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ABSTRACT: Wireless Sensor Networks (WSNs), as a crucial component of the Internet of Things (IoT), are widely
used in environmental monitoring, industrial control, and security surveillance. However, WSNs still face challenges
such as inaccurate node clustering, low energy efficiency, and shortened network lifespan in practical deployments,
which significantly limit their large-scale application. To address these issues, this paper proposes an Adaptive Chaotic
Ant Colony Optimization algorithm (AC-ACO), aiming to optimize the energy utilization and system lifespan of
WSNs. AC-ACO combines the path-planning capability of Ant Colony Optimization (ACO) with the dynamic
characteristics of chaotic mapping and introduces an adaptive mechanism to enhance the algorithm’s flexibility and
adaptability. By dynamically adjusting the pheromone evaporation factor and heuristic weights, efficient node clustering
is achieved. Additionally, a chaotic mapping initialization strategy is employed to enhance population diversity and
avoid premature convergence. To validate the algorithm’s performance, this paper compares AC-ACO with clustering
methods such as Low-Energy Adaptive Clustering Hierarchy (LEACH), ACO, Particle Swarm Optimization (PSO), and
Genetic Algorithm (GA). Simulation results demonstrate that AC-ACO outperforms the compared algorithms in key
metrics such as energy consumption optimization, network lifetime extension, and communication delay reduction,
providing an eflicient solution for improving energy efficiency and ensuring long-term stable operation of wireless
sensor networks.

KEYWORDS: Internet of Things; wireless sensor networks; ant colony optimization; clustering algorithm; energy
efficiency

1 Introduction

Wireless Sensor Networks (WSNs) are self-organizing network systems composed of a large num-
ber of low-power micro-sensor nodes, integrating wireless communication, environmental sensing, local
computing, and data storage capabilities [1]. They are characterized by flexible deployment, low cost, and
high reliability. These networks demonstrate unique advantages in complex scenarios such as power grid
monitoring. However, their resource-constrained nodes and dynamically changing network topology pose
significant challenges to the effectiveness of traditional routing protocols. The core objective of current
research is to overcome the physical limitations of node battery capacity by designing resource-aware routing
protocols to maximize network lifespan, which has become the most promising research direction in this
field [2-4]. The wireless sensor clustering network model is shown in Fig. 1.
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Figure 1: Wireless sensor clustering network model

At the technical implementation level, WSNs face three core contradictions: first, the conflict between
the high-density deployment requirements of massive nodes and their limited energy reserves [5]; second,
the conflict between limited data transmission rates and the quality-of-service requirements for real-
time monitoring [6]; and third, the adaptability conflict between static predefined protocols and dynamic
network environments [7]. To address these challenges, the academic community has gradually developed
a solution system dominated by computational intelligence technologies [8]. Among these, clustering-based
protocol architectures have gained widespread attention due to their energy efficiency advantages [9]. Such
protocols achieve breakthroughs in key aspects such as cluster head selection and clustering optimization
through technologies like neural network feature extraction, reinforcement learning for dynamic decision-
making, and swarm intelligence for global optimization. Additionally, they address derivative needs such
as network security enhancement, data aggregation efficiency improvement, and time synchronization
precision control [10].

Due to the interdependent nature of nodes in WSNs and their close correlations, traditional predefined
rules for cluster formation are no longer suitable [11]. Additionally, the dynamic nature of wireless sensor
application environments requires algorithms to adaptively handle node energy consumption, network
density changes, and environmental condition fluctuations [12]. Research has shown that swarm intelligence
algorithms exhibit unique advantages in addressing the dynamic adaptability issues of WSNs [13]. Taking
the ant colony algorithm as an example, it simulates the natural foraging path optimization mechanism
and constructs a pheromone update model with positive feedback characteristics, effectively solving the
energy balance problem in data transmission paths. Meanwhile, the particle swarm optimization algorithm,
leveraging its powerful global search capability, achieves optimal cluster head selection in dynamic network
topologies [14]. Its iterative process can adaptively handle real-time changes such as node energy decay and
network density fluctuations. Research data indicate that swarm intelligence-optimized routing protocols
can improve network lifespan by 30%-45% while reducing end-to-end transmission delays by approximately
25% [15].

To further enhance the energy efficiency and extend the lifespan of WSNs, recent research has focused
on improving and optimizing existing swarm intelligence algorithms. These improvements include hybridiz-
ing multiple optimization techniques, introducing chaotic mapping to enhance the algorithm’s exploration
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capability, adopting multi-objective optimization methods to simultaneously consider multiple performance
metrics, and developing new fitness evaluation mechanisms to more accurately reflect network states [16].

The dynamic environment and complex topology of WSNs make it difficult for traditional optimization
algorithms to balance global convergence and local search capabilities. Standard optimization methods may
perform well in static environments, but their adaptability often falls short when faced with issues such as
topology changes, uneven energy consumption, or data transmission interference [17]. Especially in highly
dynamic network scenarios, fixed optimization strategies may fail to adjust parameters in a timely manner,
leading to degraded network performance. Adaptive chaotic strategies, by introducing the ergodicity and
randomness of chaotic mapping, enable optimization algorithms to escape local optima traps and achieve
more uniform global exploration in the search space [18,19].

The application of chaos theory in optimization problems is mainly reflected in two aspects: on the
one hand, the aperiodic characteristics of chaotic sequences can enhance the algorithm’s search capability
in complex environments, prevent premature convergence, and increase the probability of finding global
optimal solutions [20]; on the other hand, combined with adaptive adjustment mechanisms, the search
process can dynamically adjust parameters based on network states, ensuring optimization effectiveness
under varying network densities, energy distributions, or traffic loads [21]. For example, in the cluster
head selection process, adaptive chaotic strategies can integrate factors such as node energy, data load, and
geographical location, dynamically adjusting pheromone update rules through chaotic mapping mechanisms
to enhance search diversity and improve optimization efficiency [22].

Furthermore, in routing optimization, chaotic strategies can be used to adjust path exploration and data
forwarding strategies, enabling the network to flexibly select optimal transmission paths based on current
energy distribution and traffic demands [23]. Under low traffic conditions, the algorithm tends to stabilize
energy consumption balance, while under high traffic conditions, it adaptively optimizes load distribution
to ensure transmission efficiency [24]. Compared to traditional methods such as Ant Colony Optimization
(ACO) or Particle Swarm Optimization (PSO), adaptive chaotic strategies can achieve better convergence
speed and stability without increasing computational overhead [25].

