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ABSTRACT: In recent years, with the rapid development of software systems, the continuous expansion of software
scale and the increasing complexity of systems have led to the emergence of a growing number of software metrics.
Defect prediction methods based on software metric elements highly rely on software metric data. However, redundant
software metric data is not conducive to efficient defect prediction, posing severe challenges to current software defect
prediction tasks. To address these issues, this paper focuses on the rational clustering of software metric data. Firstly,
multiple software projects are evaluated to determine the preset number of clusters for software metrics, and various
clustering methods are employed to cluster the metric elements. Subsequently, a co-occurrence matrix is designed to
comprehensively quantify the number of times that metrics appear in the same category. Based on the comprehensive
results, the software metric data are divided into two semantic views containing different metrics, thereby analyzing
the semantic information behind the software metrics. On this basis, this paper also conducts an in-depth analysis of
the impact of different semantic view of metrics on defect prediction results, as well as the performance of various
classification models under these semantic views. Experiments show that the joint use of the two semantic views can
significantly improve the performance of models in software defect prediction, providing a new understanding and
approach at the semantic view level for defect prediction research based on software metrics.

KEYWORDS: Software defect prediction; software engineering; semantic views; clustering; interpretability

1 Introduction

Software defect prediction is a key technology for ensuring software quality and reliability. Its goal is
to identify potential defects by analyzing the static or dynamic features of software code [1]. The input of
defect prediction models typically consists of software metrics, which are various indicators used to quantify
software products or the software development process. Software metrics come in many forms, and their
meanings can range from simple ones, such as the total number of lines of code, to more complex ones, like
the maximum cyclomatic complexity or the average cyclomatic complexity. The output of a defect prediction
model is a prediction of whether a defect exists, with two possible labels: defective or non-defective. However,
with the increasing complexity of software systems, the proliferation of software metrics poses two major
challenges for defect prediction. First, high-dimensional and redundant metrics impede model training
efficiency and prediction accuracy. Second, significant variations in metric distributions across projects
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degrade cross-project prediction performance. To tackle these issues, feature selection, clustering, and
efficient metric representation learning have emerged as key research directions.

This study focuses on clustering the features of metrics through clustering analysis methods, exploring
the semantic view information of each cluster of software metrics, and investigating the impact of different
views on software defect prediction based on the semantic views of metrics. The method proposed in
this paper takes multiple software projects into comprehensive consideration, which helps to solve the
redundancy problem in the current diverse software metrics and further improves the effectiveness and
efficiency of defect prediction models.

Specifically, we first evaluated the silhouette coefficient [2] of the data from multiple software projects
used in this study and obtained the expected number of clusters using a voting strategy similar to ensemble
learning. According to this value, we applied multiple clustering analysis methods to each software project
and recorded the clustering results. We introduced the co-occurrence matrix, which is commonly used in
tasks related to natural language processing and social network analysis. This matrix can comprehensively
consider the results obtained from multiple clustering methods of multiple projects. Then we further
transformed the matrix into a distance matrix and applied hierarchical clustering to the distance matrix to
obtain the classification results of software metrics that take all factors into account. After that, we analyzed
the semantic commonalities of the software metrics in each category and obtained two semantic views of
metrics. Finally, we conducted defect prediction experiments under different view conditions and analyzed
the experimental results.

In summary, the main contributions of this study are threefold: (1) We propose a novel method for
effectively clustering software metrics and deriving two semantic metric views; (2) Experimental results
demonstrate that the combined semantic views outperform individual views in enhancing defect prediction
performance; (3) Our findings reveal that the view focusing on internal design attributes significantly
promotes the effect of software defect prediction.

The remainder of this paper is organized as follows: Section 2 reviews related work; Section 3 provides
an overview of the proposed methodology; Section 4 details the determination of the optimal number
of clusters; Section 5 elaborates on the process of acquiring semantic views of metrics; Section 6 presents
the experimental design and analysis of results; and Section 7 concludes the paper. The tabular results
corresponding to Section 6 are provided in Appendix A.

