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ABSTRACT: Multimodal deep learning has emerged as a key paradigm in contemporary medical diagnostics,
advancing precision medicine by enabling integration and learning from diverse data sources. The exponential
growth of high-dimensional healthcare data, encompassing genomic, transcriptomic, and other omics profiles, as
well as radiological imaging and histopathological slides, makes this approach increasingly important because, when
examined separately, these data sources only offer a fragmented picture of intricate disease processes. Multimodal
deep learning leverages the complementary properties of multiple data modalities to enable more accurate prognostic
modeling, more robust disease characterization, and improved treatment decision-making. This review provides a
comprehensive overview of the current state of multimodal deep learning approaches in medical diagnosis. We classify
and examine important application domains, such as (1) radiology, where automated report generation and lesion
detection are facilitated by image-text integration; (2) histopathology, where fusion models improve tumor classification
and grading; and (3) multi-omics, where molecular subtypes and latent biomarkers are revealed through cross-modal
learning. We provide an overview of representative research, methodological advancements, and clinical consequences
for each domain. Additionally, we critically analyzed the fundamental issues preventing wider adoption, including
computational complexity (particularly in training scalable, multi-branch networks), data heterogeneity (resulting
from modality-specific noise, resolution variations, and inconsistent annotations), and the challenge of maintaining
significant cross-modal correlations during fusion. These problems impede interpretability, which is crucial for clinical
trust and use, in addition to performance and generalizability. Lastly, we outline important areas for future research,
including the development of standardized protocols for harmonizing data, the creation of lightweight and interpretable
fusion architectures, the integration of real-time clinical decision support systems, and the promotion of cooperation
for federated multimodal learning. Our goal is to provide researchers and clinicians with a concise overview of the field’s
present state, enduring constraints, and exciting directions for further research through this review.

KEYWORDS: Multimodal deep learning; medical diagnostics; multimodal healthcare fusion; healthcare data
integration

1 Introduction
The integration of deep learning and big data has significantly transformed numerous fields, including

healthcare. Recent advances in machine learning, particularly deep neural networks, have enabled the
extraction of high-level features from complex datasets, such as images, text, and omics data. Healthcare
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domains, especially medical diagnostics, have benefited from these advances in areas such as computer-aided
diagnosis, biomarker discovery, and personalized treatment planning.

Unimodal systems, which rely on a single type of data (e.g., clinical text or medical imaging), often
exhibit limited effectiveness and restricted applicability. They cannot fully understand the complexity of
a patient’s condition and may overlook important indicators that are apparent in other modalities. For
example, a chest X-ray may show anomalies, but the interpretation could be inaccurate or misleading
if it is not accompanied by contextual information, such as test findings, patient history, or symptoms.
Furthermore, unimodal models are typically less reliable and more vulnerable to errors or missing data
in their modality. These drawbacks highlight the necessity of models that combine data from multiple
sources [1]. Multimodal deep learning, on the other hand, provides a revolutionary method by combining
various disparate data sources into a unified analytical framework, which results in a more thorough and
sophisticated comprehension of a patient’s health. This methodology improves biomarker identification,
personalized treatment planning, and diagnostic accuracy by capturing complementary information from
many modalities. A multifaceted view that goes beyond the potential of individual modalities is made
possible by the integration of data from clinical notes, medical imaging, genetic profiles, and sensor outputs.
Multimodal learning has shown notable advancements in disease detection, prognosis, and patient outcome
prediction, especially when applied to complex and multivariate situations like cardiovascular diseases and
cancer. This integrative approach advances clinical decision-making and precision medicine by helping
researchers and clinicians identify links and patterns that might otherwise go unnoticed [2].

Despite this potential, significant clinical obstacles highlight the need to adopt such integrative tech-
nologies. No statistics have adequately captured the complexity of human health. Genetic, environmental,
and behavioral factors all play a role in diseases, including cancer, diabetes, and neurodegenerative disorders.
In addition, the amount of medical data is predicted to double every 73 days, placing clinicians at risk of
cognitive overload in the absence of suitable analytical assistance. Additionally, the need for customized
care that accounts for each patient’s particular biological characteristics and lifestyle choices is increasing,
forcing healthcare organizations to abandon the use of one-size-fits-all approaches. By making scalable,
context-aware, and patient-specific modeling possible, multimodal deep learning can address these issues.

We use a structured methodology that includes a systematic literature review of peer-reviewed articles
published between 2022 and 2025, focusing on works that use state-of-the-art architecture like graph neural
networks and attention-based models for data fusion. In this review, we critically assessed algorithmic
innovations and their clinical impact, focusing on studies that demonstrate clear performance improvements
across multiple medical conditions.

The scope of this review is to provide a thorough and critical analysis of recent advancements in
multimodal deep learning for medical diagnostics, as well as its methodological evolution, real-world clinical
applications, and related challenges.

Deep learning methods like CNNs (convolutional neural networks) [3] and RNNs (recurrent neural
networks) [4] Can efficiently combine clinical text, physiological signals, genomic information, and medical
images. This enables the identification of latent associations that aid in diagnosing and treating individualized
diseases. Modern advances in deep learning, such as graph neural networks [5] and attention processes [6],
have created new opportunities for combining and analyzing multimodal medical data. These innovative
techniques have shown promise in better capturing contextual data and complex relationships to improve
healthcare and enable more personalized and efficient care. Multimodal healthcare, which is becoming a
major influence in the medical field, aims to use information technology to transform clinical procedures.
It has drawn a lot of interest from academics and professionals as a possible approach to tackling important
disease diagnosis issues in areas with unequal access to medical resources. The emergence of multimodal
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healthcare addresses pressing medical challenges. First, human health is too complex to be reduced to a single
test or metric. No single diagnostic method can adequately account for the complex network of genetic,
environmental, and behavioral factors that contribute to cancer [7], Diabetes [8], and neurodegenerative
disorders [9]. Second, there are opportunities and challenges associated with the explosion of healthcare
data, which is predicted to double every few years. Clinicians are at risk of becoming overwhelmed by a sea
of disparate facts if no mechanisms are in place to synthesize these data. Furthermore, in a time when people
vary greatly in terms of genetic composition, lifestyle, and reactions to treatment, patients now demand more
proactive and individualized care. Multimodal healthcare satisfies this need by customizing interventions to
each patient’s specific profile, improving results while reducing trial and error.

Several recent reviews have discussed various facets of multimodal medical AI (Artificial Intelligence).
However, their coverage is frequently limited or devoid of critical analysis. For example, Muhammad
et al. [10] introduced several topics related to multimodal signal fusion for intelligent medical devices. The
survey article was mainly focused on IoMT. It included several important topics about IoMT (Internet of
Medical Things) applications and smart healthcare difficulties. The review highlights four main limitations:
its narrow focus may exclude some fusion techniques in smart healthcare, selection bias in study criteria
may distort results, findings may become outdated due to rapid technological advancements, and sensor
data variability could impact the validity of synthesized insights. Amal et al. [11] presented the applications
and scope of machine learning and multimodal data concerning cardiovascular healthcare. The challenges of
multimodal data fusion were also briefly covered by the writers. The study identified four main limitations:
(1) a stated lack of conflicts of interest, although there may still be concerns about the independence of the
results, (2) limited generalizability because of the study’s narrow demographic focus, (3) potential biases from
the use of genetic and electronic health data, and (4) difficulties reproducing the intricate machine learning
framework, which prevents practical application. In the opinion of Stahlschmidt et al. [12] Biomedical
data is becoming more and more multimodal, offering a useful source of hidden information that is
inaccessible using single-modality methodologies. The complex link between the modalities can be captured
by deep learning approaches, which can combine multimodal data. Transfer learning is a good approach
for multimodal medical big data, according to the authors. Although it provides a comprehensive review of
multimodal deep learning techniques for biological data fusion, the research has some significant drawbacks.
It is limited in its applicability to performance evaluation because it excludes quantitative comparisons
between approaches and rigorous benchmarking. There is little technical depth and no emphasis on
algorithmic implementation or reproducibility, as well as little help in choosing suitable fusion algorithms
for biomedical applications. There is only a cursory recognition of real-world deployment issues, including
infrastructure, privacy, and missing data. Moreover, the evaluation might already be out of date because
of how quickly the subject is evolving, particularly with the introduction of more recent architectures like
transformers. Pei et al. [13] discussed the main features of medical multimodal fusion techniques, including
supported medical data, diseases, target samples, and implementation performance, and examined the
effectiveness of current multimodal fusion pre-training algorithms. Furthermore, this paper outlines the
primary obstacles and objectives of the most recent developments in multimodal medical convergence. It has
various significant drawbacks. In contrast to providing in-depth technical insights or critical assessments of
the approaches offered, it emphasizes publication trends. The lack of a defined research selection technique
in the report compromises reproducibility and transparency. In addition, it offers little clinical or practical
viewpoints and scant attention to how models function in actual environments. Evaluation metrics are also
barely mentioned, and the section on future initiatives is vague and short. Lastly, the review feels old in
some ways because it ignores some of the most recent developments in multimodal learning. Recently,
Shaik et al. [14] concentrated on algorithmic techniques for managing multimodal data, including rule-based
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systems, feature selection, natural language processing, and data fusion using machine learning and deep
learning techniques. Additionally, several smart healthcare concerns were discussed. After that, they suggest
a general framework for combining multimodal medical data that is consistent with the DIKW (data to
information to knowledge to wisdom) paradigm. This study overemphasizes the DIKW framework, offers
little technical depth, and lacks a defined review approach. It lacks a comparative study of approaches, under-
represents newer developments, such as transformer models, and offers little information about clinical
integration. The future directions are imprecise and high-level, limiting the paper’s practical value.

This review makes three main contributions. First, we provide a taxonomy of multimodal learning
strategies based on recent architectural developments that are specific to the medical field. Second, we
evaluate the application of these techniques in real-world clinical settings, ranging from genetics to radiology,
emphasizing examples where they have produced quantifiable gains in diagnostic performance. Third, we
point out remaining challenges and suggest future lines of studies, most with a focus on interpretability,
standardization, and ethical issues, to steer the creation of reliable, implementable solutions. We hope to
accomplish this by providing a unique and practical viewpoint that transcends traditional literature reviews,
thereby bridging the gap between clinical utility and machine learning innovation.

