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ABSTRACT: Fuzz testing is a widely adopted technique for uncovering bugs and security vulnerabilities in embedded
firmware. However, many embedded systems heavily rely on peripherals, rendering conventional fuzzing techniques
ineffective. When peripheral responses are missing or incorrect, fuzzing a firmware may crash or exit prematurely,
significantly limiting code coverage. While prior re-hosting approaches have made progress in simulating Memory-
Mapped Input/Output (MMIO) and interrupt-based peripherals, they either ignore Direct Memory Access (DMA) or
handle it oversimplified. In this work, we present ADFEmu, a novel automated firmware re-hosting framework that
enables effective fuzzing of DMA-enabled firmware. ADFEmu integrates concolic execution with large language models
(LLMs) to semantically emulate DMA operations and synthesize peripheral input sequences intelligently. Specifically,
it learns DMA transfer patterns from the firmware’s context and employs guided symbolic execution to explore deeper
and more diverse execution paths. This approach allows firmware to operate stably without hardware dependencies
while achieving higher fidelity in emulation. Evaluated on real-world embedded firmware samples, ADFEmu achieves
a100% re-hosting success rate, improves total execution path exploration by 5.31%, and triggers more crashes compared
to the state-of-the-art. These results highlight ADFEmu’s effectiveness in overcoming long-standing limitations of DMA
emulation and its potential to advance automated vulnerability discovery in peripheral-rich embedded environments.
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1 Introduction

In recent years, the rapid advancement of the Internet of Things (IoT) has led to a significant increase
in the number of embedded devices, resulting in substantial security vulnerabilities. The widespread use of
these devices across various sectors means that their security issues can directly impact personal privacy
and the safety of critical infrastructure. However, the firmware of embedded devices often features a simple
design and limited resources, making them vulnerable to attacks [1]. As such, conducting security research
on embedded firmware is crucial to ensuring the stability of the entire IoT ecosystem. In the security research
of embedded devices, dynamic firmware analysis has emerged as a popular approach due to its high efficiency
and low false-positive rate. To perform dynamic analysis on firmware, the firmware program needs to be
executed in practice. However, due to the high dependency of firmware on the actual hardware peripherals of
the device during execution, the current technology for firmware emulation in embedded devices still faces
challenges such as requiring extensive manual analysis and a lack of general applicability.
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Recent studies [2] have introduced firmware re-hosting methods that allow firmware to run in virtu-
alized environments, thereby mitigating hardware dependencies. Nonetheless, existing firmware re-hosting
techniques [3,4] lack adequate support for handling Direct Memory Access (DMA) inputs, significantly
limiting the types of devices that can be emulated and the extent of firmware code coverage.

This lack of automated and generalized DMA handling greatly restricts the ability of re-hosted environ-
ments to faithfully execute firmware, often leading to low code coverage and incomplete behavioral analysis.
Existing frameworks typically either ignore DMA interactions altogether or require labor-intensive manual
modeling of DM A behavior, which hinders scalability and limits applicability across diverse firmware targets.

To overcome these challenges, we propose ADFEmu, a dynamic symbolic execution-based re-hosting
framework for embedded firmware, which provides optimized support for handling DMA inputs beyond
existing re-hosting techniques. ADFEmu enables the emulation of common embedded firmware without the
need for actual hardware devices by dynamically determining DMA input calls and solving for the expected
execution paths of firmware code using Dynamic Symbolic Execution (DSE).

To address the limitations of traditional DSE, ADFEmu leverages LLMs to guide symbolic path
exploration with semantic awareness, allowing it to prioritize meaningful execution paths and synthesize
plausible DMA inputs during fuzz testing. This hybrid design significantly improves the efficiency and
effectiveness of firmware code coverage and vulnerability discovery, without requiring any manual effort. The
core design of the ADFEmu framework allows for the provision of anticipated DMA inputs during firmware
fuzz testing, thus facilitating the exploration of more firmware code logic via DMA inputs.

We evaluated our method on real firmware targets and fuzz-tested 10 open source firmware using
ADFEmu. The experimental results indicate that, compared to existing methods, our approach achieves
higher code coverage, uncovers more execution paths, and triggers more crashes.

To clearly state the objectives of this work, our research aims to:

(1) develop an automated and general approach to enable accurate DMA input emulation in firmware
re-hosting;

(2) combine DSE and LLM techniques to improve the efficiency and scalability of firmware path
exploration and fuzzing;

(3) demonstrate the effectiveness of the proposed ADFEmu framework through experiments on real-
world DMA-enabled embedded firmware.