2 Related Work

Defect prediction holds practical significance today, as Abdou and Darwish [3] demonstrates that it
can reduce resource waste during the development process and effectively improve software quality. Assim
et al. [4] investigated and utilized multiple machine learning methods, such as SVM and decision trees, for
software defect prediction, summarizing the characteristics and limitations of these models. Rahim et al. [5]
proposed a machine learning-based software defect prediction framework consisting of data preprocessing,
feature selection, and the application of machine learning models, and evaluated the performance of the
Naive Bayes classifier in software defect prediction tasks. Curebal and Dag [6] examined the performance
of Hist Gradient Boosting and other classifiers under feature selection, highlighting the importance of
parameter tuning and method choice. Prabha and Shivakumar [7] proposed a hybrid method that combines
principal component analysis with classification methods, improving the classification accuracy of large-
scale datasets. Matloob et al. [8] explored the application of various methods in software defect prediction
from the perspective of ensemble learning, emphasizing the importance of feature selection and model
optimization. In [9], the researchers employed three ensemble algorithms integrating multiple classifiers
for defect prediction and analyzed the impact of data preprocessing on defect prediction performance.
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Arya and Malik [10] focused on software defect prediction for web applications, proposing an enhanced
machine learning approach that integrates K-means clustering with neural networks to improve prediction
performance. Zhang et al. [11] used spectral clustering to divide software modules into two clusters, then
labeled each cluster, proving the effectiveness of connectivity-based unsupervised learning methods in
software defect prediction tasks. Balogun et al. [12] studied the application and performance of clustering
techniques in software defect prediction and found that using clustering techniques as part of the classifica-
tion process is feasible and provides good prediction performance. Jian et al. [13] proposed a hybrid feature
selection method combining hierarchical clustering and ranking, grouping features through cluster analysis
and then selecting representative feature subsets for defect prediction. In terms of multi-view approaches,
Zhou et al. [14] introduced local structure preservation and adaptive weight allocation strategies, which are
clustering methods focusing on incomplete views. Kiyak et al. [15] introduced a multi-view learning method
for software defect prediction, applying the multi-view K-nearest neighbors algorithm to the field of software
engineering. This method first constructs base classifiers to learn from each view and then combines the
classifiers to create a robust multi-view model, enhancing defect prediction capabilities. Additionally, Chen
et al. [16] proposed a data-driven multi-view learning method to effectively utilize diverse datasets with
varying granularities and dimensions, helping models learn data features and improve defect prediction
performance. In the context of code semantics, there exists research work that employs deep learning
methods to represent code semantics and perform prediction tasks. Wang et al. [17] proposed a Deep Belief
Network (DBN) that can automatically learn semantic features from abstract syntax trees and code changes.
Abdu et al. [18] developed a defect prediction model that integrates semantic information from Abstract
Syntax Trees (ASTs), Control Flow Graphs (CFGs), and Data Dependency Graphs (DDGs). Abdu et al. [19]
proposed a novel defect prediction model that combines traditional features with code semantic features to
address the limitations of single-feature-based approaches. While these works explore deep learning for code
semantics [17-19], our study focuses on interpretable metric-based semantic views using traditional machine
learning, thus employing different methodological premises.

3 Four-Step Semantic View Construction

The process of obtaining the semantic views of metric elements in this paper mainly consists of four
main steps: (1) The first step is to determine the target number of clusters; (2) The second step is to conduct
clustering experiments on each project using multiple clustering methods; (3) The third step is to synthesize
all the clustering results; (4) The fourth step is to perform hierarchical clustering based on the synthesized
results, and summarize the software metrics in each category from a semantic perspective. Eventually, the
semantic views of metrics are obtained. The overall framework diagram is shown in Fig. 1. The first step is
described in Section 4 of the paper, while the remaining three steps are presented in Section 5.
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Figure 1: Semantic view construction framework for software metrics

Each procedural step is guided by the outcomes of its preceding step.

4 Determining the Number of Clusters
4.1 Dataset and Preprocessing

The PROMISE dataset [20], which contains open source Java projects, is utilized in this study. The
projects in this dataset all contain the same set of software metrics. Each software metric has a distinct
meaning, examining the quality of software code from different perspectives. Table 1 primarily introduces
the abbreviations, full names, and corresponding meanings of the metrics in the dataset.

Table 1: Names and explanations of metrics in the dataset

Metric acronym Full name Definition Category
WMC Weighted Methods per Sum of cyclomatic complexities of Group2
Class all methods in a class
NOC Number of Children Count of immediate subclasses
inheriting from a class
CBO Coupling Between Count of classes coupled to a given
Objects class through method calls or
attributes
LCOM Lack of Cohesion in Measure of dissimilarity between
Methods methods based on attribute usage
CA Afferent Couplings Number of external components
dependent on the measured
component
CE Efferent Couplings Number of external components
the measured component depends
on

(Continued)
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Table 1 (continued)