The rest of this review is organized to make it easier to navigate. Section 2 provides basic information
and fundamental ideas, including important architectural frameworks and unimodal and multimodal
techniques in medical diagnostics. Section 3 explains the different kinds of medical data used in multimodal
learning. Section 4 examines the latest deep-learning methods used in medical diagnosis. Section 5 discusses
the methods used to integrate multimodal data. Section 6 demonstrates how these techniques are used in
actual healthcare settings. Section 7 discusses the main issues facing multimodal deep learning is facing,
and Section 8 proposes possible fixes. Lastly, Section 9 describes upcoming research avenues and new
developments in this rapidly changing field.

2 Background and Foundations

2.1 Unimodal in Medical Diagnostics
Unimodal medical diagnostics refers to the usage of a single diagnostic or imaging technique for the

evaluation and diagnosis of medical disorders. This method has been a mainstay of healthcare for many
years, and various approaches offer insightful information about patient health. Many unimodal diagnostic
techniques are frequently employed in clinical settings, including computed tomography (CT), magnetic
resonance imaging (MRI), ultrasound, and X-rays [15]. Physicians can see inside structures and spot
problems using these imaging methods without undergoing invasive treatments. These unimodal diagnostic
methods’ capabilities have been greatly increased in recent years using artificial intelligence (AI) and machine
learning [16]. For example, deep neural networks (DNNs) have demonstrated state-of-the-art performance
in image classification tasks, offering doctors diagnostic assistance when examining medical images [17].

2.1.1 Performance and Applications
In medical diagnostics, unimodal models are frequently employed, especially for imaging-based tasks

like pulmonary abnormality prediction, breast mass categorisation, and knee osteoarthritis detection. For
instance, knee osteoarthritis has been diagnosed using only imaging data using deep learning models
such as InceptionV3 and EfficientNetv2, which have demonstrated remarkable accuracy (up to 0.75 for
3-class severity classification) and, in certain situations, outperform more intricate multimodal models when
only imaging features are considered [18]. In a similar vein, unimodal machine learning systems that use
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ultrasonic features have demonstrated performance in breast mass categorisation that is on par with human
experts (AUC 0.82–0.84) [19].

Unimodal diagnostic models, which rely on a single data source, offer certain methodological and
practical advantages, such as simplicity, lower computational cost, and easier implementation. The main
advantages of these systems are their ease of use and computational effectiveness. Because these models
do not require the synchronization or integration of numerous data sources, they are typically simpler
to build and implement than multimodal systems [19]. Unimodal techniques are therefore frequently less
computationally demanding, making them appropriate for environments with constrained computational
resources. Their great performance at baseline is another asset. Unimodal models can compete with or even
surpass multimodal systems in situations where the selected modality is informative, such as high-resolution
imaging in radiology or unique molecular fingerprints in genomics [20]. This is particularly true for well-
characterized disorders where most of the diagnostic information required is extracted by a single data type.
Additionally, unimodal diagnostics are more appealing due to their practicality and clinical relevance. Most
clinical workflows in use today are built on single-modality data, including histopathology slides, blood tests,
or radiography pictures [21]. Therefore, unimodal models can be easily incorporated into current diagnostic
workflows without requiring significant infrastructure modifications.

Although unimodal diagnostics offer many benefits, they also have certain drawbacks [22,23]. Their
limited scope of knowledge is a major concern. These models might overlook supplementary information
that could improve diagnostic accuracy if they only used one data modality, particularly in complicated
or heterogeneous circumstances. For instance, a more thorough understanding of disease pathophysiology
can be obtained by integrating imaging data with genetic or clinical information. However, limited gener-
alizability presents another difficulty. When the modality is absent or distorted, unimodal models may not
work as intended or are frequently sensitive to data quality changes. This dependence on a single source may
reduce robustness, particularly in clinical settings where data are noisy or lacking. Finally, accuracy and false-
positive rates are important issues. Compared to multimodal systems, which are better able to cross-validate
signals across data types, unimodal biomarker-based diagnostics have been linked to increased false-positive
rates and decreased precision in fields such as oncology. This restriction may cause patients to feel anxious
and require needless procedures.

However, unimodal diagnostics have certain drawbacks. A more thorough diagnostic approach is
frequently necessary because of the complexity of many medical diseases. As a result, multimodality
imaging approaches have been developed, combining data from many imaging modalities to provide a more
comprehensive view of a patient’s state [24]. Although multimodal approaches are becoming increasingly
popular, continuous research is still improving unimodal diagnostic methods. For instance, single-modality
diagnostic tools are becoming more sensitive and specific due to developments in quantum biosensors [25].

2.2 Multimodal in Medical Diagnostics
Multimodal medical diagnostics is a new field that integrates data from several data sources and

imaging modalities to provide a more thorough understanding of patient situations and increase diagnosis
accuracy. This method offers a synergistic effect in clinical diagnosis and medical research by utilizing
the complementary nature of several imaging modalities and data kinds [26]. Combining many modal-
ities, including pathological slides, radiological scans, and genomic data, enables a more comprehensive
understanding of the patient’s situation. Recent developments in artificial intelligence, including deep
learning-based methods for multimodal fusion, have greatly improved multimodal medical diagnostics [27].
Research has demonstrated, for example, that AI models such as GPT-4V can attain greater diagnostic
accuracy when given multimodal inputs as opposed to single-modality inputs [28]. Curiously, multimodal
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medical diagnostics encompasses more than just conventional imaging modalities. New technologies like
upconversion nanoparticles (UCNPs) are being investigated for their potential use in targeted therapies
and multimodal cancer imaging [26]. Furthermore, chances to further advance precision oncology beyond
genomics and conventional molecular approaches are presented by the combination of improved molecular
diagnostics, radiographic and histological imaging, and coded clinical data [29]. Because of their increased
precision and dependability, multimodal medical diagnostics can be considered a potential new area in
healthcare. Still, there are obstacles to overcome, such as the requirement for strong image fusion algorithms,
the management of partial multimodal data, and the resolution of privacy and ethical issues [30].

2.3 Multimodal Architecture
Multimodal architecture typically follows a structured pipeline, starting with feature extraction from

several data modalities, including text, audio, pictures, and sensor inputs. This includes unstructured text
(such as clinical notes and chief complaints), structured clinical information (such as laboratory findings
and patient demographics), and imaging data (such as MRI, CT, PET (positron emission tomography),
and ultrasound) in medical applications [31]. Word embedding models use textual analysis; however,
convolutional neural networks (CNNs) are frequently used for visual and audio data [32]. For instance,
combining genetic, pathological, radiological, and clinical data in the diagnosis of cancer offers a thorough
description of disease phenotypes [33].

Following initial data extraction, each modality is subjected to specific preprocessing: structured and
unstructured textual data are tokenized or converted into embeddings, whereas imaging data are usually
normalized and segmented. The use of embedding layers in advanced deep learning architectures allows for
the cooperative processing of visual and textual tokens in later stages by transforming inputs, including text
and images, into a single representation space.

Data fusion is a crucial stage in multimodal pipelines that combine diverse information sources to
create richer representations. There are three different levels of fusion: data-level fusion, which combines
low-level features or raw data early on; feature level fusion, which incorporates modality-specific features
into neural network architectures, frequently using transformer or convolutional layers; and decision-level
fusion, which combines outputs from independently trained models, usually using ensemble techniques or
voting strategies. Research has demonstrated that feature-level fusion often outperforms late fusion methods,
especially in deep-learning models. Furthermore, other frameworks use methods like deep unfolding
operators, which incorporate sparse priors and structured learning principles into the network design to
include domain knowledge [34]. Feature extraction, fusion, and classification are becoming less distinct in
modern multimodal systems, leading to unified designs that capture inter- and intra-modal interactions.
Transformer-based models and convolutional neural networks (CNNs) are both commonly used; the latter
is particularly good at joint multimodal representation learning using attention mechanisms. Complex
anatomical structures and specialized designs, such as Multi ResU Net, have shown improved biomedical
image segmentation performance. Furthermore, by including medical expertise at different stages of the
model, knowledge-augmented networks can significantly increase diagnostic accuracy [35]. These models
must be trained on extensive datasets with annotations and inputs that are synchronized across modalities.
Standard criteria, including accuracy, sensitivity, and the area under the receiver operating characteristic
curve (AUC), were used to assess performance, and multimodal models routinely outperformed baseline
models with only one modality. The recent change toward unified multitask architectures that can manage
issues like noisy data, missing modalities, and privacy concerns recent trend. Methods like hybrid secure
models and deep hashing are being investigated to improve multimodal systems’ security, generalisability,
and resilience [36,37].
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To ensure stable cross-modal associations, recent research emphasizes cross-modality techniques that
align and synthesize data across modalities. Cross-modality learning, such as Cross-Modality Optimal Trans-
port (CMOT), aligns disparate modalities into a shared latent space, enabling more reliable classification and
missing modality inference in complex settings like cancer and cell-type identification [38]. Synthesis meth-
ods address data incompleteness by generating missing modalities from available ones [39]. Frameworks like
MultiFuseNet, which integrate multiple screening test modalities, have proven effective in cervical dysplasia
diagnosis [40], while MADDi employs cross-modal attention mechanisms for high-accuracy differentiation
in Alzheimer’s disease stages [41]. Stability is further reinforced through methods like quaternion-based
spatial learning and deep co-training, which improve segmentation performance across poorly annotated
modalities [42,43]. Additionally, empirical approaches such as multimodally-additive function projection
(EMAP) are used to determine whether improvements stem from true cross-modal interactions or dominant
unimodal contributions [44], reinforcing the importance of evaluating and sustaining robust cross-modal
coherence across all stages of multimodal processing. Table 1 presents a comparative analysis of unimodal
and multimodal architectures, highlighting their respective strengths, limitations.

