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ABSTRACT: In medical imaging, accurate brain tumor classification in medical imaging requires real-time processing
and efficient computation, making hardware acceleration essential. Field Programmable Gate Arrays (FPGAs) offer
parallelism and reconfigurability, making them well-suited for such tasks. In this study, we propose a hardware-
accelerated Convolutional Neural Network (CNN) for brain cancer classification, implemented on the PYNQ-Z2
FPGA. Our approach optimizes the first Conv2D layer using different numerical representations: 8-bit fixed-point
(INTS), 16-bit fixed-point (FP16), and 32-bit fixed-point (FP32), while the remaining layers run on an ARM Cortex-
A9 processor. Experimental results demonstrate that FPGA acceleration significantly outperforms the CPU (Central
Processing Unit) based approach. The obtained results emphasize the critical importance of selecting the appropriate
numerical representation for hardware acceleration in medical imaging. On the PYNQ-Z2 FPGA, the INT8 achieves
a 16.8% reduction in latency and 22.2% power savings compared to FP32, making it ideal for real-time and energy-
constrained applications. FP16 offers a strong balance, delivering only a 0.1% drop in accuracy compared to FP32 (94.1%
vs. 94.2%) while improving latency by 5% and reducing power consumption by 11.1%. Compared to prior works, the
proposed FPGA-based CNN model achieves the highest classification accuracy (94.2%) with a throughput of up to 1.562
EPS, outperforming GPU-based and traditional CPU methods in both accuracy and hardware efficiency. These findings
demonstrate the effectiveness of FPGA-based Al acceleration for real-time, power-efficient, and high-performance
brain tumor classification, showcasing its practical potential in next-generation medical imaging systems.

KEYWORDS: Brain cancer; hardware implementation; convolutional neural networks; performance evaluation;
efficient computing; real-time medical applications

1 Introduction

The rapid advancements in medical image analysis, particularly in cancer detection, have led to an
increasing reliance on Convolutional Neural Networks (CNNs) for accurate and efficient classification. In
particular, brain cancer classification from 2D MRI (Magnetic Resonance Imaging) slices has become a
crucial application of CNNs, where precision and speed are critical for timely diagnosis [1,2]. Real-time
classification of these 2D MRI slices presents distinct computational and clinical challenges. In diagnostic
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workflows, rapid processing of sequential 2D MRI slices is essential for efficient tumor localization and multi-
classification, particularly in time-sensitive scenarios like emergency stroke assessment. However, this task
is complicated by MRI specific artifacts including slice-to-slice intensity variations, partial volume effects
at tumor boundaries, and in-plane susceptibility distortions that degrade classification accuracy [3]. While
deep learning models achieve high accuracy in offline analysis, their computational demands especially when
using convolutional operations (Conv2D) present significant challenges in terms of processing time, resource
utilization, and energy consumption [4,5]. This challenge becomes more pronounced when dealing with
resource-constrained environments such as embedded systems or real-time medical applications [6], where
the models’ computational requirements often prevent real-time performance when processing streaming
2D MRI data.

The growing complexity of CNNs has highlighted the need for hardware acceleration to achieve faster
processing and improved energy efficiency. Hardware implementations of CNN operations, such as Conv2D,
are particularly beneficial in alleviating the strain on traditional software-based methods [7-9]. Despite their
potential, the choice of numerical precision (e.g., 8-bit fixed-point vs. 16-bit or 32-bit fixed-point) introduces
trade-offs that affect both computational efficiency and classification accuracy. The motivation for this
study arises from the need to optimize hardware-accelerated Conv2D implementations, balancing precision,
performance, and resource utilization to meet the stringent demands of real-time brain cancer classification.

The need for hardware-accelerated Conv2D operations arises from the requirement for real-time
or near-real-time classification of MRI images in edge computing environments. MRI image acquisition
rates vary depending on the scanning protocol and resolution, with standard sequences generating new
images every few seconds [10]. For practical deployment on an edge device, the classification process must
keep pace with image acquisition to enable real-time decision support without introducing significant
delays. Traditional software-based CNN inference on general-purpose processors may fail to meet these
timing constraints due to computational complexity, particularly in resource-constrained edge devices [11].
Hardware acceleration on FPGA offers a viable solution by optimizing the balance between precision,
performance, and resource utilization.

Fixed-point precision (e.g., 8-bit) offers significant advantages in terms of reducing hardware demands
and improving inference speed, making it a promising choice for resource-constrained environments such as
edge devices. However, this precision comes at the cost of potentially reduced classification accuracy, which
is especially critical in high-stakes applications like cancer detection [12,13]. On the other hand, floating-
point precision (16-bit or 32-bit) provides higher accuracy, essential for complex classification tasks, but
it comes with increased resource consumption and latency, which can hinder real-time performance on
limited hardware [14]. Balancing these trade-offs is crucial for the successful implementation of hardware-
accelerated convolutional neural networks (CNNs) in medical diagnostics, where both speed and accuracy
are paramount. Recent studies have delved into optimizing hardware architectures for power efficiency and
resource awareness, offering solutions to these challenges while maintaining the necessary performance
levels for real-time, accurate classifications [15].

This study aims to explore the impact of different numerical precision formats on hardware-accelerated
Conv2D operations for brain cancer classification using CNNs. Specifically, we analyze the trade-offs
between 8-bit fixed-point and 16-bit/32-bit fixed-point implementations, focusing on classification accuracy,
processing time, and resource utilization. The objective is to identify an optimized hardware design that
provides the best balance of performance and resource efficiency, while maintaining the accuracy necessary
for reliable brain cancer detection. The contributions of this work are:

o An convolutional neural network (CNN) is proposed for the Multi-classification of brain cancer in
MRI images.
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» A novel hybrid approach where the first Conv2D layer is implemented in FPGA hardware, leveraging
different numerical precision strategies (INT8, FP16, and FP32), while the rest of the network runs on
the ARM Cortex-A9 CPU.

e A detailed Quality of Service (QoS) analysis of hardware-accelerated Conv2D operations for brain
cancer Multi-classification, comparing the impact of various numerical precisions on the classification
performance.