The practical application of WSNs involves various complex environments and dynamic constraints,
such as sensor deployment in smart agriculture, energy consumption optimization in industrial IoT, and
efficient data transmission in disaster warning systems [26]. In these scenarios, the operating environment
of the network often exhibits uncertainties, such as climate changes affecting sensor power consumption or
network congestion impacting data delays. Adaptive chaotic strategies can dynamically optimize network
parameters based on different application requirements and achieve a balance between global and local
performance across different time scales [27].

Therefore, by introducing chaotic mapping mechanisms, adaptive chaotic strategies not only enhance
the robustness and adaptability of WSNs but also improve the global search capability of algorithms,
achieving superior comprehensive performance in energy consumption optimization, data transmission
stability, and network lifespan extension. In the future, this strategy can be further integrated with deep
reinforcement learning or distributed optimization methods to enhance its applicability in large-scale
heterogeneous networks, providing more efficient solutions for the intelligent optimization of WSNs [28].

Against this background, this study proposes an innovative and efficient clustering method that
combines adaptive chaotic strategies with the ACO algorithm to address the challenges of improving energy
efficiency in WSNs. The main contributions of this study are as follows:

1. Proposed an Adaptive Chaotic Cluster Head Selection Mechanism: AC-ACO introduces chaotic
mapping to dynamically weight factors such as node residual energy, communication cost, network
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topology position, and load conditions during cluster head selection. Leveraging the randomness and
ergodicity of chaotic mapping, the algorithm avoids local optima traps, prioritizes high-energy nodes
as cluster heads, and prevents rapid energy depletion of nodes due to frequent cluster head roles. The
dynamic nature of chaotic mapping ensures adaptability, enabling real-time weight adjustments based
on network states.

2. Designed a Chaos-Driven Intra-Cluster Data Aggregation Strategy: For intra-cluster data transmission,
AC-ACO employs an adaptive data aggregation method based on chaotic event triggering. Dynamic
thresholds generated through chaotic mapping adapt data fusion methods according to the temporal
correlation and spatial redundancy of sensing data. This reduces redundant transmissions, optimizes
data compression and aggregation, and significantly lowers communication overhead. The randomness
of chaotic mapping enhances adaptability to network changes, improving data processing flexibility
and efficiency.

3. Proposed an Efficient Clustering Algorithm: AC-ACO optimizes cluster formation and data transmis-
sion in WSNs by combining the global search capability of ACO with the dynamic characteristics of
chaotic mapping. It introduces an adaptive mechanism to dynamically adjust optimization strategies
in response to network state changes. By mapping ant path exploration behavior to node energy con-
sumption, AC-ACO achieves a multi-objective trade-off among energy consumption, load balancing,
and network lifespan, offering a novel solution for WSN clustering optimization.

2 Related Work

In recent years, WSNs have demonstrated broad application prospects in various fields such as industrial
automation, environmental monitoring, and intelligent transportation. However, issues related to energy
efficiency, network lifetime, and data transmission reliability remain focal points of attention in both
academia and industry [29]. To address these challenges, researchers have proposed numerous clustering
protocols and optimization algorithms aimed at extending network lifetime and enhancing overall perfor-
mance through efficient energy management and node scheduling strategies. Among these, bio-inspired
algorithms have been widely applied in WSN clustering optimization due to their excellent global search
capabilities and adaptability [30]. Nevertheless, the limitations of traditional bio-inspired algorithms in
terms of convergence speed and local optima issues persist. To this end, researchers have introduced various
improvement strategies, including adaptive operators, chaotic mapping techniques, and elite strategies, to
further enhance algorithm performance. This paper systematically reviews recent research progress in the
field of WSN clustering optimization and explores how to design more efficient clustering methods by
improving swarm intelligence optimization algorithms to tackle the complex challenges faced by WSNs in
practical applications [18].

Low-Energy Adaptive Clustering Hierarchy (LEACH) is a highly influential clustering protocol in
WSNs, proposed by Heinzelman et al. [31], aiming to balance network energy consumption through a
clustering mechanism. However, the protocol’s strategy of randomly selecting cluster heads (CHs) leads to
premature energy depletion in some nodes, thereby shortening the overall network lifetime. To address
this issue, Tadros et al. [32] proposed an unsupervised learning clustering algorithm based on an improved
LEACH protocol and K-means data clustering, further optimizing the cluster head selection process. By
integrating the K-means clustering method, this algorithm avoids the energy imbalance caused by the
random selection of cluster heads in the traditional LEACH protocol, demonstrating excellent performance
in applications such as environmental pollution monitoring and significantly enhancing network lifetime
and monitoring efficiency.
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On the other hand, Nisha et al. [33] proposed a score-based link delay-aware routing protocol
(SBLDAR), which achieves collision-free data transmission by combining multi-channel MAC protocols
and utilizes a fuzzy-modified sunflower optimization algorithm (FMSFO) to elect efficient cluster heads,
thereby improving network lifetime and performance. Nevertheless, the application of these protocols in
industrial WSNss still faces limitations, primarily due to the more stringent requirements of IWSNs for energy
consumption, transmission delay, and energy balance.

Clustering methods in WSNs are inspired by bio-inspired algorithms, which can output optimal
clustering solutions within a limited time. Zhou et al. [34] proposed a multi-hop routing algorithm based
on semi-fixed clustering and an improved ant colony optimization (SFC-IACO) algorithm. By dividing
the network into fixed regions, dynamically rotating cluster heads, and balancing inter-cluster energy
consumption, the algorithm achieved network energy balance and load balancing, effectively extending
the network lifetime. Stodola and Nohel [35] introduced a novel metaheuristic algorithm based on ACO,
which solves the multi-depot vehicle routing problem (MDVRP) by incorporating node clustering and
adaptive pheromone evaporation mechanisms. By organizing transition vertices into candidate lists and
adaptively adjusting the pheromone evaporation rate based on population diversity, the algorithm effec-
tively reduces the risk of falling into local optima and improves optimization efficiency. To enhance data
transmission reliability, Yesodha et al. [36] proposed a secure routing protocol (TECC-ACO-SRP) based on
trust modeling, elliptic curve encryption (ECC), and improved ACO. Through intrusion detection, node
authentication, and encryption technologies, combined with fuzzy rules and clustering mechanisms, the
protocol achieved energy optimization, security enhancement, and high packet delivery rates. Additionally,
to optimize network energy consumption and extend network lifetime, Mishra and Yadav [37] proposed an
energy-eflicient clustering routing protocol based on nature-inspired algorithms. By combining the butterfly
optimization algorithm (BOA) to select optimal cluster heads and utilizing PSO and ACO mechanisms to
optimize cluster formation and path selection, the protocol demonstrated excellent performance in stability,
active node count, and energy consumption. However, it may still fall into local optima when adjusting node
residual energy, communication distance, and load, thereby affecting clustering performance.

