, we embed an uncertainty-aware feature selective distribution learning module. This module
is called the Uncertainty-aware Distributional Spatial Module (UDSM). We incorporate a distribution
representation learning module, enabling our model to learn both a mean feature and a standard deviation
feature. These two features are then combined to form a distribution from which we sample to obtain a single-
channel selective map. This selective feature map is subsequently used to refine the expression of the input
features selectively, yielding the final feature map for low-light enhancement and simultaneous sand-dust
removal. The detailed structure of our proposed UDSM is shown in Fig. 4, and the whole process of UDSM
can be described in Eq. (12):

UDSM(Ii) = Lin x S(fu(Iin) + ef(x)) (12)

Furthermore, we embed UDSM in the backbone of our UAKAN and call the backbone Uncertainty-
aware Feature Modeling Block (UFMBlock). Inspired by the architecture of Transformers [21], our backbone
structure can be divided into two analogous stages, each initiated with a layer normalization. Drawing
from the design of residual blocks [27], we incorporate two convolutional layers within each stage, with
an activation function interposed between them. Influenced by the NAFBlock [10], we introduce channel
attention [28] and depth-wise convolution in the first stage to enhance the network’ fitting and learning
capabilities. Consequently, we integrate the UDSM into the second stage of our backbone to balance the
computational load between the two stages. The specific process of our backbone can be delineated by the
following formula:

Lnia = fixi(CA(SG(DWConv(fix1(LN(I1;4)))))) + Lins
Lout = fixt(UDSM(SG(fixi (LN (I1ni4)))))) + Imia 13)
where CA, SG, DWConv, fix1, LN, and I,,;4 denote channel attention [28], simple gate activation func-

tion, depth-wise convolution, convolutional layer with kernel 1, layer normalization [29], and the middle
features, respectively.
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4 Experiments
4.1 Implementation Details

All the experiments are performed on the Ubuntu 20.04 operating system with a NVIDIA RTX4090
GPU (24 GB) and an Intel i7-13700k CPU processor. The network training and testing processes are
implemented by using Python 3.10 language environment and encompass torch 2.3.1+cull8 in conjunction
with Anaconda. We train all the models for 200 epochs with the AdamW optimizer. The initial learning rate
is set to 1 x 107, and we employ CosineAnnealingLR to adjust the learning rate. For data augmentation, we
apply horizontal flipping and randomly rotate the image to 0, 90, 180, and 270 degrees. The batch size is set
as 4 with a patch size of 128 x 128. Flops are computed on a patch size of 128 x 128.

For synthetic images used to train neural networks, we use a dataset named SLLIE6K that contains
6000 images for training and validation, and 2397 images for testing. We chose the Pascal VOC 2012 [30]
dataset as clear images. For the training set, we picked 799 sharp images from the Pascal VOC 2012 dataset.
Then, according to different Atmospheric Light, we synthesized three types of degraded images: dust, sand
and sandstorm, and each type of image contained five degraded images with different degrees according
to the Scattering Coeflicient. As a result, 11,985 degraded images were obtained. Finally, in order to reduce
the training data set and remove some training data with similar training effects, we selected 6000 images
from all degraded images as training data. Then, for the test set, we also selected 799 clear images from the
Pascal VOC 2012 dataset, and then, according to different Atmospheric Light, we synthesized three types of
degraded images: Dust, Sand and Sandstorm. Therefore, the test data totals 2397 image pairs.

We use the Char loss [31] as the loss function for training all the neural networks. The Char loss [31] can
be formulated as:

e(U1) =/ U -1 + e, (14)

where I’ is the restored image, I is the ground-truth image, and & = 1073 is a constant in all the experiments.

4.2 Quantitative and Qualitative Results

In the comparative experiments with other state-of-the-art methods, we compare our proposed method
with various cutting-edge approaches and compute PSNR, SSIM, MAE, and LPIPS scores using the RGB
channel following [1]. In addition, to compare the computational complexity of these learning-based
methods, we have also listed relevant measurement metrics, including Params, FLOPs, inference tims,
and memory cost. As shown in Table 1, our method achieves significant performance gains that are more
than the state-of-the-art methods. Our method outperforms all comparison methods in all indicators. It
outperforms the second-best FSNet by 0.11 dB in PSNR, and shows significant superiority in MAE and
LPIPS. For the running time and memory consumption, we use a server equipped with an RTX4090 graphics
card for inference time evaluation, and the image size is 128 x 128 during inference. Although our method
achieves SOTA, our method is obviously more computationally demanding than Sandformer [1], SANet [32],
and OKNet [11], which is a disadvantage of our method. However, compared to the second-best FSNet,
our method has less than half of the computational cost, whether in terms of Flops(G) or Params(M).
Furthermore, the visual results shown in Fig. 5 are in close alignment with the quantitative findings,
substantiating the superior image restoration capabilities of our proposed method. Given that all comparison
methods yield similar results for real images, we employ error maps [33] to highlight the differences from
the original clear images. As shown in the error maps, AODNet [9], NAFNet [10], SANet [32], OKNet [11],
and ECFNet [14] deliver sub-par image restoration, with large-scale errors. In contrast, DSANet [13] and
FSNet [15] produce smaller errors, yet struggle with details in texture-lacking areas like the sky or walls.
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Our method, however, stands out by restoring the most visually pleasing images, highlighting its superior
performance. Therefore, Fig. 5 shows the superiority of our proposed method in the task of simultaneously
removing the dust attachment from the image and performing low-light image enhancement.