The remainder of this paper is organized as follows: Section 2 reviews related works in hardware-
accelerated CNNs, focusing on the use of Conv2D operations in medical image classification. Section 3
outlines the methodology and experimental setup, including details on the hardware implementation and
precision configurations. Section 4 presents the results and discusses the impact of different numerical
precisions on classification accuracy, processing time, and resource usage. Finally, Section 5 concludes the
paper, summarizing the findings and suggesting directions for future research.

2 Related Works

The integration of hardware acceleration in convolutional neural networks (CNNs) has emerged as a
pivotal advancement in the field of medical imaging, particularly in the diagnosis and treatment of brain
cancer. The ability to process vast amounts of data rapidly and efficiently has opened new avenues for
research and clinical applications. This literature review aims to synthesize the existing body of knowledge
regarding hardware-accelerated CNNG in the context of brain cancer, highlighting significant contributions,
methodologies, and the implications of these technologies. Several studies have conducted comparative
analyses of different hardware implementations of CNNs, focusing on precision and execution time [14,15].
These studies provide valuable insights into the effectiveness of various approaches in the context of brain
tumor detection.

FPGA implementations of CNNs have gained prominence due to their flexibility and reconfigurability.
Researchers have explored various architectures for implementing Conv2D layers on FPGAs, focusing on
optimizing resource utilization and execution time. Pacini et al. presented an FPGA-based CNN accelerator
that achieved a substantial reduction in execution time while maintaining classification accuracy for brain
tumor detection [16]. Their work highlighted the trade-offs between precision and speed, revealing that
quantizing weights and activations to lower bit-widths (e.g., 8-bit) could significantly enhance performance
without compromising diagnostic efficacy.

Quantizing CNNss to 8 bits has been shown to maintain acceptable levels of accuracy while significantly
improving execution speed. A comparative analysis by Neiso et al. demonstrated that 8-bit quantization could
yield performance improvements of up to 4x in execution time without a substantial drop in classification
accuracy for brain tumor detection tasks [17]. The authors noted that while some information loss occurs
due to quantization, the overall impact on model performance can be mitigated through careful training
strategies, such as using mixed-precision training.

Rayapati et al. [18] proposed an FPGA-based hardware-software co-design to accelerate brain tumor
segmentation using a combination of Otsu’s binarization and the Watershed algorithm. Their approach
leverages the strengths of a System-on-Chip (SoC) architecture by offloading the highly parallelizable Otsu
algorithm to the programmable logic (PL), while executing the more complex, sequential Watershed method
on the processor system (PS). By optimizing the hardware implementation with pipelining, loop unrolling,
and the use of Digital Signal Processing/Mathematical (DSP/MATH) blocks, they achieved a1.97x speed-up
over a CPU-only solution, driven primarily by a 1973x reduction in latency when moving the Otsu module
to the FPGA. Their work demonstrates the effectiveness of hybrid FPGA architectures for segmentation
tasks. In contrast, our work focuses on CNN-based brain tumor multi-classification, where we accelerate
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the Conv2D layers using a quantization-aware, hybrid hardware strategy to improve inference speed and
efficiency in classification tasks.

Recent advances in FPGA-based hardware acceleration for convolutional neural networks (CNNs)
have demonstrated significant potential in enhancing the performance of medical imaging applications,
particularly for brain tumor detection. Our work builds upon this foundation by focusing specifically on
Conv2D optimization a computational bottleneck in CNNs through fixed-point implementations at 8-bit,
16-bit, and 32-bit precision levels. While 8-bit quantization is a common technique to reduce computational
complexity, our contribution goes further by offering a precision-aware design space exploration supported
by a comprehensive Quality-of-Service (QoS) analysis. This includes trade-offs between execution time,
resource utilization, and classification accuracy, with consideration for real-world clinical applicability.

Furthermore, unlike prior works such as those by Pacini et al. [16] and Neiso et al. [17], which
implement full hardware accelerators by mapping the entire CNN onto the FPGA fabric, our approach
adopts a selective hybrid Conv2D acceleration strategy. Specifically, we offload only the most computationally
intensive Conv2D layer to the FPGA, while executing the remaining layers such as pooling and dense in
software on the ARM processor. This enables a flexible and scalable architecture that significantly reduces
hardware resource usage and power consumption without sacrificing performance. The fully-mapped
implementations in [16,17] often suffer from limited adaptability to different CNN architectures and may
face scalability challenges on resource-constrained FPGAs. In contrast, our method achieves real-time
inference with a lighter hardware footprint, making it more practical for embedded medical applications
where both computational efficiency and architectural flexibility are critical. These design decisions clearly
distinguish our contribution from existing literature and emphasize its novelty, efficiency, and relevance for
next-generation medical imaging systems.

In the next section, we present the methodology and experimental setup used to implement and
evaluate our proposed brain cancer multi-classification system. This includes the CNN model design, the
hybrid hardware acceleration strategy for Conv2D layers, and the experimental framework used to assess
performance across different quantization levels.

3 Methodology and Experimental Setup

In this section, an overview of the proposed Al-based brain cancer classification is provided, includ-
ing details of the dataset and training parameters. Additionally, an overview of the proposed hardware
acceleration of Conv2D is presented to enhance the performance of the brain cancer classification model.

3.1 Proposed Brain Cancer Multi-Classification
Methodology

The proposed method for brain cancer classification is structured around a convolutional neural
network (CNN) architecture, designed to classify brain MRI images into four distinct categories: glioma,
meningioma, no tumor, and pituitary tumors. The overall workflow consists of three main stages: data
preprocessing, model architecture design, and training and evaluation of the model. Fig. 1 presents the
workflow of the proposed AI-Model for brain cancer classification.
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Figure 1: Workfow of the proposed AI-Model for brain cancer classification

The learning algorithm employed in this study is based on a supervised learning framework, which is
particularly suitable for classification tasks. The CNN architecture is designed to automatically learn features
from the input images, thereby eliminating the need for manual feature extraction. The training process
involves feeding the model with labeled MRI images, allowing it to learn the distinguishing characteristics
of each tumor type through backpropagation and optimization.