Metric acronym Full name Definition Category
NPM Number of Public Count of publicly accessible
Methods methods in a class
LOC Lines of Code Total executable lines of code
excluding comments and blanks
MOA Method Overriding Number of methods overriding
parent class implementations
IC Inheritance Count Total number of parent classes in
the inheritance hierarchy
DIT Depth of Inheritance Tree ~ Length of the longest path from a
class to the root class
CBM Coupled Between Count of method pairs sharing at
Methods least one common attribute
AMC Average Method Mean cyclomatic complexity across
Complexity all class methods
Max_CC Maximum Cyclomatic Highest cyclomatic complexity
Complexity value among class methods
Avg CC Average Cyclomatic Mean cyclomatic complexity across
Complexity all methods in the system
LCOM3 Lack of Cohesion in Normalized difference between Group3
Methods v3 method pairs sharing/no-sharing
attributes
DAM Data Access Metric Ratio of private/protected
attributes to total attributes
MFA Measure of Functional Ratio of inherited methods to total
Abstraction accessible methods
CAM Cohesion Among Ratio of method pairs sharing
Methods of class common attributes to total method

pairs

We selected six projects from the dataset: ant-1.7, camel-1.6, lucene-2.4, poi-3.0, synapse-1.2, and xerces-

1.4.4. The number of data entries in each project ranges approximately from 250 to 950. The specific statistical
results are shown in Table 2. Subsequently, we preprocessed the data by normalizing the metric data for each
project. This step was taken to prevent the impact of different value ranges of the software metrics on the
computational analysis, ensuring consistency and comparability in the data analysis.

Table 2: Defective data statistics by project

Project name Lines of codes Number of defects Defect proportion (%)
ant-1.7 734 93 12.67
camel-1.6 932 98 10.52
lucene-2.4 339 68 20.06

(Continued)
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Table 2 (continued)

Project name Lines of codes Number of defects Defect proportion (%)
poi-3.0 441 200 45.35
synapse-1.2 255 52 20.39
xerces-1.4.4 574 172 29.97

4.2 Evaluation of the Silhouette Coefficient
b(i) - a(i)
max(a(i),b(i))

To determine the optimal number of clusters, the silhouette coeflicient was calculated for the data of
each software project based on its values. The silhouette coefficient is an indicator used to evaluate the quality

s(i) = 1)

of clustering. Its core idea is to measure the compactness and separation of clustering results by computing
the intra-cluster distance and inter-cluster distance for each sample. In Formula (1), a(i) represents the
average distance from sample i to other samples in the same cluster, i.e., the intra-cluster distance, while
b(i) represents the average distance from sample i to all samples in the nearest neighboring cluster, i.e., the
inter-cluster distance.

The reasons for using this method are as follows: The silhouette coefficient takes into account both
intra-cluster compactness and inter-cluster separation, providing a comprehensive reflection of the quality
of clustering results. Compared to evaluation methods that rely solely on distance or density, the silhouette
coeflicient is more robust. Additionally, the silhouette coefficient is not dependent on a specific clustering
algorithm and is applicable to various methods such as K-means, spectral clustering, Gaussian mixture
clustering, and hierarchical clustering. Therefore, using the silhouette coefficient as a unified evaluation
criterion ensures comparability across different methods. This method automatically selects the optimal
number of clusters k by calculating the silhouette coefficient under different k values, choosing the k value
that maximizes the silhouette coefficient. This avoids the subjectivity of manually setting k and ensures the
scientific rigor of the experiment.

Moreover, compared to other evaluation methods such as the elbow method [21] and the Gap Statistic
method, the silhouette coefficient has the following advantages: The elbow method relies more on subjective
judgment and lacks a quantitative standard, while the Gap Statistic method has higher computational
complexity and is more suitable for large-scale data.

Overall, the silhouette coefficient method is computationally simple, suitable for medium and small-
scale data, and can quantify clustering effectiveness. In the task of software defect prediction, the silhouette
coeflicient can effectively identify cluster structures in metric data, helping to select the optimal k value and
laying the foundation for subsequent experiments. Fig. 2 shows the curves of the silhouette coefficient as k
varies for the six projects.

The results in Fig. 2 indicate that, among the six projects, the optimal number of clusters is 2 for four
projects, 3 for one project, and 4 for another project. Therefore, the predefined number of clusters was set to 2
for multiple clustering methods (K-means, spectral clustering, Gaussian mixture clustering, and hierarchical
clustering), and further clustering experiments were conducted.
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Figure 2: Silhouette coefficient vs. Number of clusters (k) for each project