Over time, chaotic mapping strategies have increasingly been used to enhance the global search
performance of bio-inspired algorithms. For example, Sivakumar et al. [38] proposed an energy-aware
clustering protocol based on the chaotic gorilla troops optimization algorithm (EACP-CGTOA), marking
a new step in metaheuristic algorithms for improving energy efficiency and network lifetime in WSNs.
El-Hageen et al. [39] introduced a cluster head selection method based on the chaotic zebra optimization
algorithm (CZOA). By combining chaotic mapping and the zebra optimization algorithm, the method
effectively avoids local optima, significantly reduces energy consumption, and extends network lifetime,
while outperforming other swarm intelligence algorithms in terms of node survival rate. Elashry et al. [40]
proposed a hybrid metaheuristic optimization algorithm based on the chaotic reptile search algorithm
(CRSA), which effectively avoids local optima and significantly reduces energy consumption while extending
network lifetime. However, the parameter settings of chaotic mapping greatly influence algorithm per-
formance, and inappropriate parameter choices may lead to slower convergence or suboptimal results.
Adaptive operator tuning can dynamically adjust parameters and strategies based on network state and node
characteristics, ensuring optimization effectiveness while reducing computational overhead.

Overall, although existing literature has explored numerous clustering methods, they often fail to fully
consider critical factors such as node residual energy, intra-cluster distance, and distance to the base station,
all of which significantly impact the clustering performance of WSNs. To address this research gap, this
paper proposes a novel clustering model for WSNs and develops a new bio-inspired clustering method
incorporating adaptive chaotic strategies, aiming to achieve optimal clustering solutions. Additionally, this
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study focuses on improving the search efficiency and solution quality of the algorithm, thereby accelerating
its convergence speed. Through these strategies, the research aims to optimize the energy efficiency of WSNs
and significantly extend their operational lifespan in grid systems, providing an efficient and feasible solution
for future WSN deployments. The important abbreviations in this article are summarized in Table 1.

Table 1: Parameters of the definition

Parameter Description
MAC protocol MAC protocol used in the wireless sensor network
Deployment area size Area size for sensor node deployment
Node communication radius Communication radius of sensor nodes
Sensor number Total number of sensor nodes in the network
BS location Location of the base station at the center of the monitoring area
Packet length Length of data packets
Control packet length Length of control packets
Initial Energy Initial energy of each node
Proportion CHs Proportion of cluster head nodes in the network
ACO Ant Colony Optimization algorithm
Toax Maximum number of iterations for the algorithm
Eclec Electronic energy consumption per bit
p Pheromone evaporation coeflicient
o Weight of pheromone in path selection
B Weight of heuristic information in path selection
y Weight of chaotic perturbation in pheromone update
Ty Initial concentration of the pheromone matrix
r Control parameter for Logistic chaotic mapping
En Total energy consumption of nodes
do Distance threshold for energy consumption model
Ery Energy consumption for transmitting data
Efs Energy loss coeflicient for free space propagation
Emp Energy loss coeflicient for multipath propagation
Eagq Energy consumption for data aggregation

ERx Energy consumption for receiving data

Epa Energy consumption for data aggregation
P;; Probability of an ant moving from node i to node j
T Pheromone concentration on the path from node i to node j
Q Pheromone intensity constant
Chaos(x;) Chaotic perturbation term based on Logistic map
n(i, j) Heuristic function for node i selecting node j as the cluster head
dist(i, j) Distance between node i and node j

k Amount of data transmitted in bits
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3 Model Definition

In WSNs, sensor nodes are deployed in the monitoring area to collect environmental data and transmit
it to the Base Station (BS). Since the distance between sensor nodes and the base station is usually long,
direct communication would consume a significant amount of energy, thereby drastically reducing the
network’s lifespan. To address this challenge, the clustering model has been introduced as an efficient network
organization method, which optimizes energy consumption and extends the network lifespan by dividing
the network into multiple clusters. In the clustering model, each cluster consists of a Cluster Head (CH) node
and multiple ordinary nodes. The cluster head node is responsible for receiving data from nodes within the
cluster, performing data aggregation, and forwarding the aggregated data to the base station, while ordinary
nodes only need to communicate with the cluster head, thereby reducing the energy consumption caused by
long-distance transmission.

During the clustering process, the selection of the cluster head is a critical step that directly
affects the network’s energy efficiency and overall performance. To ensure the long-term stable operation
of the network, cluster head selection needs to comprehensively consider multiple parameters, including
the residual energy of nodes, the distance between nodes, communication delays, and network load. By
optimizing the cluster head selection strategy, it is possible to prevent certain nodes from being overused
and depleting their energy, while balancing the network load and reducing communication delays, thereby
extending the network’s lifespan. Additionally, the clustering model further reduces energy consumption by
employing data aggregation techniques to minimize redundant data transmission.