The training of the CNN is performed using the Adam optimizer, which is known for its efficiency in
handling sparse gradients and its adaptive learning rate capabilities. The loss function utilized is categorical
cross-entropy, which is appropriate for multi-classification problems. The model is trained over a series of
epochs, and the performance is evaluated using a validation set to prevent overfitting.

To ensure the robustness of the model, a stratified k-fold cross-validation approach is adopted. This
method allows for the effective utilization of the dataset by dividing it into k subsets, or folds. In each iteration,
one fold is used as the validation set while the remaining k-1 folds serve as the training set. This process is
repeated k times, providing a comprehensive evaluation of the model’s performance across different subsets
of the data.

The performance metrics employed to evaluate the model include accuracy, precision, recall, and F1-
score. These metrics provide a holistic view of the model’s classification capabilities, allowing for a deeper
understanding of its strengths and weaknesses. Additionally, confusion matrices are generated to visualize
the classification performance across the different tumor categories, facilitating the identification of any
potential misclassifications.

Dataset and Preprocessing

The dataset employed in this study comprises a total of 7023 MRI images, categorized into four classes:
glioma (1621 images), meningioma (1645 images), no tumor (2000 images), and pituitary tumors (1757
images). These images were sourced from a publicly accessible MRI dataset, Msoud [19], obtained from the
Kaggle repository. The Msoud dataset integrates three publicly available datasets: Figshare [20], SARTAJ [21],
and BR35H [22], ensuring a diverse representation of each tumor type (Fig. 2).
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Figure 2: Sample brain tumor classification labels: glioma, meningioma, and pituitary tumor

To facilitate robust model evaluation, the dataset was split into training and testing sets using an 80:20
ratio, a standard practice in machine learning. Before partitioning, a duplication analysis was performed,
and 297 duplicate images identified across the combined sources were removed to ensure a strict separation
between training and testing sets. This step was essential to prevent data leakage and ensure the integrity
of the evaluation process. The diversity and balance of the dataset are critical for training a reliable model
capable of generalizing effectively to unseen data.

Prior to training the model, a series of preprocessing steps were undertaken to enhance image quality
and facilitate effective learning. The preprocessing pipeline includes image resizing and data augmentation.
All MRI images were resized to a uniform dimension of 256 x 256 pixels, ensuring consistent input
dimensions for the CNN and enabling efficient processing across the dataset.

To enhance the model’s robustness and prevent overfitting, data augmentation techniques are employed.
The augmentation strategies include: Rotation, Flipping, Zooming, and Brightness Adjustment. Rotation
involves rotating images by specific angles, such as 90°, 180°, and 270°, to simulate variations in patient
positioning. Flipping includes both horizontal and vertical flips, introducing additional variability to help
the model handle different image orientations. Zooming, applied within a range such as 0.8x to 1.2x of
the original size, ensures the model can recognize tumors at different scales. Lastly, Brightness Adjustment,
typically altering the brightness by +20%, accounts for variations in imaging conditions, enabling the model
to generalize better across diverse datasets. These augmentation techniques collectively improve the model’s
ability to adapt to real-world scenarios and enhance its predictive accuracy.

These augmentation techniques are applied in real-time during the training process, effectively increas-
ing the diversity of the training dataset without the need for additional data collection. Table | summarizes
the data augmentation strategies used to enhance the model’s ability to generalize and improve its robustness.

Table 1: Data augmentation parameters for brain cancer classification

Augmentation technique Parameters Description
Rotation Angles: 90°,180°, 270° Rotation of images to simulate
variations in patient
positioning.

(Continued)
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Table 1 (continued)

Augmentation technique

Parameters

Description

Flipping

Zooming

Brightness Adjustment

Horizontal, Vertical

Range: 0.8x to 1.2x

+20% of the original brightness

Horizontal and vertical flipping
of images to introduce
variability.

Zooming in and out to
recognize tumors at different
scales.

Adjusting image brightness to
account for variations in
imaging conditions.

3.2 Proposed CNN Architecture for Brain Cancer Multi-Classification

The proposed CNN architecture is designed to effectively capture the spatial hierarchies in the MRI
images, enabling accurate multi-classification. The architecture comprises four convolutional layers, each
followed by a max-pooling layer, culminating in a fully connected output layer. Fig. 3 illustrate the proposed
CNN architecture for Brain Cancer Classification (Table 2).

Feature Extractor Classifier
I 1 f—
o t_én o E’ o t_én o Eo IS =
-— — = —_— L1 I
el z| € z| 8 HK HEE: L Ze
S| & S| & S| 3 S|3| = 3
= = = =
Input + 12727 I 62162 I 30x30 I 1ax14 I T T
Kernel E 3x3 3n3 3x3 3x3
Channels (depth) ¥ 32 64 128 256 256 4
Figure 3: Proposed CNN architecture for brain cancer classification
Table 2: Detailed summary of CNN model architecture for brain cancer classification
Layer (Type) Output shape Parameters
Input layer (256, 256, 3) 0
Conv2D (32 filters) (254, 254, 32) 896
MaxPooling2D (127,127, 32) 0
Conv2D (64 filters) (125, 125, 64) 18,496
MaxPooling2D (62, 62, 64) 0
Conv2D (128 filters) (60, 60, 128) 73,856
MaxPooling2D (30, 30, 128) 0
Conv2D (256 filters) (28, 28, 256) 295,168
MaxPooling2D (14, 14, 256) 0

(Continued)
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Table 2 (continued)

Layer (Type) Output shape Parameters
Flatten (50,176) 0
Dense (256 units) (256) 12,845,312
Dense (4 units—output) (4) 1028
Total parameters 13,234,756
Trainable parameters 13,234,756
Non-trainable parameters 0

The architecture begins with an input shape of (256, 256, 1), representing grayscale images. It comprises
three convolutional layers, each paired with a max-pooling layer, followed by fully connected layers for
classification. The first convolutional layer uses 32 filters with a kernel size of (3, 3) and ReLU activation to
extract low-level features such as edges and textures. This is followed by a max-pooling layer with a pool size
of (2, 2), which reduces the spatial dimensions of the feature maps while retaining key features and lowering
computational complexity.