5 Acquisition of Semantic Views of Metrics

5.1 Applying Multiple Clustering Methods

The experiments utilized four methods: K-means, spectral clustering [22], Gaussian mixture clus-
tering [23], and hierarchical clustering [24]. Overall, these methods analyze the clustering of software
metrics from the perspectives of distance, graph theory, probability distribution, and hierarchical structure,
respectively, aiming to obtain more comprehensive and robust clustering results. Specifically, the K-means
method is based on the concept of distance, dividing the data into K clusters by calculating the distances
between samples, ensuring that the distances within clusters are minimized while the distances between
clusters are maximized. Spectral clustering is based on graph theory, treating data as nodes in a graph with
similarity between nodes as edge weights, and performing dimensionality reduction and clustering using the
eigenvalues and eigenvectors of the graph’s Laplacian matrix. Gaussian mixture clustering is based on a prob-
abilistic model, assuming that the data is generated from a mixture of multiple Gaussian distributions, and
determining the clustering results by estimating the parameters of each Gaussian distribution. Hierarchical
clustering is based on hierarchical structure, constructing a hierarchical cluster tree by iteratively merging
or splitting samples, which can be performed either bottom-up (agglomerative) or top-down (divisive).

Figs. Al and A2 show Sankey diagrams of the clustering results for the six projects (ant, camel, etc.)
under the four methods. The diagrams illustrate the specific distribution of metrics across different clusters
for each project under various clustering methods. The results reveal that the six projects are not entirely

consistent across the four clustering methods, necessitating further comprehensive analysis to weigh the
clustering results of different methods (see Figs. Al and A2 in Appendix A).
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5.2 Integrating Clustering Results

Using the clustering results obtained by utilizing the four clustering methods to each project, a co-
occurrence matrix was designed and constructed to quantify the frequency of different metrics appearing
together in the same cluster. Specifically, the values in the co-occurrence matrix were initially set to 1.
Subsequently, the clustering results of each project were iterated through using different methods. If two
metrics appeared together in the same cluster, the corresponding value in the co-occurrence matrix was
incremented by 1.

Fig. 3 presents a heatmap of the co-occurrence matrix, where the depth of color represents the frequency
of co-occurrence between metrics, with darker shades indicating higher frequencies and lighter shades
indicating lower frequencies.
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Figure 3: Heatmap of co-occurrence matrix for metrics

The co-occurrence matrix was transformed into a distance matrix embodying the concept of distance,
with normalization applied to mitigate the influence of varying distance scales.

Subsequently, the normalized co-occurrence matrix was further converted into a distance matrix. This
distance matrix represents the comprehensive results of multiple clustering methods across various projects,
where a higher frequency of co-occurrence in the same cluster corresponds to a closer distance.

d_matrix = (1- n_matrix) - I(n_matrix + 0) (2)

In Formula (2), I(n_matrix # 0) is an indicator function, where n_matrix represents the elements
of the matrix after normalization, and d_matrix represents the elements of the computed distance matrix.
When the element value is not zero, the indicator function value is 1; when the element value is zero, the
indicator function value is 0. Fig. 4 shows the distance matrix obtained after the above processing, where
darker colors represent greater distances between the elements.
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Figure 4: Heatmap of distance matrix for metrics

5.3 Clustering and Semantic Analysis

After compressing the distance matrix, a dynamic hierarchical clustering method, which does not
require a pre-set number of clusters, was applied, and the clustering process was visualized. Fig. 5 shows the
result of dynamic hierarchical clustering, indicating that two major clusters are clearly separated when the
inter-cluster distance reaches around 0.4.
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Since we selected a predefined cluster number of 2 based on the analysis of the optimal number of
clusters for each project, and the visualization results of dynamic hierarchical clustering showed that two
distinct clusters of metrics could be clearly identified at a distance of approximately 0.4, we obtained two
groups of software metrics through the above analysis process. The grouping results are shown in Table 1.
The first 16 mretrics belong to Group2, and the last 4 metrics belong to Group3.

In the two metric groups, the first group contains a larger number of metrics, including WMC, NOC,
CBO, LCOM, CA, CE, NPM, LOC, MOA, IC, DIT, CBM, AMC, Max_CC, and Avg CC. These metrics
primarily focus on the scale, complexity, and interdependencies between modules of the software system,
emphasizing the macro-level properties of the code. The second group contains fewer metrics, including
LCOM3, DAM, MFA, and CAM, which focus on evaluating the design quality of classes and their internal
structural characteristics, emphasizing the internal design of the software code.

Based on the above grouping results, we obtained two semantic views of metrics with different
semantic characteristics. To further validate the effectiveness of single-view vs. multi-view approaches
in defect prediction tasks, we conducted experiments using various classification methods for software
defect prediction.