This paper proposes a new hybrid optimization algorithm that selects the optimal cluster head by
comprehensively considering parameters such as delay, distance, and energy, thereby achieving efficient
optimization among energy efficiency, load balancing, and network lifespan extension. To quantify energy
consumption and optimize network performance, the objective optimization function in the WSN clustering
model can be expressed as Fq. (1):

Em =ETx(k,d)+ERx(k)+EDA(k) (1)

This model describes the energy consumption of nodes during data transmission, reception, and
aggregation. The energy consumption is calculated based on the distance between the transmitter and
receiver and the amount of data transmitted. Specifically, the energy consumption Er, (k, d) for a sensor
transmitting k-bit information over a distance d can be expressed as:

ETx(k’ d) :ETx—dec(k) +ETx—amp(k, d) (2)

where E7y_g..(k) is the energy consumed by the circuit, and E1,_smp (k, d) is the energy consumed by the
amplifier. Depending on the transmission distance, the energy consumption model is divided into the free
space propagation model and the multipath fading model:

KEeiee + keged?,  ifd < dy

3
kE;ec + kempd47 ifd > d, 3)

ETx(k’ d) = {

where E, |, is the circuit energy consumption coefficient, e, and ¢,,, are the energy loss coefficients for free
space and multipath propagation, respectively, and d, is the distance threshold, calculated as:

The distance threshold d is calculated as:

8 S
do =+ L (4)
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The energy consumption Eg, (k) for a data-receiving node to receive k-bit data is calculated as:

Erx(k) = kEejec (5)
The energy consumption Ep4 (k) for aggregating k-bit data is calculated as:

Epa(k) = kE,qq (6)
The residual energy update formula for node j is expressed as:

Ej(k+1)=E;(k) = En, (7)

where E,, is the data aggregation energy coefficient, and E,;.. depends on several factors such as digital
encoding, modulation, filtering, and signal spreading. The amplifier energy &;,d*/e,,d* depends on the
distance between the transmitter and receiver, as well as the acceptable bit error rate. Here, dj is the distance
threshold, When the distance is less than the threshold dy, the free space propagation model is used to
calculate energy consumption. When the distance reaches or exceeds dy, the multipath fading model is
applied instead.

4 The AC-ACO Method for WSNs

In typical deployment scenarios of WSNs, the base station is usually located at the center of the
monitoring area to efficiently receive data transmitted by sensor nodes. However, due to the long distance
between some sensor nodes and the base station, direct communication results in high energy consumption.
At the same time, when using a multi-hop transmission mode, nodes closer to the base station bear a heavier
relay data forwarding burden, causing their energy consumption to deplete much faster than nodes farther
away. This creates a “hotspot” problem, affecting the overall network lifespan and stability.

To address the inherent nature of this issue as a path optimization problem, this paper adopts the ACO
algorithm as the fundamental optimization framework. Compared to other swarm intelligence algorithms,
ACO demonstrates inherent advantages in path planning. Its pheromone update mechanism dynamically
adapts to changes in network topology and node energy levels, offering strong global search and local refine-
ment capabilities. Moreover, it is suitable for distributed implementation with low computational overhead,
making it particularly appropriate for resource-constrained WSN environments. However, conventional
ACO algorithms tend to fall into local optima in complex search spaces, limiting their ability to achieve
global optimization in clustering and routing decisions. Therefore, further improvements are necessary to
enhance the algorithm’s search performance and adaptability.

To improve the energy efficiency of WSNs and balance the network load, this paper proposes an
Adaptive Chaotic Ant Colony Optimization (AC-ACO) algorithm to optimize cluster structures and data
transmission paths. By introducing an adaptive chaotic strategy, the algorithm maintains the global search
capability of ACO while leveraging the random perturbation characteristics of chaotic mapping to enhance
the algorithm’s ability to escape local optima, improve the rationality of cluster head selection, and optimize
data transmission paths.

Most current heuristic-based clustering and routing algorithms for WSNs are prone to falling into
local optima and suffer from unbalanced energy utilization, which affects the long-term operation of the
network. To address this, AC-ACO adopts a dynamic competition radius mechanism to cluster the network,
forming appropriately sized data clusters in different regions to balance the energy consumption of nodes.
Additionally, the algorithm combines chaotic perturbation to optimize the pheromone update strategy,
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enabling data flows to dynamically adjust transmission paths based on energy consumption. This reduces
the energy depletion problem in high-load areas, effectively extending the networkss lifespan.

In the following sections, this paper will detail the key components of the AC-ACO algorithm,
including the conventional ant colony algorithm, the improved ant colony optimization algorithm, and the
optimization process of the algorithm.

4.1 Conventional Ant Colony Optimization Algorithm

ACO is abio-inspired heuristic optimization algorithm based on the simulation of ant foraging behavior.
In nature, ants release pheromones on the paths they traverse while searching for food. Other ants sense these
pheromones and tend to choose paths with higher pheromone concentrations. Over time, the pheromone
concentration on shorter paths gradually increases, eventually forming an optimal path. The ACO algorithm
is based on this mechanism, solving combinatorial optimization problems through the collaborative behavior
of artificial ant colonies.

In the cluster routing optimization problem of WSNS, the core objective of ACO is to determine the
optimal cluster head nodes while optimizing intra-cluster and inter-cluster data transmission paths to extend
network lifetime and improve energy efficiency. During the search process, ants select cluster heads based
on pheromone concentrations and heuristic information on the paths, thereby optimizing data transmission
strategies. In ACO, the probability of an ant choosing the next-hop node is determined by both pheromone
concentration and heuristic information, calculated as follows:

a B
TijMij

P B
2okeN; Tik Mk

(8)

ij =

where P;; is the probability of an ant moving from node i to node j, 7;; is the pheromone concentration on

the path i — j, #;; is the heuristic information, typically related to the distance d;j, i.e., 77;j = ﬁ, a and f3 are
ij

parameters that adjust the influence weights of pheromone and heuristic information, respectively, N; is the
set of neighboring nodes available for selection from the current node.

The path optimization in ACO primarily relies on the dynamic updating of pheromones. After each
iteration, the pheromones are updated according to the following formula:

Tij:(l—P)'TiﬁZATgc) )

where p is the pheromone evaporation coeflicient (0 < p < 1), which prevents the infinite accumulation of
pheromones and ensures the algorithm’s ability to explore new paths. ATEJI.{)
released by the k-th ant on the path i — j, typically defined as:

is the pheromone increment

(10)

Ar0) _ {L%, if ant k traverses path (i, j)
ij

0, otherwise

where Q is the pheromone intensity constant, which controls the overall level of pheromone release. Ly is
the path length traversed by the k-th ant. The shorter the path, the more pheromone the ant releases, thereby
reinforcing high-quality paths.

Through the continuous updating of pheromones, ACO can gradually optimize path selection, guiding
the entire ant colony toward the optimal solution. However, ACO still faces several issues, such as a tendency
to fall into local optima, slow convergence speed, and susceptibility to random factors during the initial
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search phase. Therefore, based on ACO, this study introduces an Adaptive Chaos Strategy to further enhance
the algorithm’s global search capability and improve its ability to escape local optima.