The second convolutional layer employs 64 filters with a (3, 3) kernel and ReLU activation to extract
more complex features by combining those from the first layer. A second max-pooling layer, also with
a pool size of (2, 2), further reduces the feature map dimensions. The third convolutional layer uses 128
filters, a (3, 3) kernel, and ReLU activation to capture high-level representations of the input images, which is
followed by a third max-pooling layer to prepare the feature maps for the fully connected layers. The fourth
convolution layer with 256 filters further increases the number of extracted features, resulting in an output
shape of (28, 28, 256), followed by a MaxPooling2D layer that reduces it to (14, 14, 256). All convolutional
layers use a padding of 2 pixel on all sides (top, bottom, left, right) to preserve the spatial dimensions of the
feature maps throughout the network. This setting helps maintain spatial consistency between layers and
supports effective feature extraction.

A flatten layer then converts the high-dimensional feature maps into a one-dimensional vector,
transitioning the data to the dense layers. The first dense layer, with 256 units and ReLU activation, learns
complex patterns from the flattened feature vector. Finally, the output layer is a dense layer with 4 units
and a softmax activation function, which outputs probabilities for each of the four classes, enabling multi-
classification. This hierarchical structure ensures the model captures increasingly complex features at each
stage, optimizing its ability to classify MRI images accurately.

The training procedure involves several key steps to ensure effective learning and robust performance.
First, the model is compiled using the Adam optimizer and categorical cross-entropy loss function, with
a learning rate set to 0.001, a commonly used value for training CNNs. Next, batch size and epochs are
configured, with a batch size of 32 chosen to balance training speed and model performance, and the number
of epochs set to 50. Early stopping is implemented to halt training if the validation loss fails to improve for a
specified number of epochs. During model training, the augmented training dataset is used, and validation
is performed on a hold-out validation set. The model’s weights are updated using gradients computed
through backpropagation, enabling it to learn optimal parameters for classification. Throughout the process,
performance monitoring is conducted by tracking training and validation loss and accuracy, which helps
assess learning progress and make necessary adjustments. Finally, the model is tested on a separate test
set that was not used during training or validation. This evaluation step is essential for determining the
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model’s generalization capabilities, with performance metrics on the test set providing critical insights into
its effectiveness in classifying unseen MRI images.

3.3 Proposed Hardware-Acceleration

To determine which parts of the model would benefit most from hardware acceleration, we analyzed
the computational load distribution across individual layers. This analysis helps identify performance
bottlenecks and guides our strategy for partial hardware acceleration, where only the most computationally
intensive layers are offloaded to hardware accelerators (e.g., FPGAs or ASICs), while the remaining layers
continue to run on general-purpose processors. Table 3 shows a breakdown of the number of operations
(measured in Multiply-Accumulates (MACs)) for each major layer in the model when run on a CPU. The
percentage contribution of each layer to total computation is also provided.

Table 3: Computational load distribution of CNN layers based on MACs for brain tumor classification

Layer Output shape Parameters MACs (Millions) Total MACs (%)
Conv2D (32 filters) (254, 254, 32) 896 55.7 49.2%
Conv2D (64 filters) (125, 125, 64) 18,496 27 23.8%
Conv2D (128 filters) (60, 60, 128) 73,856 12.4 10.9%
Conv2D (256 filters) (28, 28, 256) 295,168 5.4 4.8%

Dense (256 units) (256) 128 M 12.8 11.3%
Dense (4 units) (4) 1028 0.001 ~0%
Total - 132 M 113.301 100%

In the proposed CNN architecture for brain tumor classification, a detailed analysis of computational
load reveals that the first Conv2D layer is the most computationally intensive. It alone accounts for
approximately 49.2% of the total MAC operations, as shown in Table 3. This is primarily due to its large input
size (256 x 256 x 3) and the relatively high number of filters (32), resulting in 55.7 million MACs. The number
of Multiply-Accumulate operations (MACs) in a convolutional layer is computed as [23]:

MACs=H, x W, x C, x Kj, x K,, x C; (1)

where:

« H,, W,: height and width of the output feature map,
o C,: number of output channels (filters),

« Kj, K,: kernel height and width,

o  C;: number of input channels.

The total MACs for the entire network are approximately 113.3 million, distributed across the con-
volutional and dense layers. The subsequent Conv2D layers consume significantly fewer MACs due to
reduced spatial dimensions after pooling, with the second, third, and fourth Conv2D layers contributing
only 23.8%, 10.9%, and 4.8% of total MACs, respectively. Although the Dense layer with 256 units has a
large number of parameters, its contribution to total MACs is only 11.3%. Given the limited resources of
the target FPGA (PYNQ-Z2) and the goal of minimizing latency and power consumption, accelerating only
the first Conv2D layer provides the most impactful performance gain while keeping hardware utilization
efficient. This selective acceleration strategy optimally balances performance, energy efficiency, and hardware
constraints, making it well-suited for real-time medical imaging applications.
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The first Conv2D layer is identified as the most computationally demanding component of the CNN. It
processes high-resolution MRI inputs and extracts low-level features such as edges and textures, requiring
a large number of Multiply-Accumulate (MAC) operations. Given the large input dimensions and filter
depth, this layer alone accounts for nearly 50% of the total computational load, as detailed in Section 3.2.
Accelerating this layer significantly reduces overall inference time and power consumption, making it
particularly advantageous in resource-constrained environments such as edge devices.