Table 1: Comparative analysis of unimodal and multimodal architectures

Steps Unimodal architecture Multimodal architecture
Method: Employs a single form of data

(e.g., clinical text, MRI, or CT)
Method: Integrates imaging, clinical,

genomics, etc.
Data extraction Strengths: Lower cost and easier data

handling
Strength: Compiles more thorough
context from multiple data sources

Limitation: Ignores sources of
complementary data

Limitation: Heterogeneous datasets and
preprocessing

Preprocessing
Strength: Simplified pipeline Strength: Facilitates the harmonisation of

data
Limitation: Only compatible with one

modality
Limitation: It is difficult to synchronize

various modalities

Feature extraction
Strength: Well-known techniques (CNNs,

RNNs)
Strength: Acquires complementary skills

No cross-modal interaction is a limitation Limitation: The complexity of the model
has increased

Model architecture

Strength: Deployment is simple Strength: Able to capture a variety of
patterns

Limitation: Inadequate clinical
information

Limitation: More difficult to understand

Fusion strategy N/A—no fusion needed Strength: Facilitates cross-data synergy
Limitation: Needs the best fusing

technique

Training
Strength: Less data is required Strength: Acquires knowledge of more

complex patterns
Limitation: Limited capacity to generalise Limitation: Excessive resource

requirements

(Continued)
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Table 1 (continued)

Steps Unimodal architecture Multimodal architecture

Evaluation Strength: Metrics that are easy to
understand

Strength: Comprehensive assessment

Limitation: Multimodal context is missed Limitation: Complexity of attribution

3 Overview of Medical Data Types
Multimodal deep learning extends these advantages by integrating data from multiple sources, including

EHRs, radiological imaging, histological/pathological imaging, and omics data, as illustrated in Fig. 1. These
modalities include raw, unstructured data that are unique to their formats. The data is processed using feature
extraction techniques applied to medical imaging, wearable device data, and structured EHRs to generate
valuable clinical insights. In the context of medical diagnostics, several major data modalities contribute to
this process.

Figure 1: Medical data types

3.1 Radiological Imaging
Medical 3D volumetric images are usually created from a stack of 2D slices with a specified thickness,

representing a specific region of interest within the body. These individual slices can be processed and
analyzed separately (as 2D images) or collectively (as 3D volumes) to extract vital information. Most medical
imaging data are stored as 2D image slices in the Digital Imaging and Communications in Medicine
(DICOM) format after acquisition [45]. This includes patient metadata, imaging procedure information,
devices used for image acquisition, and imaging protocol settings. Radiological imaging could include MRI,
CT, X-ray, or ultrasound.

X-rays are 2D grayscale radiograph pictures by nature. Five levels of attenuation can be distinguished
using conventional radiography: air, fat, soft tissue, bone, and metal. The air looks dark on radiographs
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because most X-rays may flow through it because of its density, while much denser metal appears dazzling
white because it absorbs most of the energy from the X-ray beam. The idea behind X-ray imaging is that
different types of bodily tissues attenuate X-rays differently [46]. Different colors of gray are displayed for
fat, soft tissue, and bone; fat is darker than soft tissue, and bone is lighter. However, X-rays are often used as a
screening technique because they do not provide sufficient spatial depth information for definitive diagnosis.
X-rays have been used in numerous recent studies for cardiology prediction tasks, including auxiliary
conduction circuit analysis, pulmonary edema assessment [47], and cardiomegaly identification [48].

CT stands for Computed Tomography. CT scans are a common option for medical diagnostics because
they provide high-resolution imaging, accessibility, affordability, and speed. The ability of ionizing radiation
to differentiate soft tissues and expose patients to ionizing radiation [49]. The human body’s detailed cross-
sectional images can be obtained from Computed Tomography (CT) scans [50]. These scans use radiographic
projections obtained from various angles to reassemble several successive 2D slices, creating 3D picture
volumes. CT is a flexible imaging method that is mostly used to find structural anomalies, to find tumors, to
diagnose cardiac issues, and to image the brain for different neurological disorders. It is frequently used in
cancer diagnosis [51], therapy planning [52], respiratory therapy [53], and cardiovascular research [54].

MRI facilitates tissue-specific reconstruction by measuring magnetization in both the longitudinal and
transverse directions [55]. Without ionizing radiation, this method produces fine-grained images of internal
structures, soft tissues, and organs. Numerous brain illnesses, such as Parkinson’s disease [56], multiple
sclerosis [57], and Alzheimer’s disease [58], can be studied using this method.

Doppler techniques, which provide useful color overlays on grayscale images, are frequently used to
observe blood flow and evaluate velocity [59]. Ultrasound is a preferred option for obstetrics and gynecology
because of its noninvasiveness and absence of ionizing radiation [60]. And check numerous organs (liver,
kidneys, etc.) [61] for possible problems. In addition, ultrasonography is crucial for monitoring the course
of diseases and directing exacting surgical operations [62].

3.2 Histological/Pathological Imaging
Tissue slides were captured with digital pathology scanners. Histological and pathological imaging

involves the examination of tissue samples under a microscope. These tissue slides are now digitally
transformed into high-resolution images because of the development of digital pathology scanners, which
provide sophisticated analysis, sharing, and storage.

3.3 Omics Data: Transcriptomics, Genomics, Proteomics, and Metabolomics
Omics technologies are a collection of high-throughput techniques used to investigate biological

molecules at the system level. Proteomics analyses protein profiles, metabolomics maps small-molecule com-
pounds, transcriptomics analyses RNA expression, and genomics decodes DNA sequences [63]. Therapeutic
medications and possible risk protein biomarkers for the prevention and treatment of cancer. The proposed
study [64] combined extensive genome, transcriptomics, proteomics, and metabolomics data. Thirty-six
possible druggable proteins for cancer prevention were identified in subsequent investigations. Furthermore,
a review of more than 3.5 million electronic health records revealed medications associated with either a
higher or lower risk of cancer, providing new information for treatment approaches.

3.4 Electronic Health Records (EHRs)
EHRs are digital repositories that contain patient health data, such as imaging reports, lab findings,

clinical notes, and demographic metadata. EHRs have emerged as a key component of contemporary
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healthcare, facilitating research, population health management, and data-driven decision-making. EHRs
contain a multitude of information, both structured (such as vital signs and diagnoses) and unstructured
(such as free-text notes) [65].

By aligning these heterogeneous data types, multimodal deep learning models aim to improve diag-
nostic accuracy and uncover complex disease mechanisms. Techniques vary widely, from early fusion (e.g.,
concatenating feature vectors) to late fusion (e.g., combining model output).

These various data types require efficient integration techniques that are becoming increasingly
prevalent in contemporary multimodal datasets. Representative examples are presented in Table 2.

Table 2: Multimodal datasets

Dataset Year Size Data type Key features Unique medical data
constraints

Limitations

RadFusion
[66]

2021 1794 patients CT + EHR Benchmark fairness
and performance in

PE detection

Demographic variability
may impact

generalizability, and EHR
incompleteness may affect

data alignment

Limited sample size,
single-disease scope

(pulmonary embolism),
potential demographic

bias
EHRXQA

[67]
2023 457,400+ QA

pairs
Chest X-rays +

EHR
QA-focused dataset

for multimodal
reasoning

Data sparsity for rare
conditions and

domain-specific
terminology complicates

QA generation

Restricted to ICU
patients (MIMIC-IV);
lacks detailed visual

annotations

INSPECT
[68]

2023 19,438 patients CT + EHR Supports diagnostic
and prognostic tasks

for PE

Limited heterogeneity,
variability in clinical

notes, may affect
reproducibility

Disease-specific
(pulmonary embolism);

EHR variations
introduce

documentation biases
BiomedCLIP

[69]
2023 15 million Histological,

pathological
imaging

Pretrained biomedical
vision-language

model

Lack of standardization,
limited clinical validation,
and reduced translational

utility

Extracted from
academic publications;

lacks clinically validated
annotations

MMIST-
ccRCC [70]

2024 618 patients CT +MRI +
Histology +
Genomics +
Clinical Data

Rich multimodal
integration for one

cancer subtype

Data imbalance across
modalities, tumor

heterogeneity challenges
interpretation

High MRI missing rate
(~90%); focused solely

on ccRCC

TCGA-
MultiModal [71]

2024 11,000 patients Histopathology,
Genomics, EHR

Covers 33 cancer
types, cross-modal

insights in oncology

Data silos between
modalities, inconsistent

metadata across
institutions

Lacks radiology data;
incomplete genomic

coverage

MedTrinity-
25M [72]

2024 25 million images CT, MRI, X-ray,
Ultrasound,

Dermoscopy, and
more (10

modalities)

Largest scale with 65
disease categories and

multigranular
annotations

Integration complexity
due to source diversity,
annotation noise due to

scale

Heterogeneous data
from 90+ sources; varied

standards and formats

4 State of the Art in Deep Learning Techniques for Medical Diagnostics
Deep learning’s amazing capacity to extract hierarchical representations directly from raw and high-

dimensional data has greatly benefited healthcare research. This paradigm change has made it easier to create
systems that can assess complicated medical data in a highly accurate, automated, and scalable manner. In
addition to improving diagnostic and prognostic activities, deep learning’s incorporation into the healthcare
industry has set the stage for intelligent decision support systems. A comparative review of previous research
using deep learning in medical diagnostics is presented in Table 3, which also highlights the methodological
frameworks, goals, and inherent constraints identifying the model type of each study.