In summary, our research offers the following contributions:

(1)  We propose a new approach for optimizing the emulation of firmware peripherals, specifically
focusing on DMA input. The method integrates dynamic symbolic execution technology with fuzzing
techniques, and incorporates LLM technology to further enhance path exploration efficiency and code
coverage, with the goal of dynamic analysis for embedded firmware.

(2) We designed and implemented ADFEmu, a firmware re-hosting framework for fuzzing DM A-enabled
embedded firmware.

(3) Through experiments on real firmware, we show that ADFEmu outperforms existing works in
fuzzing DMA-enabled firmware. ADFEmu achieved higher code coverage and uncovered more
execution paths.

The subsequent sections of this paper are structured as follows:

Section 2 introduces foundational knowledge essential for comprehending ADFEmu. Sections 3 delve
into the design and implementation of ADFEmu. Section 4 outlines the evaluation results. Section 5
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discusses the challenges faced in the paper and outlines future work directions. Section 6 summarizes the
entire article.

2 Background and Related Work

To support the proposed approach, this section provides essential background on characteristics of
embedded firmware, firmware re-hosting techniques, and the importance of DMA interactions in firmware
execution. As shown in Table 1, existing peripheral emulation techniques vary significantly in their objectives,
supported peripheral types, and scalability. Notably, most prior works are limited to Memory-Mapped
Input/Output(MMIO) peripherals and fail to model DMA interactions effectively. The specific introduction
content is as follows:

Table 1: Comparison of peripheral emulation techniques

Scheme Objective Peripheral types Scope Limitations
HALucinator [5] Replaces HAL MMIO Specific Relies on source code.
functions with manual HALs
handling.
IEmu [6] Enhances fuzzing via MMIO ARM Cannot handle
invalidity-guided Cortex-M complex non-
knowledge reasoning. knowledge-guided
scenarios.
Fuzzware [7] Improves fuzzing MMIO ARM Only supports MMIO
through precise Cortex- peripherals.
MMIO modeling. M/RISC-V
P2IM [8] Models MMIO MMIO ARM Cannot handle DMA
interactions to Cortex-M inputs.
simulate hardware
peripherals.
DICE [9] Simulates DMA input ~ MMIO/DMA ARM Random input
channels to enable Cortex-M generation lowers
DMA interaction. DMA simulation
accuracy.
ADFEmu (Ours) Enhances DMA MMIO/DMA ARM Symbolic execution
simulation via Cortex-M causes higher
symbolic execution. overhead and path
explosion.

2.1 Embedded Firmware and Firmware Re-Hosting

Embedded devices perform specific tasks through driver software, commonly referred to as firmware.
Unlike desktop software, firmware can directly interact with underlying hardware. According to Muench’s
description [10], embedded firmware can be categorized into three types based on the type of operating
system used: devices based on general-purpose operating systems (such as real-time Linux), devices based on
embedded operating systems (like VxWorks and ZephyrOS), and devices without an operating system, which
use monolithic firmware. Monolithic firmware devices operate through control loops, usually processing
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external events triggered by interrupts from peripherals. While security research has predominantly focused
on firmware for devices based on general-purpose operating systems [11,12,13], there is also growing attention
on monolithic firmware to analyze the behavior of various hardware devices.

Firmware re-hosting refers to the process of extracting firmware from a physical device and constructing
a virtual environment that accurately emulates the execution of the firmware, including its interaction
with hardware peripherals. This process aims to replicate the behavior of the original device in a software
environment, thereby facilitating vulnerability analysis and testing. Peripheral interaction in firmware can
be generally classified into three categories: MMIO, interrupts, and direct memory access (DMA). MMIO is
the most common mechanism and is widely supported by existing emulation frameworks.

Several prior works have proposed techniques to improve the accuracy and scalability of firmware re-
hosting. Clements et al. [5] proposed HALucinator, a system that enables scalable emulation and analysis
of embedded firmware by leveraging hardware abstraction layers (HAL) and reusable high-level emulation
functions. However, HALucinator relies on the availability of HAL, which limits its applicability to firmware
samples that lack or do not expose HAL components. To address interrupt modeling, Wei et al. [6] introduced
IEmu, a system that automatically extracts interrupt trigger rules by analyzing redundant check mechanisms
in firmware binaries. While IEmu improves dynamic analysis effectiveness, it still performs worse than
manual-specification-based tools such as SEmu, and its coarse-grained handling of MMIO data registers may
hinder path diversity and reduce overall code coverage. Scharnowski et al. [7] proposed a novel firmware fuzz
testing method called FUZZWARE, which improves the effectiveness of fuzz testing by accurately modeling
MMIO and automatically eliminating input redundancy. However, FUZZWARE does not automatically
handle DMA transfers, which limits its ability to analyze certain complex firmware. Feng et al. [8] developed
P2IM, a technique that constructs processor-peripheral interface models to enable hardware-independent
and scalable fuzz testing of firmware. Although P2IM achieves high effectiveness in MMIO-based emulation,
it lacks support for DMA, limiting its applicability to firmware that depends on direct memory access.