To address these challenges, we propose a hybrid approach for brain cancer multi-classification,
where the first Conv2D layer is implemented in hardware, leveraging different numerical precision
strategies: 8-bit Integer, 16-bit Fixed-Point, and 32-bit Fixed-Point, with the 32-bit representation being
the maximum data width for CPU processing. This hardware-based solution is designed to optimize the
computational load of the first layer. The remaining layers, including MaxPooling, additional Conv2D layers,
Flatten, and Dense layers, are executed in software. By using this hybrid architecture, we leverage hardware
acceleration to optimize the most computation-heavy layer, while maintaining flexibility and scalability
by executing the remaining layers in software. This approach ensures both performance and accuracy,
providing a balanced solution for real-time brain cancer multi-classification on edge devices. Fig. 4 presents
the proposed hybrid approach for brain cancer multi-classification.
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Figure 4: Proposed hybrid inference framework for brain cancer multi-classification

In this study, we implement a CNN architecture tailored for brain cancer classification using a hybrid
hardware-software approach across three different hardware configurations. Each configuration focuses on
accelerating only the first Conv2D layer on FPGA hardware while varying the numerical precision: 8-
bit Integer (INT8), 16-bit Fixed-Point (FP16), and 32-bit Fixed-Point (FP32). The primary objective is to
enhance computational throughput, minimize power consumption, and preserve high classification accuracy
key requirements for real-time, resource-constrained medical applications. By systematically analyzing the
trade-offs among numerical formats, we demonstrate how precision scaling affects performance, efficiency,
and resource utilization in FPGA-based acceleration for medical imaging. Fig. 4 illustrates the proposed
hybrid deployment strategy that integrates both hardware and software components. The first Conv2D layer
is offloaded to FPGA hardware for acceleration using three numerical precision formats: 8-bit Integer (INT8),
16-bit Fixed-Point (FP16), and 32-bit Fixed-Point (FP32). Meanwhile, the subsequent layers including
pooling, additional Conv2D operations, flattening, and fully connected layers are executed on the ARM



Comput Mater Contin. 2025;84(3) 5647

Cortex-A9 processor. This hybrid architecture is designed to optimize inference speed, energy efficiency, and
scalability, making it highly suitable for embedded medical imaging systems.

Fig. 5 illustrates the proposed hardware architecture implemented on the PYNQ-Z2 platform for
accelerating the first Conv2D layer in the CNN model. The design includes modules for input feature
map buffering, weight memory storage, bias integration, fixed-point arithmetic units, padding logic, and
output formatting. The architecture is parameterizable to support multiple numerical formats 8-bit Integer
(INT8), 16-bit Fixed-Point (FP16), and 32-bit Fixed-Point (FP32) providing scalable deployment depending
on application requirements. This implementation targets reduced latency and power consumption for
real-time medical image analysis in embedded systems.
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Figure 5: FPGA-based hardware architecture for accelerating Conv2D operation

For the proposed hardware acceleration, Fig. 5 details the internal architecture of the Conv2D operation
mapped onto the FPGA. The process begins with the element-wise multiplication of input feature blocks
(Block_in) and corresponding filter weights. This core convolution step generates partial products, which are
computed using configurable arithmetic units that support INT8, FP16, and FP32 data formats. This flexibility
allows for balancing accuracy, computation speed, and FPGA resource usage. After the multiplication step,
the partial products are summed and then a bias is added to the accumulated result. The bias term, which
is a constant value associated with each filter, helps to adjust the output of the convolution and is crucial
for improving the model’s accuracy during training. The sum of the products and bias is then passed to an
accumulator register. This register plays a key role in storing and summing the intermediate results of the
convolution, which is especially important for managing the multiple filter operations that occur in parallel
across the input block. The accumulated result is stored in Block_out, which represents the final feature map
produced after applying the convolution operation. The output precision of Block_out is determined by the
selected data representation, such as int8, FP16, or FP32. Each of these data types has different trade-offs
in terms of speed and resource usage, with int8 offering the fastest computation but lower accuracy, and
FP16/FP32 providing higher precision at the cost of increased resource usage.

This hardware architecture is designed for high efficiency, leveraging parallel processing and optimized
data flow to accelerate the Conv2D operation. By oftfloading the most demanding computations to hardware,
it significantly reduces the overall execution time, making it suitable for real-time applications, especially
on resource-constrained edge devices. The proposed approach ensures that the trade-off between speed,
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precision, and resource utilization is optimized, allowing the architecture to handle large-scale medical image
classification tasks efficiently while maintaining high accuracy. The proposed Conv2D for brain cancer multi-
classification is presented in Algorithm 1.

Algorithm 1: Proposed Conv2D for FPGA Acceleration Using Typed Arithmetic (INTS8, FP16, FP32), where
Type € {INTS, FP16, FP32}, and cast (value, type) converts a value to the specified numerical format

Input:

1 I < Input feature map (C_in x H_in x W_in)

2 W < Weight tensor (C_out x C_in x K x K)

3 B < Bias vector (C_out)

4 Pad < Padding size

5 Type < Data format (INTS, FP16, FP32)
Output:

6 O < Output feature map (C_out x H_out x W_out)

7 Output height: H out<  H_in - K+ 2 x pad +1

8 Output width: W_out <~  W_in - K+ 2 x pad +1

9 Initialize :0 <« zeros(C_out x H_out x W_out)

10 Pad the input: I_pad <« ZeroPad(l, pad)

1 For oc =0to C_out —1do

12 For oh=0to H out —1do

13 For ow =0to W_out —1do

14 acc < 0 as type

15 Foric=0to C_in —1do

16 Forkh=0toK-1do

17 Forkw=0to K -1do

18 ih < oh+kh

19 iw < ow+kw

20 acc < acc + cast(I_pad[ic][ih][iw], type) x

cast(Woc][ic][kh][kw], type)

21 End for

22 End for

23 End for

24 acc < acc + cast(B[oc], type)

25 OJoc][oh][ow] « acc

26 End for

27 End for

28 End for

29 Return C

Fig. 6 illustrates the proposed hybrid implementation for brain cancer multi-classification, where the
first Conv2D layer is hardware-accelerated with varying data representations: 8-bit Integer (int8), 16-bit
Fixed-Point (FP16), and 32-bit Fixed-Point (FP32). This hardware-based Conv2D operation optimizes the
computational load by utilizing different precision strategies, offering a trade-off between speed, accuracy,
and resource utilization. The hardware implementation is designed to perform the computationally intensive
convolution efficiently.
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Figure 6: Proposed design of a hybrid implementation for the brain cancer multi-classification

The remaining layers of the CNN, including MaxPooling, additional Conv2D layers, Flatten, and Dense
layers, are executed in software using the Zynq processing unit (CPU). This hybrid architecture leverages the
flexibility and scalability of the Zynq processing system to handle the less computationally demanding layers,
while hardware acceleration is applied to the most intensive part, ensuring high performance and energy
efficiency. This combination of hardware and software execution enables the system to meet the real-time
requirements of brain cancer multi-classification on resource-constrained edge devices.