Comput Mater Contin. 2025;84(3) 4165

Three key advantages of deep learning, automated feature extraction, scalability, and transfer learn-
ing, are primarily responsible for their efficacy in medical applications. These benefits have made deep
learning architectures indispensable for handling the growing complexity of contemporary healthcare
data. Automated feature extraction eliminates the need for handcrafted features and enables deep neural
networks to extract important patterns from raw data input. The hierarchical structure of these models
makes it easier to learn progressively more abstract representations, leading to a deeper comprehension
of the underlying facts [73]. Scalability is one of deep learning’s other main advantages in the medical
field. Large-scale, heterogeneous medical datasets can be used to train deep models due to the availability
of high-performance computing infrastructure. This potential has sparked the creation of hybrid deep
learning frameworks that can effectively handle high-dimensional data while simultaneously tackling issues
like computational security, data privacy, and interoperability in medical settings [74]. Transfer learning
has increased deep learning’s applicability even more, especially in scenarios with limited labeled medical
data. Researchers can optimize these architectures for particular healthcare problems using models that
have already been trained on sizable general-purpose datasets. This improves performance and speeds up
convergence [75]. When combined, these key components, scalable model development, automated feature
extraction, and the thoughtful application of transfer learning, have established deep learning as an essential
instrument in medical research. The creation of next-generation medical technologies that are not only more
precise and effective but also better able to adjust to the intricacies of actual clinical settings depends on
these developments. Building on this fundamental summary of deep learning’s influence in healthcare, a
more thorough analysis of the core architectures, such as Transformers, Recurrent Neural Networks, and
Convolutional Neural Networks, is necessary to comprehend their unique contributions, advantages, and
uses in the medical field.

4.1 Convolutional Neural Networks (CNN)
Deep learning has greatly improved medical diagnoses by increasing the precision and effectiveness

of image processing, especially when CNNs are used. CNNs have transformed medical image analysis
and diagnostics. CNNs have outperformed traditional computer-aided detection (CAD) systems in various
tasks, including segmentation, object detection, and image classification [76]. CNNs can automatically
learn complex image features, removing the need for manually engineered feature extraction, a major
advantage over traditional machine learning techniques [77]. CNNs have been used in a variety of imaging
modalities in medical diagnostics, such as MRI, CT, X-ray, and histopathology. The excellent accuracy of
CNNs in analyzing medical pictures may help radiologists and physicians make more accurate and timely
diagnoses [78]. CNN’s performance in image recognition tasks, as exemplified by models like AlexNet and
GoogleNet, which have been successfully applied to medical images, has fueled their popularity in medical
diagnostics [79]. These networks have played a key role in helping doctors make more accurate diagnoses by
automating the examination of complicated medical images [80]. CT scans are used to detect and segment
pelvic and omental lesions in patients with ovarian cancer [81].

More recent works have combined radiology images with text data (radiology reports) to augment
understanding for Multimodality. The researchers proposed a framework [82] combines survival prediction,
clinical variable selection, and 3D CNN-based feature extraction for the prognosis of renal cell cancer.
It uses a deep learning model with Logistic Hazard-based loss for survival prediction, chooses clinical
variables using Spearman and random forest scores, and predicts tumor ISUP grades from CT images. For
best results, variable selection is fine-tuned through nine experiments. Other researchers [83] produced
an improved CNN model is presented that overcomes data fusion and feature extraction restrictions to
better multimodal medical image segmentation. Other studies [84] have combined MRI and CT imaging
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to create deep learning-based diagnostic models for osteoporosis prediction. Utilizing both unimodal and
multimodal strategies. To construct the findings part of radiology reports, radiological images [4] and patient
indication text in a multimodal strategy for automatic report generation were integrated using chest X-ray
(CXR) imaging.

Digital pathology involves extremely high-resolution whole-slide images (WSIs). CNNs and attention-
based methods have been used to localize regions of interest, with further integration of patient metadata
for contextual interpretation. Researchers [85] examined the connection between Tumor mutational burden
(TMB) clinical variables, gene expression, and image features by analyzing histopathological pictures,
clinical data, and molecular data from The Cancer Genome Atlas (TCGA). To go beyond conventional
unimodal methods for multimodal breast cancer diagnosis [86]. The researchers investigate the integration
of histopathological pictures with non-image data. Enhancing diagnostic accuracy, clinician confidence, and
patient involvement, the study highlights the significance of transparent AI decision-making by utilizing
Explainable AI (XAI). Researchers combined genomic data [87] with histopathological images, a multimodal
CNN-ensemble method for early and precise pancreatic cancer identification. The model uses feature
fusion techniques, deep learning survival models, and ensemble CNNs to improve tumour segmentation,
classification, and survival prediction.

Joint analyses of radiological and histological data have shown improved classification and staging
results in cancer diagnostics. For instance, automated tumor detection can benefit from both imaging
modalities radiology provides macroscale structural context, while histology validates microscale cellu-
lar anomalies.

It’s crucial to remember that, despite their enormous potential, CNNs have drawbacks. Large volumes of
well-annotated training data are required, which can be costly and challenging to acquire in medical contexts.
This is one major problem. To overcome this, transfer learning approaches have been investigated, in which
CNNs that have already been trained on non-medical pictures are adjusted for particular medical tasks [88].
Researchers are also looking at self-supervised learning and transformer networks as ways to further enhance
performance and lower data needs [89].

4.2 Recurrent Neural Networks (RNNs)
The use of deep learning methods, especially Recurrent Neural Networks (RNNs), has become essential

for improving medical diagnosis. RNNs are skilled at handling multivariate time-series data, which is
common in clinical environments like intensive care units (ICUs). This is especially true of those that use
Long Short-Term Memory (LSTM) units. An innovative work [90] empirically assessed how well LSTMs
can identify patterns in clinical parameters and demonstrated that they can categorize several diseases using
only raw time-series data. According to their findings, LSTMs outperformed conventional machine learning
models, providing a solid basis for the application of deep learning in medical diagnostics. The potential of
deep learning approaches to forecasting violent episodes during patient admissions has been investigated in
the field of psychiatric care. Their research demonstrated the superiority of deep learning over traditional
techniques by using clinical text data stored in Electronic Health Records (EHRs) to achieve state-of-the-art
predicted accuracy performance. The RNN-SURV model outperformed state-of-the-art methods in terms
of the concordance index (C-index) in survival analysis, demonstrating superior performance in calculating
risk scores and survival functions for individual patients [91]. RNNs have also shown promise in solving
problems outside the mainstream of medical diagnosis. For example, a Modified Long Short-Term Memory
(MLSTM) model has been constructed to predict new cases, fatalities, and recoveries in the COVID-19
pandemic setting, outperforming traditional LSTM and Logistic Regression models [92].
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Increasingly, multimodal deep learning, which combines information from various medical sources, is
being used to improve the precision and effectiveness of diagnosis. When used in combination with other
deep learning models, recurrent neural networks (RNNs) are crucial for analyzing temporal and sequential
medical data, thereby enhancing disease categorization and identification. RNNs are particularly good at
interpreting sequential or temporal data, such as time-series signals (e.g., ECG) or dynamic imaging (e.g.,
ultrasound movies). When combined with other models, such as CNNs and autoencoders, RNNs improve
temporal pattern identification and feature extraction, which is important for applications like video-based
diagnostics, disease progression prediction, and cardiac MRI segmentation [93,94]. Reported prediction
accuracies of up to 98% [95] have been achieved in image recognition and sequential data processing using
hybrid frameworks that combine RNNs with CNNs and autoencoders.

Recurrent neural networks (RNNs) are a type of deep learning model that has shown remarkable efficacy
in a variety of medical applications, most notably in tumor categorization and detection. The applications
of these models to multimodal imaging modalities, like PET-MRI and PET-CT, have demonstrated their
capacity to enhance diagnostic robustness and precision, enabling more precise and trustworthy tumor
evaluations [96,97]. In addition, RNN-integrated multimodal fusion models have substantially enhanced the
sensitivity and accuracy of disease recognition tasks, outperforming conventional single-modality methods.
This enhancement reaches important domains, such as Alzheimer’s disease and heart disorders, where
RNNs obtain high classification accuracy when combined with multimodal neuroimaging and clinical
data [33]. These developments facilitate early prognosis and diagnosis, laying the groundwork for prompt
clinical interventions. Multimodal deep learning frameworks have several advantages [98], such as improved
accuracy, reduced diagnostic time and expense, and increased resilience to noise and adversarial attacks—
all of which are critical in clinical contexts. However, there are still issues regarding enhancing model
interpretability, refining data fusion techniques, and incorporating expert medical knowledge to increase
diagnostic accuracy. To properly use deep learning models in medical diagnostics, these constraints must be
overcome [99].

4.3 Graph-Based Approaches
Graph Neural Networks (GNNs) have demonstrated a great deal of promise in improving medical

diagnosis. GNNs are especially well-suited for integrating various medical data types because they effec-
tively blend graph structure representations with deep learning’s outstanding prediction accuracy [100].
In cancer research, where data range across several dimensions, modalities, and resolutions—from digital
histopathology slides and genetic data to screening and diagnostic imaging, this method is particularly
helpful [101]. Graph Neural Networks (GNNs) are becoming a crucial tool for combining and evaluating these
multimodal datasets, providing deeper insights and increased accuracy, particularly in intricate domains
like neurodegenerative illnesses and oncology. Deep reinforcement learning (DRL) combined with GNNs
has further increased the potential of models for use in medical diagnostics. This combination can lead
to more reliable and accurate diagnostic tools by strengthening the application of GNNs and improving
the formulation of DRL [102] For example, an AI-powered model that uses neural network optimization,
multilevel thresholding, and image preprocessing has 92% accuracy in classifying various forms of brain
tumors [103]. Incorporating protein-protein interaction networks to combine omics data with imaging
features. The researchers introduced [104] the integration of multi-omics data in biomedical research using
graph-based machine learning techniques, namely graph neural networks (GNNs). Multi-omics techniques,
whether used at bulk or single-cell resolution, aid in finding biomarkers, predicting treatment response,
and gaining a mechanistic understanding of cellular and microenvironmental processes. Multi-omics
information [105], such as transcriptomics, proteomics, epigenomics, and genomics, provide a thorough
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understanding of cellular signaling pathways. Because they can naturally integrate and represent multi-omics
data as a biologically meaningful multi-level signaling graph and interpret multi-omics data using graph
node and edge ranking analysis, graph AI models, which have been widely used to analyze graph-structure
datasets, are perfect for integrative multi-omics data analysis.