4.3 Ablation Studies

Table 2 presents ablation experimental metrics for our proposed DTKAN, UTKAN, UCCM, and
UDSM. We conducted detailed ablation experiments on the components proposed in this paper. For the
convenience and efficiency of the experiment, only 60% of the 6000 images used for training and validation
in the SLLIE6K dataset were used for model training in the ablation experiment section, and the remaining
images were used for testing. As Table 2 shown, it demonstrates that our proposed component enhances the
performance of the model, underscoring the rationality of the model. For example, replacing the pooling
convolution or strided convolution with the tokeniz KAN can enhance the network’s ability of image
restoration. Embedding the UCCM module can increase PSNR by 1.22 dB. Our proposed UDSM module
outperforms the spatial attention module and plain convolution layers by 0.21 and 0.30 dB, respectively.
Therefore, Table 2 also indicates the superiority of our proposed individual modules.

Table 1: Comparative results with state-of-the-art methods. Red/Blue text indicates best/second-best results

Method PSNRt SSIMt MAE| LPIPS| Flops Params Inf. Mem.

(G) (M) time cost

(ms) (M)
Degenerated images 8.29 0.228 0.3349  0.460 / / / /
(TCE’07) BPDHE [34] 16.13 0.748 0.1386 0.251 / / / /
(TPAMT’10) DCP [35] 8.18 0.239  0.3500 0.400 / / / /

18.01 0.765 0.1082  0.337 0.029 0.0017 013 0.01

(arxiv’17) AOD-Net [9]
[26] 30.18 0.958 0.0238 0.080 16.82 6.81 2.260 25.97

(ICCV’21) MIMOUNet
(CVPR'22) Transweather [36]  29.39  0.949 0.0255 0.089 156  38.05 3330 145.16
(ECCV’22) NAFNet [10] 29.82 0954 0.0243 0083  4.03 1711 6493 6528
(ICASSP’23) Sandformer [I] 3025  0.956 0.0241  0.082  2.69 428 8177 1632
(IJCAT’23) SANet [32] 30.04 0956 0.0241 0.082 993 381 2557 1454
(TVC’24) M3SNet [12] 3019 0957 00237 0078 471 1673 7630  63.83
(AAAT24) OKNet [11] 2999 0956 0.0243 0.083 993 472 1768  18.02
(NN’24) DSANet [13] 3013 0957 0.0238 0.08] 946  3.86 3960 14.74
(arxiv’24) ECFNet [14] 2923 0950 0.0261 0.084 772  3.65 15146 13.93
(TPAMT24) FSNet [15] 3030 0959  0.0235 0.076 2768 1328 14155  50.66

Ours 30.41 0.959 0.0232  0.073 12.09 5.02 18.107 19.15
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Degraded DCP AODNet NAFNet SANet OKNet DSANet ECFNet FSNet Ours

Figure 5: Joint low-light image enhancement and sand-dust removal results on SLLIE6K Dataset

Table 2: Ablation studies on the independent components of our proposed method. PConv, UPConv, SConv,
and TConv denote polling convolution, upsampling convolution, strided convolution and transposed convolution,
respectively

DTKAN/UTKAN w/o PConv/UPConv SConv/TConv Ours
PSNR? /SSIM?T  29.24/0.920 29.32/0.924 29.34/0.925 29.44/0.934

UCCM w/o w/o certainty w/o uncertainty Ours
PSNR? /SSIM?T  29.24/0.920 29.54/0.943 30.24/0.964 30.46/0.975

UDSM w/o Spatial attention [37] Convolution Ours

PSNR?t /SSIMt  29.24/0.920 29.41/0.930 29.32/0.923 29.62/0.945
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5 Conclusion

In this paper, we introduce the concept of uncertainty learning in the joint removal of sand-dust and low-
light enhancement in a single-image. Building upon this, we present the UAKAN framework that integrates
our innovative Downsampling Tokenized KAN (DTKAN) and Upsampling Tokenized KAN (UTKAN) with
Uncertainty-aware Distribution Spatial Modulator (UDSM) and Uncertainty Coupling Certainty Module
(UCCM). Extensive evaluations confirm our method’s superiority over state-of-the-art image restoration
techniques, with significant advantages in low-light sand-dust scenes. By modeling uncertainties in the
JLLIESR task, UAKAN effectively addresses aleatoric uncertainty (data-level randomness) and epistemic
uncertainty (model-level cognitive limitations). Meanwhile, UAKAN employs Tokenized KAN for sampling.
Therefore, UAKAN can effectively perform the JLLIESR task and can effectively restore the original clear
image from images where both sand-dust adhesion and low-light degradation occur simultaneously. How-
ever, our proposed method still has limitations. For example, our method still has room for improvement
in image processing speed while keeping low computational complexity and memory occupation. This may
lead to some potential failure cases or scenarios in which our proposed UAKAN may perform poorly, such
as when deployed in terminals with high real-time requirements. Therefore, in the future, we will further
optimize the running time of the reduced model and improve the performance of the model in order to
achieve faster and more accurate image restoration.
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