In the next section, we present the results and performance analysis of the proposed system. This
includes a detailed evaluation of the classification model’s effectiveness, followed by an assessment of
the hybrid CPU-FPGA implementation. Metrics such as execution time, resource utilization, power
consumption, and classification accuracy are analysed to demonstrate the trade-offs and benefits of the
hardware-software co-design.

4 Results and Performance Analysis

In this section, we provide an evaluation of the proposed model for brain cancer multi-classification.
The performance of the model is tested on two different embedded system configurations. The first test
evaluates the model’s performance on a CPU-based system using the Cortex-A9 processor. This test serves
as a baseline to assess the efficiency of the software implementation on a general-purpose processor. The
second test involves a hybrid implementation, combining the processing power of the Cortex-A9 CPU with
the XC7Z020 FPGA for hardware acceleration. In this configuration, the most computationally intensive
Conv2D layer is oftloaded to the FPGA, while the remaining layers are executed on the CPU. This hybrid
setup aims to exploit the strengths of both hardware and software to achieve optimal performance in terms
of speed, power efficiency, and classification accuracy.

4.1 Evaluation of the Proposed Model

The evaluation of the proposed model was conducted using a k-fold cross-validation approach, where
the dataset was divided into five folds to ensure a comprehensive assessment of the model’s generalization
capabilities. During each fold, the model was trained on k-1 folds and validated on the remaining fold, with
performance metrics averaged across all folds. Table 4 shows the performance evaluation of the proposed
brain cancer classification by CNN model.
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Table 4: Performance evaluation of the proposed brain cancer classification by CNN model

Comput Mater Contin. 2025;84(3)

K-Fold Accuracy (%) Precision (%) Recall (%) F1-Score (%)
KO 93.59 £ 0.003 93.85+0.065 93.59 +0.006 93.57 + 0.007
K1 88.95+ 0.011 88.93 +0.023 88.95+0.012 88.73 + 0.054
K2 95.80 +£ 0.004 95.90 + 0.007 95.80 + 0.003 95.78 + 0.001
K3 96.26 + 0.001 96.37 + 0.008 96.26 + 0.013  96.25 + 0.002
K4 96.60 +£0.005 96.70 + 0.017 96.60 + 0.006 96.58 + 0.003

Average 94.24 +£0.005 94.35+0.028 94.24 +0.009 94.18 + 0.014

Key evaluation metrics, including accuracy, precision, recall, and Fl-score, were calculated to provide a
holistic understanding of the model’s performance. The model’s predictions on the test set were compared
with ground truth labels, and a confusion matrix was generated to visualize the classification results for
each class. The confusion matrix helped identify any misclassifications, highlighting areas for improve-
ment. Furthermore, training and validation accuracy and loss were plotted for each fold to monitor the
model’s learning behavior and detect potential overfitting or underfitting. The visualizations demonstrated
the model’s ability to converge effectively, with validation metrics closely following the training metrics,
indicating strong generalization capabilities (Fig. 7).
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Figure 7: Accuracy and loss metrics for the proposed brain cancer classification

The results of the evaluation process provided critical insights into the model’s effectiveness in classifying
unseen MRI images, showcasing its robustness and suitability for real-world applications (Fig. 8). The use of
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cross-validation and performance monitoring ensured that the model was thoroughly tested and optimized

for reliable tumor classification.
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Figure 8: Confusion matrix for the proposed brain cancer classification
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The ROC curves demonstrate strong and consistent classification performance across all five folds, with
all curves positioned close to the top-left corner of the plot, reflecting high diagnostic accuracy (Fig. 9). The
model achieved an average AUC of 0.9664, with individual fold performances ranging from 0.8895 (K1)
to 0.9670 (K4), indicating excellent discrimination capability. The tight clustering of the curves suggests
reliable generalization across different data partitions, with minimal variability between folds. Precision and
recall values remained consistently high (all > 0.88), confirming the model’s ability to accurately identify
positive cases while minimizing false positives. These results underscore the CNN model’s robustness and
effectiveness for brain cancer classification, supported by high reproducibility across cross-validation folds.
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Figure 9: ROC Curves for proposed brain cancer classification

Comparative Analysis

The performance of the proposed CNN model for brain tumor classification is compared with sev-
eral state-of-the-art methods using the same dataset (Table 5). The evaluation metrics include Accuracy,
Precision, Recall, and F1-Score, which are widely used to assess the effectiveness of classification models
in medical imaging. The proposed model employs K-Fold cross-validation (K = 5) to ensure robustness
and generalizability. The comparison includes methods such as transfer learning with ResNet, hybrid CNN-
SVM approaches, traditional machine learning techniques (e.g., SVM and k-NN), and CNN-based methods.
The results demonstrate that the proposed CNN model achieves competitive performance, outperforming
traditional machine learning methods and closely matching or exceeding the performance of advanced deep
learning approaches. This highlights the effectiveness of the proposed method for accurate and reliable brain
tumor classification.