In summary, multimodal deep learning using GNNs is an effective approach for medical diagnostics
due to its efficient integration and analysis of many kinds. This technology could improve patient outcomes
by streamlining workflows and reducing interpretation time [106]. However, for a smooth transition into
clinical practice, issues including data heterogeneity, model interpretability, and regulatory compliance must
be resolved [107].

4.4 Generative Adversarial Networks (GANs)
Adversarial Generative Networks (GANs) have greatly improved medical imaging by producing realistic

synthetic images for data augmentation, which has improved segmentation and classification, particularly for
rare disorders [108,109]. They provide thorough diagnosis and personalized care by promoting multimodal
analysis through image-to-image translation and cross-modality synthesis [110,111]. In clinical settings, GANs
improve tasks like segmentation, reconstruction, and denoising in the diagnosis of diseases like Alzheimer’s
and myocarditis [112,113]. One of the primary benefits of GANs is their capacity to produce realistic synthetic
data in medical diagnostics, which can be applied to data augmentation and to solve the problem of medical
imaging’s sparse datasets [114]. This is especially helpful when training AI-based computer-aided diagnostic
systems because performance improvement requires multiple different data types [115]. In addition, in
tasks involving image augmentation, denoising, and super-resolution, GANs have demonstrated promise.
These tasks can increase picture quality and lower radiation exposure in specific imaging modalities [116].
Although GANs have made impressive strides in medical imaging applications, obstacles remain. More
dependable and consistent outcomes require addressing problems such as mode collapse, non-convergence,
and instability during training [117]. Additionally, it is crucial to guarantee that GANs learn the statistics
essential to objective picture quality assessment and medical imaging applications [118]. As this area of
study develops, GANs could transform medical diagnostics by facilitating more precise and effective picture
synthesis, analysis, and interpretation in a variety of modalities [119].

4.5 Transformers
Transformer-based models use embedding layers and attention processes to transform different inputs

(such as text, images, and structured data) into cohesive representations for multimodal data analysis. These
models provide a comprehensive comprehension of patient data by learning both intra- and intermodal
interactions. For instance, models that combine laboratory results, clinical histories, and radiographs into
a single diagnostic framework using visual and text tokens and bidirectional attention blocks outperform
models that use just one input type or analyze modalities independently [120,121]. Interestingly, some studies
have explored hybrid techniques that combine the strengths of Transformers and Convolutional Neural
Networks (CNNs). For example, the HybridCTrm network outperformed fully CNN-based approaches in
multimodal medical picture segmentation tasks [122]. This demonstrates that using both local and global
feature representations enhances performance. Among Transformer-based designs, Vision Transformers
(ViT) and other devices have demonstrated exceptional performance in jobs involving medical image
interpretation tasks. For example, to overcome restrictions such as the absence of cross-modal feature
interaction and local feature extraction, a unique lightweight cross-Transformer based on a cross-multiaxis
mechanism has been developed for multimodal medical picture fusion [123]. An ensemble method that
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included the ViT and EfficientNet-V2 models outperformed the standalone models in brain tumor classifi-
cation, achieving an impressive 95% accuracy [124]. Leveraging self-attention to correlate genomic markers
with imaging signatures. A new deep learning model called DeepFusionCDR [125] combines drug chemical
structures with multi-omics data from cell lines to forecast cancer drug responses (CDRs). For analyzing
the chemical structures of drugs using transformers that are specialized in SMILES. A transformer-based
deep learning model called DeePathNet [126] was developed for the processing of multi-omics data in cancer
research. It combines information about cancer-specific pathways to enhance subtype identification, cancer
classification, and treatment response prediction.

Thus, transformer-based multimodal deep learning techniques have demonstrated notable progress in
medical diagnosis. These techniques have demonstrated promise in several applications, such as the diagnosis
of Parkinson’s disease, classification of brain tumors, and detection of cancer [127]. By combining various
data types and using transformer structures, these methods provide better interpretability and diagnostic
accuracy, as well as the possibility of optimizing clinical operations. To fully exploit these technologies in
healthcare, further study and cooperation between medical professionals and AI specialists are essential as
the field develops. Enhancing early Parkinson’s disease detection through multimodal deep learning and
explainable AI: insights from the PPMI database.

4.6 Autoencoders and Variational Autoencoders (VAEs)
VAEs have been effectively used in biomedical informatics applications, such as large-scale biological

sequence analysis, integrated multi-omics data analytics, and medical image classification and segmenta-
tion [128]. Variational Autoencoders (VAEs) have shown great promise in medical diagnostics through
improved interpretability, representation learning, and multimodal data fusion. They have made it possible
to grade gliomas accurately using interpretable MRI-based characteristics, and expedited the screening
process for cognitive impairment using a variety of data sources [129] and enhanced the detection of early
cardiac disease by combining imaging and clinical data [130]. Additionally, VAEs addressed data scarcity by
producing synthetic eye-tracking data [131] and performed better than conventional approaches in deriving
strong representations from metabolomics and protein data [132,133]. Additional model improvements, like
adversarial training and attention processes, improved performance in tasks involving face analysis and
cancer detection [134].

4.7 Explainable AI (XAI) in Deep Learning
XAI is essential for increasing the transparency and reliability of deep learning models, particularly in

high-stakes medical applications. The goal of this study was to clarify the data underlying the deep learning
black-box model, thereby exposing the decision-making process [135,136]. In the healthcare industry,
where every choice or judgment has associated dangers, this is especially crucial. By assisting doctors
in comprehending and interpreting AI-generated data, XAI procedures can increase their trust in the
technology’s dependability [137]. The development of innovative techniques for COVID-19 classification
models, which offer both quantitative and qualitative visualizations to improve doctors’ comprehension and
decision-making, is an example of recent developments in XAI for medical applications [138]. Researchers
have also investigated XAI approaches for regression models (XAIR), which tackle the particular difficulties
in comprehending predictions for continuous output [139]. Researchers have proposed frameworks for
identifying XAI strategies in deep learning-based medical image analysis to advance the field. These
frameworks classify methods according to certain XAI criteria and anatomical location [140]. In the end,
such efforts aim to create more dependable and understandable AI-driven diagnostic tools by standardizing
and enhancing the use of XAI in healthcare.
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Table 3: Medical diagnostics techniques

Modal type Paper Year Approach Dataset Purpose Drawbacks
[141] 2024 CNNs, transfer

learning,
attention,

explainability

Medical Images Improve
classification in

radiology &
histopathology

Lower histopathology accuracy
(88.6% vs. 95.2% X-rays),

black-box models, and privacy
regulatory issues

Unimodal [142] 2024 CNNs The LC25000
dataset,

comprising
25,000

histopathologi-
cal images of

lung and colon
tissues

Assist in diagnosis
in radiology,

histology, and
photography

Black-box trust issues, need for
diverse data, workflow integration

barriers

[143] 2024 Self-ONN,
CNNs

Histopathology
datasets (lung

& colon)

Improve early
cancer diagnosis

Generalization bias, high
computational needs, overfitting

risk, and explainability
[144] 2024 Apriori

algorithm +
Bi-LSTM deep
learning model

Drug Review
Dataset from

Drugs.com (via
UCI

Repository)

To enhance
personalized drug
recommendations
using big data and

AI techniques

User bias, computational cost, and
no clinical validation

Multimodal

[145] 2023 SNF + spectral
clustering

Brain tissue
omic data (n =

111)

Brain disease
subtype discovery

Small sample size, weak disease
links, unstable clustering

[146] 2023 MOADLN
(Self-Attention
+ FC layers)

Multi-omics
biomedical

datasets

Biomedical
research

classification

Resource-heavy, missing data,
interpretability challenges, and

validation are needed
[147] 2024 CNNs, MLPs,

Self-Attention
(ResNet50)

A multi-omic
dataset for

cancer patients,
from the UCSC
Xena browser

Predict DFS in
breast cancer

Variable data quality, low
interpretability, needs multi-center

validation

[148] 2024 GraphSeqLM,
GNNs, LLMs

Omic datasets
(DNA, RNA,

protein)

Disease
classification &
drug response

prediction

Overfitting, complex explainability,
high compute, integration difficulty

[149] 2024 Graph
modeling +

attention
(ATAC-seq &

RNA-seq)

scRNA-seq,
scATAC-seq

Improves gene
regulation
inference

Interpretability challenges require
experimental validation

[150]
2024 CLIP-based

Models
(PubMedCLIP,

BioCLIP)

ROCO V2,
MedCat,
BRACS4

Enhance clinical
decision support

Difficulty aligning image-text
embeddings, high GPU needs

[151] 2025 GNNs,
Transformers,

SCMs

Not specified Model interactions
at a molecular level

Data scarcity, high computation,
and domain-specific limitations

5 Data Integration Strategies
In medical diagnostics, multimodal integration combines various data types discussed in Section 3,

including clinical text, imaging, molecular profiles, and structured electronic health records, to improve
the accuracy of diagnosis and offer a thorough grasp of patient health [152]. These modalities [153] include
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radiological and histological images, omics data (e.g., proteomics, genomes), structured variables from
electronic health records, unstructured clinical narratives, and even audio or video recordings of clinical
conversations. Multimodal integration can be further extended in smart healthcare systems to incorporate
contextual and behavioral data that reflect environmental and lifestyle factors. Combining such diverse data
sources allows for uncovering hidden patterns, correlations, and interdependencies essential for identifying
risk factors, predicting disease progression, enhancing treatment regimens, and implementing preventative
measures. The deep learning methods described in Section 4 enable the integration of these various
modalities by providing scalable frameworks for learning joint representations and facilitating end-to-
end predictive modeling. Typically, integration involves modality-specific feature extraction (e.g., Random
Forests for structured data, CNNs or vision transformers for images, and transformer-based encoders
for clinical text), followed by fusion algorithms that align and merge the results. Table 4 classifies and
summarizes contemporary fusion approaches based on their underlying processes and medical applications,
while Fig. 2 illustrates the advantages and disadvantages of each fusion type (data-level, feature-level, and
decision-level). In certain applications, the uncertainty present in real-world clinical data is managed through
probabilistic reasoning (e.g., Bayesian models) [154]. Despite the revolutionary promise of multimodal
systems, there are certain challenges, such as temporal misalignment, data heterogeneity, and the lack of
standardized validation frameworks [155]. Additionally, recent research has indicated that performance
improvement does not necessarily involve simply adding more modalities. For instance, ChatGPT-4V
performed worse on diagnostic tasks than its text-only counterpart, despite having access to both visual
and textual input [156]. Unlocking the full potential of multimodal diagnostics in clinical settings requires
addressing these limitations [157]. This section describes the primary types of multimodal fusion: data-level,
feature-level, hybrid fusion, decision-level, and model-based fusion, and provides a thorough analysis of each
implementation strategy.