6 Defect Prediction Experiment
6.1 Preparation for the Experiment

Experiments were conducted based on semantic views of metrics using multiple classifiers to explore
the different effects of various semantic views of metrics on software defect prediction tasks and the extent
to which they influence the performance of different classification models. The classifiers utilized in this
study are Support Vector Machine (SVM) [25], Random Forest [26], XGBoost [27], K-Nearest Neighbors
(KNN) [28], Logistic Regression [29] and Hist Gradient Boosting.

Among these six classifiers, SVM distinguishes data of different classes by finding the maximum margin,
making it suitable for high-dimensional spaces and scenarios where the number of samples is less than the
number of features, with strong generalization capabilities. Random Forest is an ensemble learning method
that improves model accuracy and stability by constructing multiple decision trees and combining their
predictions, excelling in handling high-dimensional data and large datasets. XGBoost (Extreme Gradient
Boosting) is a gradient boosting-based ensemble learning method that iteratively adds tree models to
minimize the loss function, often delivering excellent performance across various datasets, particularly
on structured data. KNN is an instance-based learning algorithm that predicts the class of a sample by
voting based on the classes of its K nearest neighbors, suitable for small-scale and low-dimensional datasets
but computationally intensive for large datasets. Logistic Regression is a log-odds model used for binary
classification, predicting the probability of an event occurring, with a simple and interpretable model.
Hist Gradient Boosting is a relatively novel histogram-based gradient boosting algorithm that discretizes
continuous features into histograms, offering high computational efficiency. Each of the six classifiers has
different emphases, enabling us to summarize and analyze the experimental results of each type of classifier.

In the software defect prediction experiment, three metric groups—Groupl, Group2, and Group3—
were designed: Groupl represents a comprehensive semantic view, encompassing all software metrics,
while Group2 and Group3 are independent semantic views constructed based on the first and second
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metric groupings, respectively, focusing on the macro-level and internal aspects of the software code.
By comparing the predictive performance of six classifiers across Groupl, Group2, and Group3, we can
gain a more comprehensive understanding of the impact of different metric groups on software defect
prediction effectiveness.

In the software defect prediction experiments, data preprocessing is a critical step to ensure model
performance. The experiment utilized a series of data processing methods, including oversampling, stratified
sampling, and Principal Component Analysis (PCA) for dimensionality reduction.

As shown in Table 2, the software defect data suffers from class imbalance, where the number of defect
samples is significantly lower than that of non-defect samples. Training models directly on raw data may
result in overfitting to non-defect samples and inadequate recognition of defect samples. To effectively
address this issue, the Synthetic Minority Oversampling Technique [30] (SMOTE) was utilized to oversample
the minority class. SMOTE balances the dataset by synthesizing new samples for the minority class. For
each minority class sample x;, SMOTE identifies its k nearest neighbors, randomly selects one neighbor x;,
and generates a new sample x,.,, through linear interpolation, where A is a random value determining the
interpolation position, as shown in Formula (3):

Xnew = Xi + A+ (Xj— x7) (3)

After applying this oversampling method, the number of defect and non-defect samples becomes
balanced, thereby enhancing the model’s ability to recognize minority classes.

Additionally, to ensure that the training and test sets maintain a 11 ratio of non-defect to defect
samples after oversampling, the experiment utilized stratified sampling to partition the dataset. The stratified
sampling method divides the data into training and test sets based on the proportion of defect and non-defect
samples in the overall dataset, ensuring consistency in the distribution of classes between the two sets. This
means that the label proportions in the training and test sets are the same, thereby ensuring a more balanced
training and testing process for the model.

The software metric data includes multiple metrics (such as WMC, CBO, LOC, etc.), which may
suffer from redundancy, leading to inefficient model training and potential overfitting. To reduce feature
dimensionality, eliminate redundant information, and extract key features, the experiment utilized Principal
Component Analysis (PCA) for dimensionality reduction before training and testing the classifiers. PCA
is a statistical method that transforms a set of correlated variables into a new set of linearly uncorrelated
variables, known as principal components, through orthogonal transformation. This process aims to reduce
the dimensionality of the data while retaining as much of the characteristic information of the original data
as possible. It begins by calculating the covariance matrix C of the data:

C=—x'x (4)
N
Among them, X is the original data matrix and N is the number of samples. Subsequently, eigenvalue
decomposition is performed on the covariance matrix, and the eigenvectors corresponding to the top k
largest eigenvalues are selected to form the projection matrix W. Then, the data is projected onto the low-
dimensional matrix Z, completing the dimensionality reduction of the data. The core calculation process is
as follows:

Z=XW (5)
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In terms of performance measures, AUC (Area Under the Curve) and Accuracy were selected as the
quantitative metrics, which can more comprehensively reflect the model’s overall classification ability and
its capability to distinguish between the two classes under various threshold conditions [31]. This allows for
a more comprehensive and objective assessment of the model’s performance. AUC, as the name suggests,
is the area under the ROC (Receiver Operating Characteristic) curve and is used to evaluate the overall
performance of a classification model at different threshold values. The ROC curve has the True Positive Rate
(TPR) on the y-axis and the False Positive Rate (FPR) on the x-axis. The formulas for calculating TPR and
FPR are as follows:

TP
TPR= ——— (6)
TP+ FN
Fp
FPR= ———— (7)
FP+ TN

TP (True Positives) refers to the number of samples that are correctly predicted as the positive class by
the model; FN (False Negatives) refers to the number of positive class samples that are incorrectly predicted
as the negative class by the model; FP (False Positives) refers to the number of negative class samples that are
incorrectly predicted as the positive class by the model; TN (True Negatives) refers to the number of samples
that are correctly predicted as the negative class by the model. The formula for calculating AUC is the area
under the ROC curve:

AUC = folTPR(FPR)d(FPR) (8)

Accuracy (Acc) is the proportion of correctly predicted samples by the classification model out of the
total number of samples, and it is the most intuitive indicator for evaluating classification performance. It is
formally defined as:

TP+TN

Accuracy = )
TP+ TN +FP+FN

The reason for using both AUC and Acc is that AUC can comprehensively evaluate the model’s
performance at different thresholds and can evenly reflect the model’s ability to distinguish between positive
and negative samples. Accuracy, on the other hand, intuitively represents the model’s classification accuracy
for the overall data. The combined use of the two can provide a more comprehensive understanding of the
model’s overall performance and its ability to identify the minority class, avoiding the evaluation bias that
may be caused by a single indicator and thus more accurately reflecting the model’s performance.

6.2 Results and Analysis

The multiple tables of experimental results are included in Appendix A. Tables Al through All sum-
marize the AUC and Acc values of the prediction results across different Group conditions, comparing
the performance of six methods for each project. In the tables, A represents the amount of change, and
— indicates no change.

6.2.1 Overall Performance of Different Classification Models

For the SVM model, under the Groupl condition, the performance in terms of AUC and Acc is generally
better than that under Group2 and Group3. Specifically, for AUC, the average value under Groupl is 5.07%
and 10.66% higher than that under Group2 and Group3, respectively, indicating a significant impact.
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The Random Forest model shows relatively stable performance in terms of AUC. However, for Acc,
the performance under Groupl is significantly better than that under Group2 and Group3. This sug-
gests that Random Forest is somewhat sensitive to the increase in software metrics in terms of overall
classification accuracy.

XGBoost demonstrated significant advantages in both AUC and Accuracy for the Groupl view,
particularly when compared to Group3, with substantial improvements in AUC and Accuracy, indicating a
higher sensitivity

KNN exhibits relatively stable performance in both AUC and Accuracy compared to other models,
though the results under the Groupl view still demonstrate a certain level of advantage.

The Logistic Regression model shows a performance trend similar to the XGBoost model in terms of
AUC and Acc, with a particularly noticeable improvement in AUC and Acc under Groupl compared to
Group3.

The overall performance of Hist Gradient Boosting in terms of AUC and Acc is comparable to the
experimental results of the XGBoost method.

6.2.2 The Impact of the Combination of Group2 and Group3 on Model Performance

Based on the results of AUC and Acc, for the majority of classification models in the experiment, the
AUC and Acc under Groupl are generally higher than the single-view performance of Group2 and Group3.
This indicates that combining Group2 and Group3 can enhance model performance in most cases. These
findings suggest that the increased diversity of software metrics positively contributes to the improvement of
model prediction performance. The inclusion of new semantic views of metrics provides additional semantic
information, enabling models to better capture underlying patterns in the data.

6.2.3 The Contribution of Metrics in Group2 and Group3 to Model Performance

Groupl is equivalent to the integration of Group2’s software metrics into Group3, with Group2
containing a larger number of software metrics. The inclusion of Group2 demonstrates a significant positive
effect across all models, substantially improving both AUC and Acc metrics.

Although Group3 contains only four software metrics, its incorporation demonstrates a significant
impact on model performance. In the majority of cases, the inclusion of Group3 further enhances the
predictive effectiveness under the Group2 condition; in fewer instances, its addition may slightly reduce
the predictive performance under the Group2 condition. This indicates that despite the limited number of
metrics in Group3, it encapsulates certain critical information, which overall contributes to a substantial
improvement in model performance.

7 Conclusion

Software metric grouping: Through experiments, we obtained two semantic views of metrics, each
focusing on the macro-level code characteristics and the internal design quality of software projects, respec-
tively.