Table 5: Comparison of brain tumor classification performance on the same dataset

Study Accuracy Precision  Recall F1-score Notes
Afshar et al. [24] 0.9200 0.9150 0.9200 0.9170 Used transfer learning (ResNet)
(Continued)
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Table 5 (continued)

Study Accuracy Precision  Recall Fl1-score Notes

Deepak and Ameer  0.9300 0.9350 0.9300 0.9320 Hybrid CNN-SVM approach
[25]
Amin et al. [26] 0.8900 0.8850 0.8900 0.8870 Traditional machine learning

(SVM, k-NN)
Abiwinanda et al. 0.9400 0.9420 0.9400 0.9410 CNN-based brain tumor
[27] classification
Proposed CNN 0.9424 0.9435 0.9424 0.9418 K-fold cross-validation (K = 5)

Model

4.2 Evaluation on Cortex-A9 CPU

In this evaluation, the proposed CNN model for brain cancer multi-classification is executed entirely
on the Cortex-A9 CPU to establish a baseline performance analysis. The Cortex-A9, part of the Xilinx
Zynq-7000 SoC, is selected due to its widespread use in embedded systems, offering a balance between
computational capability and power efficiency. This processor supports the ARMv7-A architecture, which
is optimized for embedded applications, making it suitable for testing software-based deep learning models
before implementing hardware acceleration.

The evaluation focuses on measuring inference time, power consumption, and classification accuracy
when executing the entire CNN model purely in software. All operations, including convolutional layers,
pooling layers, flattening, and fully connected layers, are processed sequentially on the CPU. Given the com-
putational complexity of deep learning models, running the CNN solely on the Cortex-A9 presents several
challenges. The limited processing power results in increased latency, making it difficult to meet real-time
classification requirements. Additionally, the high computational load leads to greater power consumption,
which can be a constraint for resource-constrained edge devices. Table 6 illustrate the performace evaluation
of proposed CNN model for brain tumor Multi-Classification.

Table 6: Comparative study with the state of the art

Works Neural network DataSet Platform Quanti Accuracy Time  Throuphut Power Obtained
zation (%) (ms) (FPS) (W) results
Xiong GPU FP32 88.5 780 1.282 97 S
etal. [28] CNN BraTS20
INTS8 88.2 650 1.538 74 S
FPGA INTS 88.2 150 6.666 45 H
ResNet-50 - 89 - - - S
129 i i -
Khan et al. [29] Inception-v3 Brain MRI images _ 75 ~ _ S
Chen et al. CNN BRATS 2017 - - 85 15,250 0.065 - S
[30]
Sharif et al. - BRATS 2015 - - 89 710 1.408 - S
(1]
Manali and MobileNetV2 Kaggel MRI CPU FP32 94 - - - S
Demirel [32] tumorbrain

(Continued)
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Table 6 (continued)

Works Neural network DataSet Platform Quanti Accuracy Time  Throuphut Power Obtained
zation (%) (ms) (FPS) (W) results
Rao et al. CNN Navoneel CPU FP32 85 - - - S
[33] chakrabarty
dataset
ResNet50 CPU FP32 96 - - - S
Islam et al. Federated Navoneel - - 91.05 - - - S
[34] learning chakrabarty
dataset
Wang et al. Deep CNN Johns hopkins CPU - 94.90 - - - S
[35] brain cortex OCT
dataset
Mahmud Redefined CNN Kaggle brain CPU - 93.3 - - - S
etal. [36] MRI datasets
Pedada et al. U-Net Model Brats 2017 and - - 93.4 - - - S
[37] 2018
ARM CPU FP32 94.2 771 1.297 6.2 S
This work CNN Kaggelem (Cortex-A9)
tumorbrain PYNQ-Z2FPGA  INTS 92.7 645 1562 28 H
FP16 94.1 683 1.470 3.2 H
FP32 94.2 719 1.390 3.6 H

Note: S: Simulation, H: Real Hardware Deployment.

The performance of the proposed CNN model for brain tumor multi-classification is evaluated on the
Cortex-A9 CPU using 32-bit fixed-point (FP32) precision. The key performance metrics analyzed include
classification accuracy, inference time, and power consumption. The results indicate that the model achieves
an accuracy of 94.2%, demonstrating its effectiveness in distinguishing between different brain tumor classes.
However, the execution time on the Cortex-A9 CPU is 771 ms per inference, which is relatively high for
real-time applications. Additionally, the power consumption is measured at 6.2 W, highlighting the need for
optimization in resource-constrained environments.

These findings emphasize the limitations of running a computationally intensive CNN model entirely
in software on an embedded CPU. The high latency and power consumption make it challenging to
deploy the model in real-time edge computing applications, particularly in medical imaging where fast and
efficient processing is crucial. To address these limitations, a hybrid hardware-software approach is explored,
leveraging FPGA acceleration for the most computationally demanding operations while maintaining
classification accuracy. The next section analyzes the performance improvements achieved through this
hybrid implementation.

4.3 Evaluation on Hybrid CPU-FPGA Implementation

To implement and evaluate the hardware-accelerated Conv2D layers in the proposed Al-based brain
cancer classification model, a structured hardware design and verification process was followed. The
implementation workflow was carried out using Vivado High-Level Synthesis (HLS), Vivado HLx, and
PYNQ-Z2 for accuracy and real-time testing.

The first step involved designing and optimizing the hardware-accelerated Conv2D operations using
Vivado High-Level Synthesis (HLS). The HLS environment allowed for efficient design space exploration,
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enabling modifications and optimizations of the bit-width representation for the Conv2D computations
(Fig. 10). The proposed architecture was implemented with three different numerical precisions:

o  8-bit integer representation for fast and low-power computations.
o 16-bit hybrid representation (8-bit integer, 8-bit fractional) for a balance between speed and precision.
o  32-bit fixed-point representation (8-bit integer, 24-bit fractional) for maximum accuracy.
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Figure 10: Synoptic flow of Hardware/software implementation on PYNQ-Z2

Various optimizations, such as loop unrolling, pipelining, and dataflow optimizations, were applied to
improve the latency and throughput of the Conv2D hardware module. Once the optimized hardware design
was verified at the C simulation and C synthesis levels, the RTL (Register Transfer Level) implementation
was exported for further integration.