4.2 Adaptive Chaotic Ant Colony Optimization Algorithm

This paper proposes a novel adaptive chaotic strategy. Based on chaotic dynamics, this strategy aims to
enhance the global search capability of optimization algorithms through the randomness and irregularity
of chaotic sequences, thereby effectively avoiding the algorithms falling into local optimal solutions during
the solving process. This paper employs the Logistic chaotic mapping to generate chaotic sequences, which
possess extensive exploration capabilities in the solution space and can adaptively adjust the search behavior
at different stages. The strategy demonstrates significant advantages in solving high-dimensional, multi-
modal, and complex optimization problems. By introducing chaotic perturbations to alter the search
trajectory of the algorithm, the adaptive chaotic strategy enhances the algorithm’s ability to locate the global
optimal solution. The core of the adaptive chaotic strategy lies in utilizing the randomness and irregularity
of chaotic sequences to boost the global search capability of optimization algorithms. Chaotic sequences are
typically generated by the Logistic map, with the formula as follows:

Xns1 =7 %, (1= xp) (11)

When the control parameter r € (3.57, 4), the sequence exhibits fully developed chaotic behavior. These
properties enable AC-ACO to traverse the solution space more extensively, which is especially beneficial in
high-dimensional and dynamic environments like WSNs. Specifically, the chaotic sequence serves as a global
stochastic disturbance that perturbs the pheromone update process:

7;j(t+1) = (1-p) - 7i;(t) + A1;j + a - Chaos(x;) (12)

Here, 7;(t) is the pheromone intensity on edge (i, j), p is the evaporation rate, A7;; is the pheromone
deposit, « is the perturbation weight, and Chaos(x;) is the Logistic-derived chaotic term. This formulation
allows the search trajectory to be influenced by global perturbations in addition to conventional local
guidance (pheromone and heuristic values), thus improving the algorithm’s ability to escape local optima
and discover high-quality clustering solutions.

The integration of chaotic perturbation is particularly well-suited to WSN clustering problems, where
network topology and energy distribution evolve dynamically due to uneven node deployment and varying
residual energy. Traditional ACO variants, such as elitist ACO, adaptive pheromone tuning, or hybrid
ACO-PSO/GA models, often suffer from premature convergence, high parameter sensitivity, or computa-
tional inefficiency in such environments. In contrast, the proposed chaotic strategy provides a lightweight
and self-adaptive mechanism that introduces sufficient exploration diversity without incurring significant
computational overhead.

To further enhance the adaptivity and convergence efficiency of the algorithm, this study introduces a
three-level optimization mechanism based on the iterative process:

1. Dynamic Adjustment of the Basic Parameter p:
The pheromone evaporation coeflicient p controls the rate at which pheromone trails decay. A
linearly decreasing strategy is adopted to balance exploration in the early stage and exploitation in the
later stage:

p(t) = Pmax — (%) - (Pmax = Pmin) (13)
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where t denotes the current iteration number, and T is the total number of iterations. ppax and
Pmin represent the upper and lower bounds of the evaporation coefficient, typically set to 0.9 and
0.1, respectively.
2. Adaptive Adjustment of Heuristic Weight f3:
The parameter 3 determines the influence of heuristic information (e.g., distance, energy effi-
ciency) during path construction. An adaptive sigmoid-like transition function is employed to smoothly
enhance its effect during the iterative process:

/j(t) = ﬁmin + (ﬁmax - ﬁmin) : (m) (14)

This function ensures that heuristic guidance becomes more dominant as the algorithm progresses.
3. Energy-Aware Chaotic Disturbance Adjustment Based on Total Network Energy Consumption
Eiotar:
The chaotic disturbance strength « is dynamically adjusted according to the total network energy
consumption at iteration f:

Erotal (t) — Enp

(15)
Ew — Epp

(X(t) = ®min + ((xmax - (xmin) .
where Ey, and Ej, denote the upper and lower bounds of energy consumption within the current
iteration window. When E, exceeds a dynamic threshold, the chaotic disturbance is automatically
intensified to explore new solution spaces.

This multi-level adjustment mechanism allows the algorithm to maintain exploratory flexibility in the
early stage while gradually shifting toward heuristic-driven convergence, thus ensuring both stability and
quality of the final solution.

In summary, the proposed adaptive chaotic strategy not only has a solid theoretical foundation but
also demonstrates practical necessity in WSN clustering tasks. Compared to existing ACO variants, it
effectively overcomes the limitations of local optima and insufficient exploration, while maintaining low
computational cost, offering a promising and generalizable enhancement for clustering optimization in
wireless sensor networks.

4.3 The Algorithm Flow of AC-ACO

In AC-ACO, the pheromone matrix is a core component that guides the path selection and cluster
head election processes of the ants. To describe the algorithm flow more clearly, this section represents the
pheromone matrix using a character function and elaborates on the algorithm flow of AC-ACO in detail.
The iterative pseudocode is shown in Algorithm 1. The flowchart of AC-ACO is shown in Fig. 2.

Algorithm 1: AC-ACO algorithm pseudocode.

1: Initialize: maximum iterations Tp,.x, number of ants M, evaporation rate bounds pax, Pmin, heuristic
weight bounds Bumin, Bmax- initial pheromone 7y, chaos control parameter r, chaos weight bounds

®min> ®max> Sigmoid parameter k

2: Initialize pheromone matrix: 7(, j) = 7o, heuristic matrix #(i, j)

3: Initialize residual energy E;(0) for each node j

4: Generate initial chaotic sequence x,, via Logistic map

5: Initialize constants: Q, Lpest

(Continued)
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Algorithm 1 (continued)

6: for iteration t =1 to Tphax do

7:
8:
9:

10:

11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

Update p(t) > Eq.~(13)
Update S(t) > Eq.~(14)
Update a(t) > Eq.~(15)
for each ant k = 1to M do
Construct a feasible path using probabilistic rule: P(i,j) > Eq.~(20)
Apply chaotic disturbance: 7(i, j) > Eq.~(21)
Update residual energy for each node j in the path: E;(t +1) > Eq.~(7)
Update personal best path and fitness if impr
end for
Update global best solution and clustering configurati
Update pheromone matrix for edges in best path: Az;; > Eq.~(10)
Update 7(i, ) > Eq.~(12)

Update chaotic sequence: x,,11
if convergence criterion is met then
break
end if
end for
Output: global best clustering solution

Initialize AC-ACO Parameters

Record the best ant and the global optimal
solution

I

l

Initialize Chaos Sequence

Update Pheromone Matrix and Adjust
Chaotic Disturbance Strength

I

Start Iteration

I

NO
Termination Condition Met?