These representative approaches have significantly advanced firmware re-hosting, especially in mod-
eling MMIO and interrupts. However, most fail to address DMA, which is critical in many real-world
embedded systems. Ignoring DMA may lead to incomplete emulation or missed execution paths. Our work
seeks to bridge this gap by automatically modeling DMA behavior in firmware re-hosting, enabling more
complete and accurate emulation of embedded systems.

2.2 DSE and Large Language Models

In recent years, the rapid development of large language models has introduced new technical solutions
to research in IoT security and embedded system security. For instance, researchers have already applied
these models in fields like symbolic execution and fuzzing. For example, Chen et al. [14] proposed an
automated modeling method based on LLMs to resolve unknown functions in symbolic execution of
WebAssembly programs, improving the security and reliability of software used in medical consumer
electronics. Wang et al. [15] introduced LLM-Sym, a prototype symbolic execution engine that integrates
LLMs with the Z3 SMT solver to solve path constraints more efficiently. In the domain of fuzzing, Jiang et al.
[16] discussed five major challenges in applying LLMs to fuzzing and proposed eftective solutions, validated
through their application to fuzz testing of database management systems. Xia et al. [17] presented Fuzz4All,
a general-purpose fuzzing tool leveraging LLMs to support multiple programming languages and generate
diverse inputs in an LLM-driven fuzzing loop, which helped discover vulnerabilities across different systems.

Although these works highlight the promise of LLMs in static and dynamic program analysis, the
integration of LLMs with DSE particularly in the context of embedded firmware remains underexplored. DSE
is a program analysis technique that combines concrete execution with symbolic execution. Dynamically



Comput Mater Contin. 2025;84(3) 5981

analyzes and generates symbolic constraints during the actual execution of a program. Unlike traditional
symbolic execution, DSE makes the analysis process more flexible and efficient by incorporating concrete
inputs while the program runs, particularly when dealing with complex control flows and non-static data
structures. Cha et al. [18] proposed a method called ParaDySE, which enhances dynamic symbolic execution
by automatically learning search heuristics to improve code coverage and vulnerability detection capabilities.
However, the benchmark programs used in their experiments are limited in number, which may not fully
represent the performance of search heuristics across all types of program. Jaffar et al. [19] introduced a
new interpolation algorithm and integrated it into the KLEE system, aiming to address the path explosion
problem in dynamic symbolic execution and improve code reachability analysis, i.e., proving whether a target
program point is reachable or not.

This paper proposes a method that leverages LLMs during the (DSE) process to extract program path
information, understand control structures, and generate constraints for execution paths. In addition, LLMs
can use the path information to generate the corresponding code to solve path constraints. This approach
effectively improves the accuracy of symbolic execution.

2.3 Direct Memory Access of Embedded Firmware

DMA (Direct Memory Access) is a commonly used asynchronous communication technique in
embedded devices [20]. Through DMA, peripherals can directly transfer data to memory or read data from
memory without the involvement of the CPU (Central Processing Unit), thereby improving the system’s
efficiency and performance. In embedded devices, the DMA controller is responsible for managing the
data transfer process. The DMA controller establishes channels between various peripherals and memory,
enabling direct data transfer between them. By configuring the DMA controller’s registers, parameters such
as the source address, destination address, and transfer length of the data transfer can be specified. The
DMA transfer process is initiated when a peripheral enabled for DMA makes a request to use DMA. The
CPU then configures the DMA stream and delegates the memory copy function to the DMA controller.
Subsequently, the DMA controller transfers data to the RAM (Random Access Memory) area or to a DMA-
capable peripheral without further CPU involvement. Finally, when the DMA operation is complete, an
interrupt is generated to notify the CPU of the completion.