The effect of semantic view fusion: Compared to the Group2 and Group3 views, the Groupl condition
significantly enhances model performance in terms of AUC and Acc in the majority of cases, demonstrating
that the fusion of semantic views of software metrics plays a crucial role in improving model effectiveness.
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Sensitivity of models to the increase in software metrics: From a performance perspective, SVM,
XGBoost, Hist Gradient Boosting and Random Forest exhibit higher sensitivity. In contrast, Logistic
Regression demonstrates relatively lower sensitivity.

The key role of Group3: Despite having fewer software metrics, the addition of Group3 significantly
improves model performance in the majority of cases, indicating that these metrics contain certain
key information.

Limitations: First, the experimental data primarily relies on software projects from the PROMISE
dataset, and the diversity of the data could be further improved. Second, although scientific evaluation
metrics and methods were adopted during clustering and semantic view partitioning, some subjectivity may
still exist, potentially affecting the accuracy of clustering results and the validity of semantic views.

Future Work: Based on current limitations, future research could focus on: (1) Expanding the dataset
to include more diverse software projects (in type, scale, and domain) to enhance result reliability; (2)
Developing more objective and precise clustering methods and semantic view partitioning strategies to
minimize subjective bias; (3) Investigating relationships between different semantic views to strengthen
theoretical foundations and practical guidance for defect prediction.
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Appendix A Tables and Figures of Experimental Results
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Figure Al: Sankey diagrams of clustering results for the first three projects under four clustering methods
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From Tables Al to A6, the AUC metric results of different classification models across the three metric
groups (Groupl, Group2, and Group3) are presented. Similarly, from Tables A7 to A12, the accuracy (Acc)
metric results of different classification models under these metric groups are shown.

Table Al: Performance comparison of SVM across different groups based on AUC

Project name Groupl Group2A vs. Groupl (%) Group2 Group3A vs. Groupl (%) Group3

Ant 0.791 5.69| 0.746 6.45) 0.740
Camel 0.638 5.49| 0.603 16.77] 0.531
Lucene 0.767 313 0.743 10.43) 0.687

Poi 0.852 2.11) 0.834 15.61} 0.719

Synapse 0.735 14.01} 0.632 8.03) 0.676
Xerces 0.780 — 0.780 6.67) 0.728
Average 0.761 5.07} 0.723 10.66), 0.680

Table A2: Performance comparison of random forest across different groups based on AUC

Project name Groupl Group2A vs. Groupl (%) Group2 Group3A vs. Groupl (%) Group3

Ant 0.739 5.28) 0.700 16.64), 0.616
Camel 0.572 4.901 0.600 6.99] 0.532
Lucene 0.724 3.45] 0.699 14.50| 0.619

Poi 0.812 4.68] 0.774 4.68] 0.774

Synapse 0.706 6.231 0.750 4.25] 0.676
Xerces 0.838 2.8671 0.862 6.21} 0.786
Average 0.732 0.101 0.731 8.88) 0.667

Table A3: Performance comparison of XGBoost across different groups based on AUC

Project name Groupl Group2A vs. Groupl (%) Group2 Group3A vs. Groupl (%) Group3

Ant 0.685 4.091 0.713 7.01} 0.637
Camel 0.569 2.28] 0.556 9.49] 0.515
Lucene 0.699 2.72% 0.718 23.75] 0.533

Poi 0.805 6.96) 0.749 2111 0.822
Synapse 0.691 217} 0.676 — 0.691
Xerces 0.879 2.62] 0.856 7.28] 0.815

Average 0.721 1.20} 0.711 757 0.669
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Table A4: Performance comparison of KNN across different groups based on AUC

Project name Groupl Group2A vs. Groupl (%) Group2 Group3A vs. Groupl (%) Group3

Ant 0.687 1.31} 0.678 6.99] 0.639
Camel 0.650 1.54] 0.640 5.69| 0.613
Lucene 0.718 13.65] 0.620 3.48] 0.693

Poi 0.803 2.24] 0.785 4.98] 0.763
Synapse 0.662 2111 0.676 2.27] 0.647
Xerces 0.786 10.311 0.867 13.10} 0.683
Average 0.718 1.05) 0.711 6.09/] 0.673

Table A5: Performance comparison of logistic regression across different groups based on AUC

Project name Groupl Group2A vs. Groupl (%) Group2 Group3A vs. Groupl (%) Group3

Ant 0.778 2.83] 0.756 4.24] 0.745
Camel 0.564 9.4071 0.617 3.01} 0.547
Lucene 0.748 1.47] 0.737 6.55] 0.699