Figure 2: Multimodal fusion types
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5.1 Early Fusion (Feature-Level Fusion)
Raw data or extracted features from multiple modalities are combined early.

5.2 Intermediate Fusion
Modality-specific networks process each input type separately, producing latent representations. These

representations are merged at an intermediate layer. The study [158] proposed a thorough analysis of state-
of-the-art methods and a complex classification scheme that allows for a better-informed choice of fusion
strategies for biological applications, as well as an investigation of novel approaches. Kumar et al. [159]
proposed a fusion technique that combines information or characteristics from many modalities to produce
improved images. This is consistent with intermediate fusion, which combines the properties of modalities
after they are initially processed independently. Manifold learning-based dimensionality reduction [160] was
introduced in an intermediate multimodal fusion network. Using 1D-CNN and 2D-CNN, the multimodal
network creates independent representations from biometric inputs and facial landmarks. A multi-stage
intermediate fusion method for classifying NSCLC [161] subtypes from CT and PET images are presented.
The proposed method employs voxel-wise fusion to use complementary information across different
abstraction levels while maintaining spatial correlations, integrating the two modalities at different phases
of feature extraction.

5.3 Late Fusion (Decision-Level Fusion)
Individual models produce modality-specific predictions or embeddings, which are combined to reach

a final decision. Using the late fusion technique [162] clinical information and CT images are combined to
diagnose chronic kidney disease (CKD). The model achieves accuracy comparable to that of a human expert
and shows promise as a trustworthy diagnostic tool for medical practitioners by independently analyzing
modalities and combining them at the decision level. To enhance the detection and diagnosis of heart disor-
ders, Ref. [163] introduces a model that integrates 12-lead ECG imaging data and EHR data. By addressing
the drawbacks of using electrocardiogram (ECG) data alone, which might not be definitive in predicting
cardiac normality and abnormality, the proposed late fusion strategy aims to attain improved accuracy in the
classification of cardiac diseases compared to unimodal approaches. FH-MMA [164] combines relational,
sequential, and image information at the decision level using late fusion, a privacy-preserving, multimodal
analytics framework. The diagnostic accuracy, computational efficiency, and scalability of FH-MMA can
be significantly increased using FLE and attention methods to investigate and contrast multimodal fusion
approaches, with an emphasis on late fusion [165] in the context of cancer research. The late fusion technique
is used. It continuously beats unimodal models by combining data from several modalities, demonstrating
the potential of multimodal fusion to enhance patient outcome forecasts. A thorough comparison of data
fusion techniques in smart healthcare [166] highlights the importance of seamless integration and analysis
of diverse healthcare data. They used three types of fusion: early, intermediate, and late.

5.4 Hybrid Fusion
Integrate early, intermediate, and late fusion techniques to exploit their advantages. The VAEs [167]

provide a common latent space in which both structured and image data are represented. The squeeze-and-
Excitation block (SE-Block) and Convolutional Block Attention Module (CBAM) attention processes ensure
that, during fusion, the most essential aspects of both modalities are highlighted. Transformer encoders
enhance the structured data representation, making it easier to integrate with picture data. The MDL-
Net [168] integrates the disease-induced region-aware learning (DRL) and multi-fusion joint learning (MJL)
modules to improve the early determination of brain areas linked to Alzheimer’s disease (AD) and provide
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an accurate and comprehensible diagnosis. The MDL-Net was created to address interpretability problems in
multimodal fusion and inherent diversity among multimodal neuroimages. Improve feature representation
using the latent space and local and global learning. Golcha et al. [169] introduced an enhanced health
monitoring system that combines feature-level fusion and decision-level fusion to overcome the drawbacks
of single-modal systems that improves patient quality of life, reduces healthcare expenses, and transforms
the management of chronic diseases. A novel hybrid pre-processing method [170] called Laplacian Filter +
Discrete Fourier Transform (LF+DFT) was proposed to improve medical images before fusion. This method
efficiently detects significant discontinuities and adjusts image frequencies from low to high by emphasizing
important details, capturing minute details, and sharpening edge details. To integrate multimodal EHR data,
a hybrid fusion [171] is used, which combines early fusion, joint fusion (intermediate fusion), and late fusion.
This method handles the heterogeneous nature of EHR data and enhances clinical risk prediction by utilizing
the advantages of various fusion procedures.

5.5 Model-Based Fusion
It takes advantage of sophisticated models to implicitly merge modalities, such as transformers and

graph neural networks. To overcome the difficulties associated with multimodal fusion in healthcare, the
proposed model-based fusion architecture [172] uses multiplexed graphs and graph neural networks (GNNs).
The proposed system provides state-of-the-art performance on benchmark and clinical datasets by adaptively
modeling complicated interactions between modalities via embedding the fusion process within the GNN
architecture. A Neural Architecture Search (NAS) [173] the method is presented in the AutoFM framework to
automatically create the best model architectures for multimodal EHR data. This method demonstrates how
model-based fusion can improve healthcare services through deep learning while reducing the dependency
on manually created models.

Selecting an appropriate fusion strategy often depends on the complexity, dimensionality, and correla-
tion structure of the modalities involved. In clinical practice, late fusion is common due to simpler model
interpretability and the feasibility of using existing modality-specific analysis pipelines.

5.6 A Comparison of Recent Modern Multimodal Models (2023–2025)
Several multimodal designs are state-of-the-art (SOTA) in various medical diagnostic sectors. Table 5

presents a carefully selected collection of clinical use cases from recent studies that illustrate the real-
world significance of multimodal deep learning in healthcare. These examples include various activities
across diseases, such as breast cancer, lung cancer, and interstitial lung disease, including early detection,
categorization, and survival prediction. Each case illustrates the increasing influence of multimodal AI in
real-world medical conditions by providing the fusion method employed, performance data, and reported
results. Cahan et al. [174] developed an intermediate fusion model for pulmonary embolism prognosis
using TabNet and bilinear attention. It achieved an AUC of 0.96 with 90% sensitivity and 94% specificity,
demonstrating performance improvement by integrating structured and picture data. For breast cancer
classification, Hussain et al.’s late fusion SE-ResNet50 + ANN framework achieved an AUC of 0.965,
which was significantly higher than that of unimodal baselines [175]. Similarly, Huang et al. outperformed
professional radiologists with an accuracy of 88.5% and an AUC of 0.957 in their demonstration of a residual
learning and Multilayer Perceptron (MLP) attention model for lung cancer invasiveness prediction [176].
The ILDIM-MFAM model for interstitial lung disease diagnosis was created by Zhong et al. [177] by
combining CNNs, Bi-LSTMs, and Transformer blocks to improve the F1-score and AUC while preserving a
low computational cost appropriate for clinical use. To predict pan-cancer survival, Gao et al. [178] presented
an interpretable bridging fusion model that was successful in missing modality settings and validated across



4174 Comput Mater Contin. 2025;84(3)

12 cancer types. To further explore the adaptability of fusion, Kumar and Sharma [179] presented a late
fusion CNN framework tailored for the study of liver, lung, and breast cancer, with respective AUCs of 0.92,
89% accuracy, and F1-scores of 0.87. Noaman et al. [180] applied early hybrid CNN fusion to histological
pictures and clinical metadata for early lung cancer detection and obtained a sensitivity of 94%, specificity
of 91%, and AUC of 0.95. In a related field, Yao et al. [181] used a late fusion model that included Vision
Transformers and Natural Language Processing (NLP) modules to merge radiological imagery with EHR
text. They achieved an AUC of 0.90 for breast cancer and an accuracy of 91% for lung cancer. Atrey et al. [182]
achieved 93% accuracy, 90% sensitivity, and 92% specificity for breast cancer using residual neural networks
and conventional machine learning classifiers in conjunction with early fusion between ultrasound and
mammography data. To classify lung and colon cancers, Uddin et al. [183] developed an intermediate fusion
technique based on EfficientNet and ResNet, which produced AUC scores of 0.94 and 0.96, respectively.
Furthermore, Sharma et al. [184] combined ResNet and DenseNet to create a knowledge transfer-driven
ensemble framework that achieved 96% accuracy and an AUC of 0.97 for the delineation of lung cancer.
Lastly, Zhang et al. [185] achieved 92% sensitivity and an AUC of 0.94 for the identification of early-stage
lung cancer by combining CNN-based CT imaging with liquid biopsy data in a late fusion scheme.

Table 4: Multimodal fusion

Type of
fusion

Paper Approach Type of data Purpose Advantages Disadvantages

[159] CNN MRI, CT Enhance image
quality and

clinical utility

Improves
visualization and

supports diagnosis

Requires high computational resources

Intermediate [160] 1D-CNN,
2D-CNN

biometric signals,
facial images

stress detection
accuracy

Captures temporal
and spatial features

May struggle with real-time
applications due to complexity

[161] 3D ResNet
architecture

CT, PET scans Classify lung
cancer (NSCLC)

Preserves spatial
context across

modalities

Requires high memory and data
preprocessing

[162] RNN, CNN CT chronic kidney
disease

Enhances predictive
capability using

temporal dynamics

Integration complexity between RNN
and CNN

late

[165] – Cancer Genome
Atlas

Enhance survival
prediction
accuracy.