Each ant k makes a path selection. < Output Best Solution
Each ant k makes a path selection — End

Figure 2: Flowchat of AC-ACO in WSNs
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The pheromone matrix 7 represents the pheromone concentration between nodes, where the element
7;; denotes the pheromone concentration from node i to node j. For ease of description, this paper uses the
character function 7(i, j) to represent the elements of the pheromone matrix:

(i, j) = 7ij (16)
where i and j represent the indices of the nodes, i, j € [1,s], and s is the total number of nodes in the WSNs.
The specific algorithm flow can be described as the following steps:

Step 1: Initialization

Initialize the parameters of AC-ACO for WSN clustering, including the maximum number of iterations,
the number of nodes, node positions, and initial energy. Initialize the pheromone concentration matrix to
allow ants to randomly select paths in the early search stage, enhancing exploration capability:

7(i,j) =10, Vi,je[Ls] (17)

Initialize the heuristic function: Define the heuristic function #(i,j) to represent the heuristic
information for node i selecting node j as the cluster head:

E;

i i) = 18
n(i j) dist(i, ) (18)
where E; is the residual energy of node j, and dist(i, j) is the distance between node i and node j.
Normalization is applied to ensure the stability of heuristic information during the search process.

Chaos sequence initialization: Generate a chaotic sequence using the Logistic map:
Xns1 =7 %, (1= x,) (19)

where r is the control parameter, and the initial value is set according to optimization requirements.
Step 2: Ant Path Selection

Specifically, each ant selects the next node based on the pheromone concentration 7(i, j) and the
heuristic function 7 (i, j). The selection probability P(i, j) is calculated using the following formula:

[r(io )1* - (o )P - [1/Em (i, /)]
> [r(i k)] [n(i, k)] - [1/En(i, k)]7

keallowed

(20)

P(i, j) =

where a, f8, and y are the weighting factors for pheromone, heuristic function, and energy consumption,
respectively, and allowed represents the set of currently available candidate nodes. During the path selection
process, the algorithm prioritizes nodes with higher residual energy, lower energy consumption, and shorter
communication distances as the next-hop targets, thereby ensuring balanced energy consumption across
the network.

To enhance the randomness and diversity of path selection, chaotic perturbation is introduced into
the path selection process: P'(i, j) = P(i, j) + a - Chaos(x; ), By adjusting the value of «, a balance between
global exploration and local exploitation in path searching can be achieved.
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Step 3: Pheromone Update

Global Pheromone Update: In the global pheromone update process, a chaotic disturbance term is
added:

7(i,j) = (1-p) - 7(i, j) + A1(i, j) + a - Chaos(x; ). (21)

Step 4: Adaptive Adjustment Mechanism

In the AC-ACO algorithm, the adaptive adjustment mechanism is one of the key strategies to improve
the search efficiency and stability of the algorithm. First, the intensity of the chaotic disturbance needs
to be dynamically adjusted according to the optimization process. In the early stages of optimization, to
enhance global exploration capabilities, a larger disturbance intensity is set, allowing the ants to explore the
solution space more widely during path selection. As the optimization progresses and the algorithm begins
to converge, the disturbance intensity should be reduced to promote more refined local search, thereby
improving the quality of the final solution.

Additionally, the control parameter of the Logistic map, r, needs to be dynamically adjusted based
on the iteration count and optimization objectives. By setting an adaptive function, the r value can
change over time, allowing the algorithm to adapt to the search needs at different stages and improving
optimization performance.

Step 5: Termination Condition and Output

The termination conditions of the AC-ACO algorithm mainly include two aspects: first, the algorithm
reaches the preset maximum number of iterations; second, the optimization goal converges, meaning the
change in the solution is smaller than the set error threshold, indicating that the search process has stabilized.
To ensure the algorithm’s effectiveness, an error threshold can be set, and by monitoring the trend of
the objective function during the optimization process, it can be determined whether to terminate the
process early.

The specific process is shown in the Fig. 2. After the algorithm ends, the optimal cluster head node set
and clustering results need to be output, along with an evaluation of key performance indicators such as
network energy consumption, lifetime, and data transmission efficiency. Additionally, to further analyze the
algorithm’s convergence trends and stability, multiple rounds of experiments can be conducted to observe the
algorithm’s performance under different parameter settings and perform comparative analysis of the results.

4.4 Complexity Analysis of AC-ACO

The computational complexity of the AC-ACO algorithm primarily depends on three key components:
path construction, fitness evaluation, and pheromone matrix updates. Let N denote the number of nodes in
the network, M the number of ants, and Ty,,x the maximum number of iterations.

« Path Construction: For each ant, constructing a path involves selecting a node based on the pheromone
matrix and heuristic function. This operation has a complexity of O(N). Since there are M ants, the total
complexity for path construction in each iteration is O(M - N).

« Fitness Evaluation: Evaluating the fitness value of a path requires calculating the energy consumption,
load balancing, and network lifespan metrics. Assuming each metric can be computed in O(N), the
fitness evaluation for all ants in an iteration has a complexity of O(M - N).

« Pheromone Matrix Update: Updating the pheromone matrix involves adjusting the pheromone values
for all edges based on the paths of all ants. This operation has a complexity of O(M - N).
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The complexity of LEACH-family protocols is given by:

LEACH = Tppux x N (22)
LEACH-C = T4y x (N?) (23)
GA =Tpax x NxM (24)
PSO = Typax x N x M (25)

Combining these components, the overall complexity of AC-ACO for T, iterations is
O(Tmax-M-N). This demonstrates that AC-ACO maintains a polynomial-time complexity,
making it computationally feasible for large-scale wireless sensor networks while achieving high
optimization performance.

4.5 Convergence Analysis of AC-ACO

To establish the mathematical convergence of the AC-ACO algorithm, we employ a Markov chain
framework to model the stochastic optimization process. Let S denote the state space comprising all
possible cluster configurations and pheromone distributions. The following theorem guarantees asymptotic
convergence to the global optimal solution.