Mera et al. [9] proposed DICE, a tool for automatic simulation of DMA input channels in dynamic
firmware analysis. DICE identifies the source and destination pointers written by the firmware during
DMA transfer configuration and uses this information to emulate DMA input channels, enabling firmware
analyzers to recognize and manipulate DMA inputs. DICE achieved high accuracy on sample firmware
(89% true positive rate, 0% false positive rate) and improved analysis coverage on real-world firmware.
However, DICE adopts a fully randomized input generation strategy, which inevitably reduces the accuracy
of DMA input channel simulation and DMA interaction. The same research group also proposed D-Box [21],
a method to address the lack of DMA support in memory protection unit (MPU)-based resource isolation
schemes in embedded applications. Experimental results show that compared to standard FreeRTOS-MPU,
D-Box significantly reduces the attack surface and power consumption while maintaining low overhead.
Gross et al. [22] manually modified XMPU and XPPU register configurations and combined them with
cache maintenance operations to resolve memory isolation issues caused by the accelerator coherency
Port interface in FPGA-SoC. Experimental results demonstrated that this method effectively prevents
DMA-based attacks.

Current DMA-based modeling approaches for embedded firmware analysis still suffer from several
issues, such as reliance on randomized input generation, manual hardware configuration, and a lack of
semantic understanding of firmware behavior. These limitations reduce the accuracy, scalability, and depth



5982 Comput Mater Contin. 2025;84(3)

of the analysis. To address these challenges, we propose ADFEmu, an LLM-assisted dynamic emulation
approach. This approach leverages large language models to intelligently infer DMA input structures,guides
symbolic execution with path-sensitive constraints,and automatically configures DMA behavior. As a result,
ADFEmu significantly improves emulation accuracy and code coverage.

3 Design and Implementation

The design of ADFEmu is centered around using dynamic symbolic execution technology to support
DMA input during the firmware rehosting process. Its emulation scope applies to the aforementioned
monolithic firmware, with the goal of expanding the applicability of firmware that can be re-hosted.

Fig. 1 presents the overall architecture of ADFEmu framework. ADFEmu targets firmware binaries in
ELF format for emulation. Initially, through automated static analysis, information such as the required RAM
size, memory address mapping range, and starting address of the target firmware is determined. ADFEmu
then loads and begins executing the firmware using QEMU.

ADFEmu
DMA input Channel Controller
P Memory Map QEMU Emulator
Access
DMA Pointer Identifier DMA Buffer Identifier .
Peripheral Emulator Firmware
e
Memory Hook | mage
DMA Hook DMA 1/O Stream —_— Memory Hook
Manager Handler Controller
DMA IfO Fuzzing Basic Block
Descriptor Input Coverage
Feedback
Large Language i i - "
g Concolic Execution Solver AFL Fuzzing Engine
DMA Buffer . "
wl [ I T e
learning path guide Module Mol Re port
Global symbol
Design Constraint Manager

Figure 1: Architecture of ADFEmu

However, since there is no actual hardware peripheral present, theoretically, the firmware would
encounter an error and exit when attempting to execute code blocks that access peripherals. To handle
this, ADFEmu is designed to place hooks in the MMIO-mapped memory regions. When it detects that the
firmware is attempting to read from or write to these MMIO-mapped memory regions, i.e., when it tries to
invoke peripheral logic, ADFEmu intercepts this process via the hook, generates and returns an input using
the fuzzing tool to ensure the firmware continues to run smoothly.

Concurrently, ADFEmu continuously monitors the state of the DMA controller. If it detects an attempt
by the firmware to activate the DMA controller, ADFEmu again uses hooks to manage the configuration
of the DMA transfer descriptors. It dynamically creates DMA input channels by reading parameters such
as the source address, destination address, and transfer length during the firmware's DMA operations. In
addition, the core innovation of ADFEmu lies in the fact that the input provided by the emulated peripherals
can influence the subsequent state of the program. Our framework uses DSE to deduce and solve for the
expected input values the program anticipates. By following the paths selected through DSE, ADFEmu can
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access as much DMA-related logic in the firmware as possible, uncovering potential vulnerabilities in the
firmware while ensuring the emulation process does not crash.

During this process, we integrate LLM technology, where the model assists in path selection for dynamic
symbolic execution by designing context information and relevant prompts based on program path data and
control structures. Finally, after exploring as many potential program paths as possible, the fuzzing engine
identifies firmware vulnerabilities based on crash outcomes.

3.1 Fuzzing-Based Peripheral Emulator

ADFEmu uses QEMU [23] to emulate the ARM Cortex-M architecture instruction set of embedded
firmware. Before the emulation process begins, ADFEmu utilizes a static analysis tool to obtain the address
range of the target firmware’s MMIO regions and configures these in QEMU. For example, in the commonly
used STM32F103 Microcontroller Unit(MCU), the memory range mapped to hardware peripherals spans
from 0x40000000 to Ox5ftfttf. During the entire emulation process, ADFEmu hooks all MMIO accesses
within this specified memory range. When the firmware accesses the MMIO memory region, the program’s
inputs are the inputs required by the peripheral hardware. ADFEmu then invokes a fuzzer to provide specific
inputs, ensuring the continuous operation of the emulation process. When the firmware accesses logic related
to DMA inputs, ADFEmu transfers control of the emulation process to the DMA input channel controller
for handling.