Poi 0.843 1.07} 0.834 14.47) 0.721
Synapse 0.750 15.73] 0.632 2.001 0.765
Xerces 0.780 — 0.780 513 0.740
Average 0.744 1.95] 0.726 5.23] 0.703

Table A6: Performance comparison of hist gradient boosting across different groups based on AUC

Project name Groupl Group2A vs. Groupl (%) Group2 Group3A vs. Groupl (%) Group3

Ant 0.691 5.071 0.726 7.81} 0.637
Camel 0.613 6.53] 0.573 14.85) 0.522
Lucene 0.736 5.84) 0.693 14.13) 0.632

Poi 0.829 6.03) 0.779 1.931 0.845

Synapse 0.691 4.341 0.721 8.54) 0.632
Xerces 0.844 2.01} 0.827 3.44] 0.815
Average 0.734 1.83} 0.720 7.81} 0.681

Table A8: Performance comparison of random forest across different groups based on Acc

Project name Groupl Group2A vs. Groupl (%) Group2 Group3A vs. Groupl (%) Group3

Ant 0.796 3.39] 0.769 9.42] 0.721
Camel 0.722 5.26) 0.684 6.65] 0.674
Lucene 0.735 3.95] 0.706 14.01} 0.632

Poi 0.820 2.68] 0.798 2.68} 0.798
Synapse 0.765 2.481 0.784 5.23] 0.725
Xerces 0.843 6.291 0.896 712} 0.783

Average 0.780 1.09] 0.773 7.52] 0.722
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Table A7: Performance comparison of SVM across different groups based on Acc

Project name Groupl Group2A vs. Groupl (%) Group2 Group3A vs. Groupl (%) Group3

Ant 0.810 2.59] 0.789 11.85] 0.714
Camel 0.567 27341 0.722 18.87) 0.460
Lucene 0.765 5.75]) 0.721 11.63] 0.676

Poi 0.854 2.69)] 0.831 15.81) 0.719

Synapse 0.765 10.33} 0.686 15.42) 0.647
Xerces 0.757 — 0.757 3.57] 0.730
Average 0.753 1.001 0.751 12.86| 0.658

Table A9: Performance comparison of XGBoost across different groups based on Acc

Project name Groupl Group2A vs. Groupl (%) Group2 Group3A vs. Groupl (%) Group3

Ant 0.762 0.92] 0.755 5.38] 0.721
Camel 0.717 5.30{ 0.679 9.76| 0.647
Lucene 0.706 2121 0.721 22.95| 0.544

Poi 0.820 5.49] 0.775 2.8071 0.843

Synapse 0.745 2.68] 0.725 2.68] 0.725
Xerces 0.887 — 0.887 10.82] 0.791
Average 0.773 2.05} 0.757 8.13} 0.712

Table A10: Performance comparison of KNN across different groups based on Acc

Project name Groupl Group2A vs. Groupl (%) Group2 Group3A vs. Groupl (%) Group3

Ant 0.714 1.82} 0.701 0.98)] 0.707
Camel 0.701 2.43], 0.684 1.57 0.690
Lucene 0.706 12.46| 0.618 212} 0.691

Poi 0.809 2.72) 0.787 4.20| 0.775
Synapse 0.686 2.921 0.706 2.921 0.706
Xerces 0.783 11117 0.870 4.47], 0.748
Average 0.733 0.90/ 0.728 1.74| 0.720

Table A1l: Performance comparison of logistic regression across different groups based on Acc

Project name Groupl Group2A vs. Groupl (%) Group2 Group3A vs. Groupl (%) Group3

Ant 0.789 — 0.789 8.62] 0.721
Camel 0.578 14.711 0.663 10.21} 0.519
Lucene 0.750 3.87| 0.721 5.87| 0.706

Poi 0.843 1.42] 0.831 13.40| 0.730
Synapse 0.784 12.50] 0.686 2.42) 0.765
Xerces 0.757 — 0.757 3.57] 0.730

Average 0.750 0.51} 0.741 7.35] 0.695
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Table A12: Performance comparison of hist gradient boosting across different groups based on Acc

Project name Groupl Group2A vs. Groupl (%) Group2 Group3A vs. Groupl (%) Group3

Ant 0.755 2.78%1 0.776 4.50] 0.721
Camel 0.738 8.67| 0.674 10.84] 0.658
Lucene 0.735 3.95] 0.706 14.01} 0.632

Poi 0.843 6.64] 0.787 1.301 0.854

Synapse 0.745 2.681 0.765 10.47) 0.667
Xerces 0.852 1.0671 0.861 716/ 0.791
Average 0.778 212} 0.762 7.61} 0.721
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