Theorem 1. For the AC-ACO algorithm defined in Algorithm 1, let ¢ represent the pheromone matrix
corresponding to the optimal cluster configuration. Under the conditions:

1. The chaotic disturbance strength r satisfies lim;_, o, r(¢) = 0 with Y72, r(#) = oo
2. The pheromone persistence factor p € (0,1) ensures []72,(1-p)" =0

then,
lim P($(1) = ¢°) =1 (o)

where P(-) denotes the probability measure over the Markov chain states.

Proof: Step 1: State Space Construction Define the Markov chain {¢, } ;>0 where each state corresponds to
a unique pheromone matrix configuration. The state transition incorporates both the ACO update rules and
chaotic perturbations.

Step 2: Ergodicity Analysis The chaotic mapping operator I' : R” — R" satisfies:

NaooN —

1 &
lim — kzlrk(x)= fX F)du(x) (27)

for almost all x € X, where y is the ergodic measure. This ensures the exploration capability covers the entire
solution space.

Step 3: Martingale Convergence Define the Lyapunov function V(t) = |¢(t) — ¢*| % The update rule
ensures:

E[V(t+1)|F] <(Q-a)V(t)+ B (28)

where 7 is the filtration, a, = O(t™"/?), and B, represents chaotic perturbation bounded by r(t). The
Robbins-Siegmund theorem guarantees lim;_,., V() = 0 almost surely.
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Step 4: Absorption Probability As r(t) - 0, the chaotic disturbance becomes negligible. The
pheromone update rule converges to a stationary distribution concentrated on ¢* due to the positive
probability of selecting optimal paths through:

[7:;()]*[1:;)°
Sieng [Ti ()% ]P

k
pi;(t) = (29)
where 7;; incorporates energy and topology constraints. The global convergence follows from the first-visit
lemma in stochastic approximation. O

Remark 1. The adaptive chaotic mechanism provides faster convergence than classical ACO by:

o Accelerating exploration through ergodic chaotic perturbations in early iterations
« Enhancing exploitation via diminishing chaotic noise in later phases
«  Maintaining diversity through nonlinear pheromone updates

Experimental validation in Section 5 confirms the theoretical results.

5 Experiments and Analysis

In this study, the effectiveness of the AC-ACO optimization algorithm in WSNs is comprehensively
validated. To objectively assess its performance, the algorithm is compared with several classic clustering
protocols, including ACO [41], PSO [28], GA [42], LEACH [43], and LEACH-C [44]. The experiments
are conducted in rounds, with each round consisting of a TDMA-based data collection process and a data
aggregation process completed by the cluster head nodes. The performance of the AC-ACO algorithm in
terms of energy consumption, network lifetime, data transmission reliability, and communication delay is
evaluated by systematically monitoring, recording, and analyzing the energy consumption balance and the
failure time points of active nodes. The experiments are carried out on the MATLAB 2021a platform, with
the running environment being a computer equipped with an Intel (R) Core (TM) i5-13500H CPU, 16GB
of RAM, and running the Windows 11 operating system. To ensure the reliability and comparability of the
experimental results, all the comparison algorithms are configured with consistent network parameters,
including node density, initial energy distribution, packet size, and transmission power. Through this
standardized experimental setup, the performance advantages of the AC-ACO algorithm in energy balance,
network lifetime, and algorithm efficiency are accurately assessed, providing theoretical support for its
deployment in practical applications. The detailed simulation parameters are given in Table 2.

Table 2: Simulation parameters

Parameter Value
MAC protocol IEEE 802.15.4
Deployment area size [250, 250]
Node communication radius 20m
Sensor Number 200
BS location (125, 125)
Packet length 2000bits
Control packet length 100bits
Trax 2500
E.rec 50 n]J/bit

(Continued)
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Table 2 (continued)

Parameter Value
p 0.2
o 1
B 3
y 0.1
To 1
r 3.58
Initial energy 0.6
Proportion CHs 0.1

In this study, the simulation parameters are designed to replicate a realistic wireless sensor network
environment and ensure the reliability and reproducibility of the experimental results. The network employs
the IEEE 802.15.4 MAC protocol, with nodes deployed in a 250 m x 250 m area and a communication
radius of 50 m. The total number of sensor nodes is set to 200, and the base station is located at the center
of the area (125,125). The data packet length and control packet length are set to 2000 bits and 100 bits,
respectively, to simulate real-world data transmission scenarios. For the algorithm parameters, the maximum
number of iterations, Ty, is set to 2500, and the electronic energy consumption, Ejec, is 50 nJ/bit. The
pheromone evaporation coeflicient, p, is set to 0.2, while the pheromone importance factor, «, and the
heuristic information factor, 3, are set to 1 and 3, respectively. The chaos disturbance factor, y, is 0.1, the
initial pheromone concentration, 7y, is 1, and the chaos mapping parameter, r, is 3.58. Additionally, the
initial energy of each node is set to 0.6 J, and the proportion of cluster heads (Proportion CHs) is 0.1. These
parameter settings are based on literature research and preliminary experimental tuning, aiming to balance
the global search capability and local optimization ability of the algorithm while ensuring reasonable and
efficient energy consumption distribution across the network. Through the above parameter configurations,
this study comprehensively evaluates the performance of the algorithm under various network conditions.

5.1 Energy Efficiency

This study first compares and analyzes the energy consumption performance differences of the AC-
ACO algorithm and several classical clustering protocols, including GA, ACO, PSO, LEACH, and LEACH-C,
in WSNs. As shown in Fig. 3 and Table 3, the experimental results indicate that AC-ACO has significant
advantages in data transmission path optimization and energy balancing. The algorithm can dynamically
adjust the cluster head selection strategy and, by combining a chaotic disturbance mechanism, effectively
reduces the overall energy consumption of the network. Through optimal path selection, AC-ACO reduces
the number of unnecessary relay nodes during data forwarding while ensuring that energy-efficient nodes
take on more forwarding tasks, thus significantly extending the network lifetime. In contrast, traditional
optimization methods such as GA, ACO, and PSO fail to fully consider global energy balance in the path
selection process, resulting in imbalanced energy consumption and rapid energy depletion of some nodes.
Although LEACH and LEACH-C improve energy consumption distribution to some extent, their energy
utilization rate remains low, leading to a shorter network lifetime.
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Figure 3: Total energy consumption of WSNs under different algorithms

Table 3: Comparative analysis of total energy consumption in WSNs using different optimization algorithms (Units:
Joules)