Shows fusion
improves survival

prediction

No clear architecture or reproducibility
info

[163] 2D CNN, MLP ECG, EHR from
Cardio HTDC

database

cardiac disease
detection and

diagnosis

Combines structured
and unstructured data

May suffer from overfitting with
complex models

[164] CNNs,
transformers,

GNN, attention
mechanisms

MIMIC-III Federated
learning for

privacy-
preserving
distributed

training

Enables
privacy-preserving
distributed learning

Training across nodes introduces
inconsistency

[167] EfficientNetB3,
Transformer,

SE-Block,
CBAM, for
attention

CXR records,
chest X-ray

chronic cardiac
conditions

Advanced attention
mechanisms for

better focus

Complex to train and tune effectively

Hybrid [168] MJL (GAL,
LAL, LSL),

DRL

MRI, PET, DTI Alzheimer’s
disease diagnosis

Learns joint
representations;

accurate classification

Interpretability can be challenging

[169] VGGNet19,
ResNet101,

AlexNet, and
InceptionNet

Combines ECG,
EEG, blood

samples, and
MRI scans

Advanced Health
Monitoring

System

Broad multimodal
input increases

system robustness

Risk of redundancy and increased noise

(Continued)
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Table 4 (continued)

Type of
fusion

Paper Approach Type of data Purpose Advantages Disadvantages

[170] LF, DFT, and
SWT

breast and brain
datasets

Improve the
quality of

medical images

Preserves spatial
context across

modalities

Requires high memory and data
preprocessing

[170] LF, DFT, SWT Breast and brain
images

Improve medical
image quality

Enhances image
details using the

frequency domain

Fusion method tuning is sensitive and
domain-specific

Model-based

[172] Multiplexed
Graphs

NIH-TB Portals,
ABIDE Dataset

Improves
treatment

prediction and
disease

classification

Captures complex
inter-modality
relationships

Graph complexity makes training slow

[173] Neural
Architecture
Search (NAS)

EHR Data optimal model
architectures

Automatically finds
optimal architecture

NAS can be computationally expensive

[186] DMDFC-DA The datasets are
selected to reflect

critical
applications in

medical
diagnostics and

prognostics

Robust
multimodal

learning across
domains

Effective across
domains, high

adaptability

Requires large, labeled datasets for
training

Table 5: Comparison of multimodal fusion models

Citation Model/
Application

Fusion approach Evaluation
metrics

Performance

[174] Pulmonary
embolism
mortality
prediction

Intermediate
fusion (bilinear

attention +
TabNet)

AUC, Sensitivity,
Specificity

Multimodal fusion boosts
performance by up to 14%;

AUC: 0.96, Sensitivity: 90%,
Specificity: 94%

[175] Breast
cancer

classification

Late feature fusion
(SE-ResNet50 +

ANN)

Accuracy,
Precision,

Sensitivity, F1,
AUC

MMFF model AUC: 0.965
(benign vs. malignant),

outperforming image-only
(AUC: 0.545) and text-only

(AUC: 0.688–0.842)
[176] Lung adeno-

carcinoma
invasiveness
prediction

Residual learning
+MLP with

attention

Accuracy, AUC, F1,
F1weighted, MCC

Accuracy: 88.5%, AUC: 0.957,
F1: 81.5%, F1weighted: 81.9%,

MCC: 73.2%; outperforms
senior radiologist (accuracy:

86.1%)
[177] Interstitial

lung disease
identifica-

tion
(ILDIM-
MFAM)

CNN, Bi-LSTM,
Self-attention,
Transformer

Precision, Recall,
F1, AUC

Improved Precision, Recall, F1,
and AUC; model has low

computational complexity,
suitable for practical

deployment

(Continued)
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Table 5 (continued)

Citation Model/
Application

Fusion approach Evaluation
metrics

Performance

[178] Pan-cancer
survival

prediction

Bridged
multimodal fusion

(interpretable)

Not specified
(validated across 12

cancer types)

Achieves optimal performance
in both complete and missing

modalities; improves prognosis
prediction accuracy

[179] Medical data
analysis
(Breast,

Lung, Liver)

Late fusion
(CNN-based with

attention
mechanisms)

Accuracy,
Precision, Recall,

F1-Score, AUC

Breast cancer: AUC 0.92; Lung
cancer: Accuracy 89%; Liver

cancer: F1-Score 0.87 (based on
multimodal data integration)

[180] Lung cancer
early

detection

Early fusion hybrid
CNN (Histological

Image Analysis)

Sensitivity,
Specificity,

Accuracy, AUC

Lung cancer: Sensitivity 94%,
Specificity 91%, AUC 0.95 (H&E

slide analysis with clinical
metadata)

[181] Integrating
medical

imaging and
clinical
reports

Late fusion vision
transformer + NLP

Accuracy,
Precision, Recall,

AUC

Lung cancer: Accuracy 91%;
Breast Cancer: AUC 0.90

(radiology images and EHR text
integration)

[182] Classification
of breast
cancer

Early fusion
(ResNet +ML

classifiers)

Accuracy,
Sensitivity,
Specificity,
F1-Score

Breast cancer: Accuracy 93%,
Sensitivity 90%, Specificity 92%,

F1-Score 0.91 (ultrasound and
mammogram data)

[183] Colon and
lung cancer

classification

Intermediate
fusion (Efficient

Net, ResNet)

Accuracy,
Precision, Recall,

AUC

Lung cancer: Accuracy 95%,
AUC 0.96; Colon cancer:

Accuracy 93%, AUC 0.94 (CT
and histopathology integration)

[184] Knowledge
transfer for
lung cancer

Intermediate
fusion ensemble

learning (ResNet,
Dense Net with

knowledge
transfer)

Accuracy, F1-score,
ROC-AUC

Lung cancer: Accuracy 96%,
F1-Score 0.93, ROC-AUC 0.97

(CT and molecular data fusion)

[185] Liquid
biopsy and
CT for lung
adenocarci-

noma

Late fusion (CNN
+ biomarker

analysis)

Sensitivity,
Specificity, AUC,

Precision

Lung adenocarcinoma:
Sensitivity 92%, Specificity 89%,

AUC 0.94 (early-stage
differential diagnosis)

Collectively, these models demonstrate the rapid progress and efficacy of multimodal fusion in improv-
ing diagnostic accuracy. They demonstrated that the fusion approach (early, intermediate, or late), integration
depth, and application of sophisticated architectures, such as transformers and attention mechanisms,
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significantly impact performance benefits. Thus, these studies indicate a substantial advancement toward
high-performance, interpretable, and clinically feasible AI solutions for medical diagnostics.

6 Applications for Healthcare
Healthcare is transforming due to deep learning (DL), which enables more precise diagnosis, focused

therapies, and improved patient outcomes. DL’s use extends beyond algorithmic implementation, requiring
careful consideration of its potential therapeutic applications. Fig. 3 shows a variety of healthcare use cases
influenced by DL techniques.

Figure 3: Healthcare application

6.1 Precision Medicine and Patient Stratification
The ability to stratify patients into clinically significant subgroups using DL frameworks to integrate

multi-omic data has sped up advancements in precision medicine. For instance, tumors can be easily classi-
fied into molecularly different groups when radiological imaging and transcriptome profiles are combined.
Prognosis, treatment choice, and therapeutic results are all significantly impacted by this classification.

6.1.1 Discovery
DL-based integrative analysis of gene expression data and imaging-derived characteristics identified

new biomarkers for early disease detection. In addition to being helpful for diagnosis, these biomarkers
provide insight into the pathophysiology of diseases and may help direct the creation of focused treatments.
However, the variety of patient data and the requirement for sizable, annotated datasets make it difficult to
use these findings in clinical practice.

6.1.2 Drug Response Prediction
Multimodal DL models use data from gene expression, tumor imaging, and treatment histories to

infer drug responses specific to individual patients. This method lessens the need for trial and testing
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treatment strategies, thereby improving the personalization of therapy. However, it is unclear whether
these models can be applied to various populations and healthcare systems, emphasizing the necessity of
cross-cohort validation.

6.2 Enhanced Disease Diagnosis and Prognosis
The integration and validation of data from several modalities have greatly enhanced the identification

of diseases through DL, resulting in more trustworthy clinical judgments.

6.2.1 Cross-Modal Validation
DL models can improve diagnostic specificity by integrating radiological imaging and histological

data, especially in neurology, cardiovascular disease, and oncology. A comprehensive approach to patient
health is crucial, as demonstrated by the superior performance of these cross-modal systems compared with
conventional single-modality models. However, issues such as data standardization and alignment continue
to exist.

6.2.2 Computer-Aided Diagnosis Systems
Multimodal computer-aided diagnosis (CAD) systems, which integrate imaging, omics data, and

patient history, have demonstrated efficacy in complicated diagnostic tasks, including chronic condition
management and Alzheimer’s disease progression tracking. Although these technologies are useful resources
for clinical workflows, their incorporation into practical environments requires thorough validation and
clinician assistance.

6.3 Personalized Healthcare and Clinical Decision Support
Clinical workflows are changing because of DL-powered systems’ customized decision support tools,

which closely match unique patient profiles.

6.3.1 Risk Assessment
Advanced DL models can use genetic data, medical imaging, EHR metadata, and blood test results to

evaluate the risk of critical health events (such as myocardial infarction or stroke). By proactively directing
healthcare interventions, these risk classification technologies can lower morbidity and mortality. Nonethe-
less, the interpretability and openness of these models remain significant barriers to clinical implementation.

6.3.2 Therapeutic Planning
Analyzing treatment outcomes from patients with comparable multimodal profiles allows DL to be

used for personalized therapeutic planning, which recommends the optimal plan of action. Although this
approach improves treatment precision, it requires thorough model training on various representative
datasets to prevent biases and guarantee impartiality in decision-making.

7 Challenges in Multimodal Deep Learning
Multimodal deep learning has transformative potential in industries such as healthcare, but its broad

and successful implementation is hampered by several intricate issues. Data heterogeneity and quality,
computational complexity, cross-modal alignment, interpretability and explainability, and privacy and
ethical issues are some of the interconnected domains that these difficulties encompass, as shown in Fig. 4.
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Each of these problems affects the clinical applicability, generalisability, and dependability of the produced
systems, in addition to making model development more difficult.