In our implementation, we primarily modified the memory.c file in the QEMU source code, adding
hook-related logic to the memory access functions. During the QEMU emulation process, each memory
access triggers calls to the unassigned_mem_write or unassigned_mem_read functions. We added specific
conditional checks within these functions for accesses to DMA pointers and MMIO memory regions. When
these conditions are met, control is taken over by the hook and handed oft to other modules for processing.

3.2 DMA Input Channel Controller

To simulate DMA inputs, it is necessary to monitor and process read or write commands to the DMA
memory buffer and confirm whether the entire data transfer process is completed. ADFEmu draws on
concepts from DICE related to the definition of a virtual DMA controller, including DMA pointer, DMA
bufter, and DMA descriptor. In real hardware, a DMA transfer requires writing parameters such as the source
address, destination address, and transfer length into the DMA controller. Similarly, ADFEmu simulates
DMA transfers in three distinct steps: (1) identification and activation of DMA pointers, (2) data transfer
simulation, and (3) transfer completion detection.

According to the definition, ADFEmu identifies pointers that reference the DMA memory area and
classifies them as DMA pointers. Once identified, the virtual DMA controller in ADFEmu combines a source
address pointer and a destination address pointer into a DMA buffer structure. It writes the DMA buffer
configuration information into the DMA descriptor and then creates a new DMA input channel to simulate
the execution of the DMA transfer. DMA transfer is essentially a continuous memory read/write operation.
However, due to the absence of physical hardware support, ADFEmu cannot directly obtain all required
configuration parameters. Specifically, the starting address of the DMA buffer can be recognized through
symbolic memory access, but the buffer length and ending address are generally unknown. To address this
issue, we designed a heuristic DMA input channel algorithm that operates in a dynamic environment.

This algorithm dynamically creates or terminates DMA input channels based on the detection of DMA
pointers. At the same time, it proactively provides corresponding data input to the destination address in
memory to emulate hardware DMA behavior. The detailed process is shown in Algorithm 1.
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Algorithm 1: DMA input channel algorithm
Require: DMA Pointers
Ensure: Dynamic DMA Input Channel
1: NewChannel < CREATECHANNEL(DMA Pointers)
2: CurrentPtr < MEMORYSEEK(NewChannel)
3: while TRANSFERNOTEND(NewChannel) do

4: temp < GETDATAVALUE(NewChannel)

5: TRANSFER(CurrentPtr, temp)

6:  CurrentPtr < CurrentPtr + 4 > Move to next memory address
7: end while

8: CLosECHANNEL(NewChannel)
9: return NewChannel

The DMA input channel algorithm takes the identified DMA pointers as input. It then establishes a
DMA input channel based on the addresses of these DM A pointers. During the dynamic memory read/write
process, the status of the data transfer is continuously monitored. When the DMA stream transfer loop in
the firmware is detected to have ended, the DMA input channel is also closed accordingly.

In obtaining the specific values for the DMA input provided to the firmware, a process similar to the one
described earlier is used, where the fuzzing engine generates values for the firmware. However, because the
data content in the input stream often relates to a series of firmware program codes with specific semantic
information, relying solely on the fuzzing engine to provide all hardware-generated values for DM A requests
is not feasible. Therefore, ADFEmu enhances the existing method by incorporating a Concolic Execution
Solver. By using a path selection algorithm, the solver identifies the most promising program paths and adds
constraint solving to obtain valuable concrete inputs, which are then provided to the DMA input channel for
read and write operations.

After the data transfer is complete, the DMA controller in a real device issues an interrupt to the
CPU to notify the user. The controller then closes the previously configured DMA stream and waits for
subsequent transfer operations. In ADFEmu, the virtual DMA input channel controller, lacking hardware
support, cannot rely on interrupts to determine when the data transfer has ended. We have adopted two
methods to determine the appropriate timing to close the DMA input channel:

(1)  When a new DMA stream is detected and a new input channel is created, the previous one is
terminated, and

(2)  If the firmware starts writing to the memory buffer associated with the source address, this is treated
as the end of the current DMA transfer.

3.3 Concolic Execution Solver of DMA Input

Ideally, if relying on a fuzzing engine to randomly provide DM A inputs for the firmware code and having
unlimited time would ensure the success of the emulation. However, in actual testing, it has been observed
that the random inputs provided by the fuzzing engine often cause the firmware program to enter error-
handling logic or crash outright. Therefore, our method innovatively incorporates a Concolic Execution
Solver to explore more meaningful code segments.