Rounds GA ACO PSO LEACH LEACH-C AC-ACO

500 79.2 60.1 5938 921 48.7 39.6
1000 1183.0 970 923 118.8 75.6 62.8
1500 120.0 1124 108.9 120.0 105.3 80.2
2000 120.0  120.0 120.0 120.0 120.0 101.9
2500 120.0  120.0 120.0 120.0 120.0 120.0

The experiments in Fig. 4 and Table 4 further confirm that as the number of network runs increases,
although the average remaining energy of all algorithms shows a decreasing trend, the rate of decrease in the
average remaining energy of AC-ACO is significantly lower than that of the comparative algorithms, fully
reflecting its scalability and sustainability in large-scale WSN deployment.
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Table 4: Average remaining energy of different algorithms at various rounds

Rounds GA ACO PSO LEACH LEACH-C AC-ACO
0 0.60 0.60 0.60 0.60 0.60 0.60
500 021 030 031 0.14 0.35 0.41
1000 0.01 011 014 0.01 0.22 0.28
1500 0 0.04 0.06 0 0.07 0.20
2000 0 0 0 0 0 0.12
2500 0 0 0 0 0 0

5.2 Network Lifetime

5355

In this experiment, we conducted a comparative analysis of the number of surviving nodes in WSNs
under different clustering algorithms, as shown in Fig. 5 and Table 5. The AC-ACO algorithm performed
the best, with the slowest decline in the number of surviving nodes, maintaining a high proportion even in
the later iterations. This is attributed to its adaptive chaotic strategy, which dynamically adjusts parameters
to enhance global search capabilities, combined with a precise node selection mechanism that activates
only nodes with sufficient energy and optimal locations. This effectively balances energy consumption and
extends the network lifespan. The LEACH-C algorithm performed second best, with a slower decline in the
number of surviving nodes, showing stable performance during the mid-iterations. By optimizing energy
distribution through centralized cluster head selection, it is suitable for medium-scale networks. However,
its performance is slightly inferior to AC-ACO in large-scale networks, primarily due to its static cluster head
selection mechanism, which cannot dynamically adapt to network changes.
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Table 5: Comparison of surviving nodes under different clustering algorithms

Operation Rounds GA ACO PSO LEACH LEACH-C AC-ACO

500 36 50 50 23 58 68
1000 2 18 18 2 37 47
1500 0 7 7 0 12 33
2000 0 0 0 0 0 20
2500 0 0 0 0 0 0

Traditional algorithms such as LEACH, ACO, PSO, and GA performed poorly. LEACH, due to its lack
of global energy optimization, leads to premature failure of some nodes, resulting in a sharp decline in
the number of surviving nodes in the later stages. ACO and PSO, while optimizing paths and cluster head
selection, are prone to falling into local optima, causing energy consumption imbalances and a noticeable
decline in the number of surviving nodes during the mid-iterations. GA performed the worst, as its high
computational complexity and tendency to fall into local optima result in inefficient energy management.

5.3 Data Transmission Reliability

The AC-ACO algorithm demonstrates significant advantages in data delivery rate (DDR). The specific
performance of the algorithm is shown in Fig. 6. Under ideal unidirectional communication conditions, the
algorithm maximizes the successful transmission rate of data packets through its adaptive chaotic strategy
and precise path optimization. Compared to LEACH, ACO, PSO, and GA, under the same node configu-
ration, AC-ACO can deliver more data packets to the specified target, maintaining a high data delivery rate
even in the later iterations. The LEACH-C algorithm performs second best, optimizing data transmission
paths through centralized cluster head selection, making it suitable for medium-scale networks, though
its performance is slightly inferior to AC-ACO in large-scale networks. In contrast, traditional algorithms
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such as LEACH, ACO, PSO, and GA exhibit lower data delivery rates, with significant declines in the later
iterations, primarily due to their lack of global optimization and dynamic adaptability. Overall, the AC-ACO
algorithm excels in ensuring reliable network communication, particularly in resource-constrained wireless
sensor network environments, showcasing its efficient data transmission capabilities. Future research could
combine the strengths of AC-ACO and LEACH-C to further optimize data transmission algorithms and
enhance network performance.

Data Delivery Rate Comparison
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Figure 6: Comparison of data delivery rate under different algorithms

6 Conclusion

This paper proposes an efficient clustering algorithm based on Adaptive Chaotic Ant Colony Optimiza-
tion (AC-ACO), aiming to address critical issues such as low energy efficiency and short network lifetime
in WSNs. By integrating the global search capability of Ant Colony Optimization (ACO) with the dynamic
perturbation characteristics of chaotic mapping, AC-ACO achieves significant innovations in cluster head
selection, pheromone update, and path optimization. Experimental results demonstrate that, compared
to classical algorithms such as LEACH, PSO, GA, and ACO, AC-ACO exhibits superior performance in
key metrics including network lifetime, energy efficiency, data transmission reliability, and communication
delay. Specifically, in a 250 m x 250 m monitoring area, AC-ACO extends the network lifetime while
reducing end-to-end communication delay, significantly improving the energy consumption balance in
large-scale WSNS.

The core contributions of this study are as follows: (1) An efficient clustering algorithm (AC-ACO)
is designed, which combines chaotic perturbation to optimize the pheromone update strategy, effectively
achieving a multi-objective trade-off among energy consumption, load balancing, and network lifetime.
(2) An adaptive chaotic strategy based on Logistic mapping is proposed, which dynamically adjusts the
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perturbation intensity to balance global exploration and local exploitation capabilities. (3) A chaotic-driven
intra-cluster data aggregation method is developed, reducing redundant data transmission and lowering
communication overhead. These innovations provide theoretical support and technical guarantees for the
application of WSNs in complex and dynamic environments.

However, the computational complexity of AC-ACO in ultra-large-scale heterogeneous networks still
requires further optimization. Future research will focus on the following directions: (1) Integrating deep
reinforcement learning techniques to enhance the algorithm’s real-time response capability to dynamic
topologies. (2) Exploring a distributed chaotic optimization framework to reduce the resource consumption
of centralized computing. (3) Extending AC-ACO to multi-objective optimization scenarios to simultane-
ously optimize energy consumption, security, and service quality. This study provides a new solution for
the long-term stable deployment of WSNSs in fields such as smart cities and industrial IoT, with significant
theoretical value and engineering application prospects.
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