Figure 4: Multimodal challenges

7.1 Data Heterogeneity and Quality
Imaging modalities, electronic health records, and genomic sequences are only a few of the multiple

sources of medical data, each with its own format, resolution, and completeness levels. For instance,
confounding variability may be introduced by varied resolution in radiological imaging or batch effects in
high-throughput sequencing. These discrepancies compromise the repeatability of multimodal models and
increase the difficulty of data integration. This problem becomes more difficult in the absence of standard
preprocessing techniques throughout organizations. In addition to technical fixes such as domain adaptation
and data harmonization, overcoming these obstacles calls for cooperative efforts to create cross-institutional
data standards.

7.2 Computational Complexity
An extensive amount of computational resources is available to integrate and analyze multimodal

information, which frequently includes high-dimensional, large-scale data such as gigapixel histopathology
images or whole-genome sequencing. When models must be trained jointly across modalities, complexity
increases, which imposes a burden on processing and memory capacities. Although distributed learning
frameworks and technology advancements like GPU/TPU clusters provide some respite, the discipline still
lacks commonly used techniques for scalable, resource-efficient multimodal learning. The gap between
research and clinical translation may grow as a result of this obstacle for organizations with inadequate
computational infrastructure.

7.3 Cross-Modal Alignment
The accurate alignment of many kinds of data is one of the most technically challenging parts of

multimodal learning. For example, sophisticated modeling techniques are required to align temporal EHR
data with static genetic markers or transfer pixel-level information from histopathology slides to corre-
sponding radiographic pictures. Noise from misalignment can reduce feature fusion’s efficacy and produce
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less-than-ideal predictions. Although robust, generalizable ways are still being investigated, recent research
has explored solutions, including contrastive learning and attention mechanisms, to improve alignment.

7.4 Interpretability and Explainability
Deep learning models are frequently criticized for their lack of transparency despite their predictive

capacity. This is a critical issue in the healthcare industry because clinical decision-making necessitates
accountability. Clinicians’ trust and uptake of AI solutions are hampered by black-box models. The develop-
ment of explainable AI (XAI) techniques, such as saliency maps, attention visualizations, and counterfactual
reasoning, is therefore clinically necessary rather than just technically necessary. More reliable and context-
aware XAI approaches are required because many current interpretability techniques provide little insight
into multimodal interactions and frequently falter under rigorous validation.

7.5 Privacy and Ethical Considerations
The presence of sensitive personal information in multimodal healthcare data raises serious ethical

and legal issues. Although adherence to regulations like the GDPR (EU) and HIPAA (US) is crucial, it
complicates data sharing and model training. There are encouraging opportunities to develop ethical models
using emerging privacy-preserving methods, such as safe multi-party computation, federated learning, and
differential privacy. Nevertheless, these approaches provide new difficulties, such as decreased performance,
communication overhead, and problems with model convergence. Utility and privacy balance remains a hot
topic of ethical and technical discussion.

8 Strategies to Overcome Challenges
To successfully traverse the complexity of multimodal biological data integration, interdisciplinary

cooperation, regulatory adaptability, and ongoing technical development are essential. The following tactics
offer a way to overcome important constraints, with a focus on not only execution but also the justification
and anticipated results of each strategy.

8.1 Data Harmonization
Effective integration of different datasets necessitates stringent harmonization methods. Different

platforms or institutions’ approaches to data collection can seriously impede downstream analysis.

• Protocol standardization is essential to guaranteeing dataset comparability. Preprocessing pipelines can
reduce sources of bias or technological artifacts by incorporating domain expertise.

• Advanced normalization methods, like ComBat, are very useful in omics research to address batch
effects, which are systematic non-biological fluctuations that can mask real biological signals if left
unchecked. These techniques improve the generalisability of the model and the reliability of the data.

8.2 Efficient Model Architectures
Model scalability becomes a critical issue when biomedical datasets increase in size and complexity.

• Techniques for compressing models, pruning, quantization, and knowledge distillation allow deep
learning models to be implemented in contexts with limited resources without suffering appreciable
performance degradation. These techniques also improve energy efficiency and model interpretability.

• Distributed and parallel training Architecture enables effective management of huge datasets. These
systems provide iterative experimentation and hyperparameter adjustment that are frequently not
feasible in single-machine situations, going beyond simple computing acceleration.
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8.3 Robust Feature Alignment and Fusion
Accurate spatial and semantic alignment is essential for the successful integration of multimodal data.

• Image registration algorithms, such as ANTs and elastix, are essential for lining up anatomical features
in various imaging modalities. For tasks such as morphological comparison and lesion identification,
high-fidelity alignment maintains the essential spatial relations.

• Attention-based fusion methods dynamically determine the relative significance of each modality,
allowing for more task-specific and sophisticated integration. In clinical settings, when not all data
modalities have the same diagnostic weight, this is advantageous.

8.4 Explainable AI (XAI) Methods
The interpretability of models is essential for the transparency and trustworthiness of AI-driven

healthcare decision-making.

• Tools for post hoc explanations, such as saliency maps, CAMs, and LIME, help reveal which features
influence model predictions. Allows clinicians to gain insights into the reasoning process.

• Architectures with inherent interpretability, Attention-based models, for example, include transparency
into the actual learning process, thereby promoting greater confidence and making regulatory adoption
easier.

8.5 Privacy-Preserving Techniques
Powerful privacy-preserving procedures are required when handling sensitive medical data to adhere

to legal and ethical requirements.

• Federated learning provides a paradigm change by allowing local data retention and collaborative model
training across decentralized data sources. This method is especially attractive for hospital networks that
are ordinarily prohibited from exchanging patient information due to privacy issues.

• Differential privacy presents statistically valid approaches for data anonymization that guarantee that
individual-level information cannot be deduced from aggregate statistics or model outputs. This
improves public trust and moral integrity.

9 Future Directions

9.1 Unified Benchmarking and Standardization
A major obstacle to comparing multimodal models across various activities and domains is the lack

of standardized benchmarks and evaluation methodologies. To address this need, it is crucial to create
extensive, superior, and publicly available multimodal datasets. These benchmarks must include a broad
spectrum of clinical situations and techniques to provide a reliable evaluation of the performance and
generalisability of the model. Additionally, standardization can guarantee that performance gains are
the result of model innovation rather than dataset-specific artifacts and reduce biases brought about by
dataset variability.

9.2 Real-Time Analysis and Clinical Deployment
Even with recent advancements, real-time multimodal analysis in clinical settings that require quick

decisions, such as stroke diagnosis or trauma reaction, is still difficult to accomplish. Real-time inference
necessitates smooth interaction with clinical hardware and software systems in addition to algorithmic
efficiency. Future studies should focus on increasing data flow and decreasing computing latency without
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sacrificing diagnostic precision. This is important because it can revolutionize emergency treatment by
facilitating prompt, well-informed decision-making.

9.3 Integration of Additional Modalities
The majority of multimodal frameworks in use today are mainly concerned with imaging, histology,

and omics data. Richer contextual information is included by broadening the input spectrum to include
physiological signals (EEG, ECG), sensor data (e.g., wearables, IoT-enabled devices), and longitudinal patient
records. This increase is not only additive; it offers a more comprehensive and temporally-aware view of
disease processes. Early diagnosis, better risk assessment, and the modeling of intricate temporal patterns in
chronic illnesses can be made possible by integrating different modalities.

9.4 Personalization and Adaptive Learning
Multimodal AI’s ability to continuously learn and adjust to the unique paths of each patient will

determine its future. Diagnostic and prognostic outputs could be improved over time by adaptive models
that change in reaction to incoming data streams (such as those from home monitoring devices or routine
exams). Although this transition from static to dynamic modeling has potential applications in precision
medicine, it also brings up important issues regarding model stability, validation in dynamic situations, and
the dangers of overfitting to noise rather than signal.

9.5 Regulatory Frameworks and Ethical AI
As multimodal AI systems start to influence critical clinical judgements, strict regulatory control is

becoming increasingly necessary. Demonstrating technical proficiency is insufficient; models also need to
adhere to criteria for clinical safety, explainability, and openness. This calls for interdisciplinary cooperation
between regulatory agencies, medical practitioners, and AI researchers. Furthermore, to build public
confidence and guarantee equitable deployment, ethical issues, including algorithmic bias, data privacy, and
informed consent, need to be addressed early.

10 Conclusion
Multimodal deep learning is at the forefront of changing healthcare through the integration of multi-

omic transcriptomic datasets, histology data, and radiological pictures. This convergence makes it possible
to comprehend patient health in a more thorough and nuanced way, which could greatly improve diagnostic
precision, simplify complicated data processing, and allow for completely personalized medication.

This review offers a focused and organized evaluation of current developments, highlighting the latest
models, data fusion techniques, and recent developments that have influenced this rapidly developing field.
In contrast to earlier studies, this paper provides an in-depth discussion of fusion approaches and their
relative benefits and drawbacks, a comparative synthesis across both unimodal and multimodal architectures,
and a comprehensive evaluation of contemporary multimodal datasets.

This review is essential because it addresses the fragmentation of the literature across biological
applications and AI subfields and provides an overview for academics and clinicians. Although there have
been recent beneficial developments, limited model interpretability, scalability, and data heterogeneity still
exist. These challenges underline how urgent it is to conduct more research on explainable AI, privacy-
preserving techniques, and powerful data harmonization. In addition, this work highlights the significance
of interdisciplinary collaboration among computer scientists, healthcare professionals, and decision-makers
by outlining future research areas that connect technical improvement with clinical practicality. This review
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provides a fundamental resource for developing multimodal AI in healthcare by addressing important
outstanding topics and integrating various lines of research. As this field grows, we expect to see AI-driven
solutions that are not only precise and scalable but also ethical and widely applicable, thereby bringing in a
new era of data-driven, personalized healthcare.
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