The resulting higher code coverage increases the likelihood of traversing vulnerable code within the
firmware, thereby aiding in the identification of potential vulnerabilities.
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Each time the firmware program invokes a DMA input, the DMA input channel controller sets the
target address accessed by the program as a symbolic variable to be solved by the concolic execution engine.
Subsequently, after the symbolic variable is resolved by the solver, the result is returned for further processing.

Fig. 2 illustrates the objective of our path selection algorithm, which is to solve for inputs that guide
the program’s execution flow toward a selected path. This path must satisfy the branching conditions of the
program and avoid triggering the firmware’s error-handling logic.

Trace 1

Trace 2

Normal Input
DMA-related branch
Selected Path with Concolic Execution
Solver
Error Handler New Basic Block New Basic Block

Figure 2: The illustration of path selection algorithm

The path selection algorithm uses the dynamic symbolic execution engine to explore a certain range of
basic blocks ahead from the current code block. When it encounters branch conditions, all active states are
recorded and saved. To prevent potential state explosion during symbolic execution, the exploration range
is strictly limited to within five branch jumps. Upon reaching this range limit or encountering an abnormal
return, the algorithm selects a branch from all possible paths based on a certain priority and constrains the
associated symbolic variables for solving. For multiple possible path branches, the algorithm hands the path
selection to LLMs, which chooses the optimal path. It should be noted that our input data here is in assembly
language. The process of optimal path selection involves first providing all paths (basic code blocks) to the
LLM and asking it to analyze each basic block. When multiple path candidates exist, the algorithm consults
a Large Language Model (LLM) to assist in prioritization. The large language model used in this study is
GPT-4 [24]. The prompt words we designed are as follows:
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LLM Prompt

Below is an instruction that describes a task, paired with an input that provides further
context. Write a response that appropriately completes the request.

Instruction:

Please analyze the content of each program basic block below, generate different program
paths by combining each basic block without repetition, and then rank these paths according
to how much program information they can capture in the dynamic symbolic execution
process.

Input:
A list of basic blocks extracted from the current firmware execution trace.

Response:

A ranked list of synthesized program paths, ordered by their potential to reveal semantic

information during dynamic symbolic execution.
- J
After the LLM selects the most promising paths, the algorithm further filters and selects a branch from
the filtered paths according to a priority, and the symbolic variables are constrained for solving again. This
aligns with our goal of maximizing code coverage. The algorithm excludes paths that would lead to a dead-
end state. Additionally, by leveraging a pre-trained large model, the algorithm evaluates the potential value
of the paths, predicting which paths are more likely to uncover previously uncovered logic or potential
vulnerabilities. The algorithm selects the path with the highest address among the candidates, as a higher
address indicates deeper progression within the program. The full process is described in Algorithm 2.

Algorithm 2: Path selection algorithm

Require: Current Basic Block
Ensure: Selected Path
1: States < CURRENTSTATE(Current Basic Block)
2: StepDepth « 0
3: while StepDepth < 5 do
4: tempStates <~ STEPONCE(States)
5: if ISACTIVE(tempStates) then
6: UPDATESTATES(States, tempStates)
7: else if ISDEADEND(tempStates) then
8: DROPSTATE(tempStates)
9: end if
10:  StepDepth « StepDepth + 1
11: end while
12: if HAVENEWPATH(States) then
13: SelectedPath < GETNEWPATHSTATE(States)
14: else
15:  SelectedPath <« GETHIGHESTPATH(States)
16: end if
17: return SelectedPath

In our implementation, we utilized Angr [25] as the concolic execution engine. During runtime,
ADFEmu maintains a shared memory region between Angr and QEMU. When QEMU requires Angr to
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perform path selection and input solving, it synchronizes the current code block information and context
with Angr. Angr then creates symbolic variables and executes the path selection algorithm, solving for the
expected state. Once the results are obtained, they are returned to QEMU, allowing QEMU to continue the
DMA transfer process.

4 Evaluation

We evaluated ADFEmu from three perspectives: (1) whether it can maintain stable operation without
crashing for an extended period while running various firmware on different MCUs; (2) whether it can cover
more execution paths during firmware re-hosting; and (3) whether it can discover more unknown bugs in
the firmware.

To evaluate the first aspect, we collected ten open source real-world firmware samples from GitHub,
each running on four different types of MCUs. We used ADFEmu to run these firmware samples for an
extended period to assess the stability of re-hosting.

For the second and third aspects, we conducted a comparative evaluation with DICE. To ensure
consistency in the environment, we strictly followed the environment setup instructions provided in DICE’s
GitHub repository and performed the comparison on the same server.

All our experiments were conducted on an Intel(R) Xeon(R) Silver 4210R CPU @ 2.40 GHz with 8 GB
of RAM, running on a 64-bit Ubuntu 18.04 LTS system.

4.1 Re-Hosting Stability of ADFEmu

Table 2 lists the information on the open source firmware used in our experiments. To ensure successful
execution of these firmware samples, we integrated the AFL Fork Server-related code logic into the firmware
source code. We conducted experiments on these open source firmware samples by running each experiment
continuously for 24 h, repeating the experiment three times for each firmware.

Table 2: Firmware information used for evaluation

Firmware Year MCU 0OS

Modbus [26] 2019 STM32F303 FreeRTOS
Guitar Pedal [27] 2015 STM32F303 Mbed OS
Soldering Station [28] 2020 STM32F103 Baremetel
Stepper Motor [29] 2016 STM32F466 Baremetel
GPS Receiver [30] 2024 STMB32F103 Baremetel
MIDI Synthesizer [31] 2014 STM32F429 Baremetel
Oscilloscope [32] 2018 STM32F103  Arduino
DDS-WaveGen [33] 2022 STM32F103 Baremetel
GPS-Logger [34] 2020 STM32F429 Baremetel
PatternDriver [35] 2021 STMB32F103 Baremetel

If the target firmware can maintain normal operation without crashing during the experiment and
produces correct output at the end of the experiment, we consider ADFEmu to be capable of successfully
emulating the target firmware.

Our experimental results show that DICE successfully emulated nine out of the ten open source
firmware samples.



5988 Comput Mater Contin. 2025;84(3)

The only exception was DDS-WaveGen, which encountered a timeout issue with all input cases during
the experiment and thus failed to emulate successfully. The overall emulation success rate for DICE was
90%. In contrast, ADFEmu achieved a 100% success rate in emulating all ten open source firmware samples
without requiring any manual adaptation.

4.2 Code Coverage and Crash Detection of ADFEmu

In our experiment, the coverage data and crash trigger counts for the firmware were obtained from
the result reports generated by AFL [36] at the end of the fuzzing test. To minimize random factors, each
experiment was run continuously for 24 h and repeated three times for each firmware sample. To ensure
consistency in the initial conditions of the fuzz testing, we provided the same initial seed, with a length of
1024 bytes, for all firmware samples.

Table 3 presents our experimental results. The results indicate that compared to DICE, ADFEmu
achieves a higher basic block coverage in most firmware. For example, in the case of Modbus, ADFEmu
has a coverage of 59.1%, whereas DICE only achieves 56.8%, representing an improvement of 4.05%. Similar
improvements are evident in the Soldering Station (+14.24%) and GPS Receiver (+13.47%). DDS-WaveGen
could not run successfully because all input use cases timed out, so the results could not be compared. This
demonstrates that ADFEmu is more effective than DICE in enhancing firmware code coverage.

Table 3: Fuzzing test evaluation results

Firmware BBL Cov. [%] Total paths Max depth Crash counts
ADFEmu DICE Improve ADFEmu DICE Improve ADFEmu DICE ADFEmu DICE
Modbus 59.1 56.8 +4.05% 745 756  -1.45% 1 8 33 30
Guitar pedal 17.5 16.0  +9.37% 2803 2773 +1.08% 3 5 1 0
Soldering Station 33.7 295 +14.24% 181 166  +9.03% 9 3 1 2
Stepper motor 21.6 224 -3.57% 4070 3844 +5.88% 5 3 0 0
GPS receiver 16.0 141  +13.47% 1918 1788  +7.27% 6 6 1 1
MIDI Synthesizer ~ 43.0 40.7  +5.65% 866 836  +3.59% 9 7 1 1
Oscilloscope 28.6 273 +4.76% 256 249 +2.81% 4 4 0 0
DDS-WaveGen 21.3 - - 248 - - 7 - 1 -
GPS-Logger 11.2 1.3 -0.88% 915 894  +2.34% 8 7 0 0
PatternDriver 59 58 +1.72% 736 790  -6.83% 5 7 1 1
Total - - - 12738 12096 +5.31% 67 50 39 35

ADFEmu shows an increase in the total number of paths in most firmware, such as Soldering Station
and Stepper Motor, with improvements of 9.03% and 5.88%, respectively. This indicates that ADFEmu can
explore more execution paths, which aligns with the design expectations of our method.

Based on the path exploration count vs. time graph in Fig. 3, it can be observed that in the early stages
of the fuzzing experiment, ADFEmu, with its path selection algorithm, prioritizes exploring new paths that
have not been explored before, and high-weight paths. This results in a significantly faster path exploration
rate in the early phase of the experiment compared to DICE.
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Figure 3: Time dependent graph of the number of exploration paths for different firmware

After a period of exploration, the DMA inputs provided by DICE can no longer explore more potential
paths, and in the latter half of the fuzzing experiment, the number of newly explored program paths by DICE
approaches zero. This is also correlated with the basic block coverage metric. In contrast, ADFEmu continues
to discover new program paths even in the later stages of the experiment, approaching its conclusion. This
demonstrates that the path selection algorithm designed in this paper effectively identifies and chooses to
explore new potential program paths, and further shows that ADFEmu is more effective than DICE in
improving firmware code coverage.

However, in the case of Pattern Driver, the number of paths decreased by 6.83%. This may be due to
the prioritization of ADFEmu’s path selection algorithm, which chose different paths than DICE on this
firmware, ultimately leading to a focus on depth exploration at the expense of breadth exploration.

ADFEmu achieves greater max depth on most firmware, with particularly significant improvements
on the Modbus and Soldering Station firmware. The metric of max depth often reflects the effectiveness
of the input we provide to the firmware. This is because the responsible logic often requires satisfying a
series of branching conditions to be reached. If the testing remains at the surface logic and cannot pass the
relevant condition checks, it will not be able to reach the deeper code logic hidden within, thereby missing
the potential bugs.

Overall, ADFEmu achieves higher code coverage on most firmware, demonstrating stronger code
exploration capabilities. ADFEmu generally explores more paths and reaches greater depths, surpassing
DICE in both the total number of paths explored and the total depth reached across all firmware. Specifically,
the total number of paths increased by 5.31%. On certain firmware, ADFEmu also discovers more crashes,
with 4 more crashes found compared to DICE, indicating that ADFEmu is more effective in identifying
potential vulnerabilities.
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5 Discussion

The current evaluation of ADFEmu focuses on monolithic firmware running on bare-metal or
lightweight embedded systems such as FreeRTOS. While ADFEmu demonstrates strong performance
in these settings, extending its capabilities to support Linux-based firmware introduces new challenges.
Linux-based firmware features more complex interactions among the kernel, user-space applications, and
device drivers. These interactions introduce greater structural complexity and execution dynamics, making
accurate emulation more difficult. Furthermore, Linux systems employ advanced memory management
schemes-such as virtual memory and protection mechanisms-which ADFEmu must support to maintain
fidelity. Emulating specific kernel components and device drivers also requires modeling diverse subsystem
behaviors, increasing development complexity.

To address these challenges, we propose an incremental extension strategy: starting with lightweight
Linux-based firmware and progressively enhancing ADFEmu’s capabilities to support more complex sys-
tems. This approach allows gradual adaptation while maintaining system robustness. Additionally, we
plan to integrate existing kernel and driver emulation tools to accelerate support for Linux features. Such
collaboration will enable ADFEmu to benefit from mature implementations and broaden its applicability.

Large Language Models (LLMs) play a crucial role in ADFEmu, particularly in guiding path selection
and generating DMA inputs. As LLM technology continues to evolve, the performance and efficiency of
ADFEmu are expected to improve. For instance, more advanced LLMs may offer a deeper understanding
of program semantics, enabling more accurate path selection and input generation. Additionally, leveraging
domain-specific LLMs may further enhance ADFEmu’s effectiveness in specialized application scenarios.
It is worth noting that the LLM is used as a heuristic guide (one part of a scoring strategy). Even if LLM
ranks a path poorly, bad path suggestions may slow down progress slightly but do not block exploration. The
symbolic executor can eventually cover all paths due to fallback mechanisms.

In the future, we will continue our research along the following three directions:

(1)  Supporting virtual memory and protection features for Linux-based memory management;

(2)  Simulation of core kernel functionalities, such as process scheduling and I/O subsystems;

(3)  Exploring more powerful Large Language Models (LLMs) to further enhance ADFEmu performance
in path selection and input generation.

By extending ADFEmu along these directions, we aim to build a more general-purpose framework capa-
ble of supporting both lightweight and full-featured embedded firmware, including Linux-based systems.

6 Conclusion

We introduce ADFEmu, a firmware re-hosting framework that integrates dynamic symbolic execution,
LLM-assisted path selection, and DMA input emulation for enhanced firmware fuzzing. Our experimen-
tal results demonstrate superior code coverage, execution path exploration, and vulnerability detection
compared to existing methods. Future work includes extending ADFEmu to handle complex embedded
peripherals and enhancing LLM path selection strategies for broader firmware architectures.
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