The next phase involved integrating the optimized Conv2D hardware module into a complete hardware
processing system. This was accomplished using Vivado HLx, where the proposed Conv2D IP core was
interfaced with the Zynq Processing System (PS). The AXI (Advanced eXtensible Interface) interconnect was
used to enable efficient communication between the programmable logic (PL) and processing system (PS)
of the Xilinx Zynq SoC. Once the system design was finalized, a bitstream file was generated and deployed to
the FPGA hardware. Table 7 illustrate FPGA Resource Utilization for the Proposed Conv2D on PYNQ-Z2.

Table 7: FPGA resource utilization for the proposed Conv2D on PYNQ-Z2

IP Slices LUTs FFs DSP BRAM SLR FreqMHz Power (W)
Conv2d-8bit (INT8) 5062 17175 10,221 64 64 113 174.74 1.7
Conv2d-16bit (FP16) 6385 20,979 13,473 64 128 114 172.38 2.3
Conv2d-32bit (FP32) 11,553 39,339 24,326 220 256 1394 160.30 2.5

A detailed comparison of the three Conv2D configurations (INT8, FP16, and FP32) on the PYNQ-Z2
platform highlights key trade-offs in terms of latency, cost, power consumption, and resource utilization.
The Conv2D-8bit (INT8) implementation stands out with the lowest latency, highest clock frequency
(174.74 MHz), and minimal power consumption (1.7 W). Due to its efficient use of FPGA resources (slices,
Look-Up Tables “LUTs”, Digital Signal Processing blocks “DSPs”, Super Logic Region “SLR”, and Block
RAM “BRAM”), it enables fast and energy-efficient execution, making it particularly suitable for real-time,
resource-constrained applications such as medical diagnostics (Table 7).
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In contrast, the FP16 (16-bit floating-point) version provides improved numerical precision at the cost of
moderately higher resource usage and power consumption (2.3 W). It offers a balanced compromise between
performance and precision, maintaining reasonable latency and complexity. The FP32 (32-bit floating-point)
variant, while delivering the highest precision, comes with significant trade-offs. It requires substantially
more FPGA resources (more than double the LUTs and BRAM compared to INT8), operates at a lower
frequency (160.30 MHz), and consumes more power (2.5 W). These factors result in increased latency and
hardware overhead, limiting its suitability for deployment on lightweight FPGA platforms. Overall, the INT8
implementation offers the best balance between speed, energy efficiency, and cost, making it ideal for real-
time systems where rapid response and hardware efficiency are critical. Meanwhile, FP16 and FP32 may be
reserved for specific use cases that demand higher numerical accuracy and where sufficient FPGA resources
are available.

The decision to accelerate only the first Conv2D layer on the FPGA was driven by the high computa-
tional load associated with processing full-resolution input images in medical imaging tasks. As this initial
layer operates on the largest feature maps, it benefits most from hardware acceleration. Subsequent layers,
which handle progressively smaller feature maps, were executed on the CPU to balance execution time
and FPGA resource constraints (slices, LUTs, DSPs, BRAM). This hybrid strategy ensures low latency and
efficient resource utilization while maintaining high classification accuracy, making it particularly suitable
for real-time medical diagnostics where both performance and energy efficiency are critical (Table 6).

To improve the efficiency of the proposed CNN model for brain cancer multi-classification, a hybrid
implementation is deployed on the PYNQ-Z2 FPGA. In this approach, the first Conv2D layer, which is the
most computationally intensive, is offloaded to FPGA hardware, while the remaining layers are executed on
the ARM Cortex-A9 processor. The model is evaluated using three different numerical precision strategies:
INTS, FP16, and FP32, allowing a trade-off between accuracy, inference time, and power consumption.

The experimental results, as presented in Table 6, demonstrate that hardware acceleration significantly
enhances the inference speed and reduces power consumption compared to the purely CPU-based imple-
mentation. Specifically, the INT8 quantized model achieves the lowest inference time of 645 ms with a power
consumption of 2.8 W, at the cost of a slight drop in accuracy to 92.7%. The FP16 implementation balances
accuracy and efficiency, achieving 94.1% accuracy with an inference time of 683 ms and a power consumption
of 3.2 W. Finally, the FP32 precision model achieves the highest accuracy of 94.2%, matching the CPU-based
results, while reducing inference time to 719 ms and power consumption to 3.6 W. Fig. 11 illustrates the
trade-offs between accuracy, processing speed, and hardware resource utilization in our proposed hardware-
accelerated Conv2D implementations using different numerical data representations: INT8, Fixed-Point 16
(FP16), and Fixed-Point 32 (FP32). These trade-ofts are crucial in determining the optimal balance between
computational efficiency and classification performance for real-time brain cancer multi-classification on
embedded systems.

The results of our proposed hybrid implementation demonstrate a well-balanced trade-off among
precision, speed, and resource utilization, as illustrated in Fig. 11. This figure summarizes how different
quantization strategies, image sizes, and architectural choices directly affect the performance metrics of
Conv2D operations on hardware. Lower-bit quantization like INT8 reduces computational complexity,
resulting in faster processing and lower power consumption, but may introduce a slight degradation in
model accuracy. Conversely, higher precision formats such as FP32 offer improved numerical accuracy but
significantly increase latency and power usage due to higher resource demands.
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Figure 11: Performance Trade-offs of Conv2D acceleration across quantization levels on FPGA

Our experiments validate this trade-off clearly. Implemented on a PYNQ-Z2 FPGA, INT8 quantization
achieves a strong throughput of 1.562 FPS with the lowest power consumption (2.8 W) and shortest inference
time (645 ms), confirming its suitability for power-constrained, real-time medical diagnostic applications.
Although INTS resulted in a slight drop in accuracy (92.7%), the gain in efficiency justifies its use for
embedded systems. Meanwhile, FP16 serves as a middle ground, offering 94.1% accuracy, moderate latency
(683 ms), and power usage (3.2 W). This format delivers a favorable compromise between computational
load and inference quality. Finally, FP32, despite its higher demands, achieved the highest accuracy (94.2%),
closely matching the results obtained on the ARM Cortex-A9 CPU. However, this came at the cost of
increased power (3.6 W) and latency (719 ms), making FP32 more suitable for precision-critical scenarios
rather than real-time execution.

When benchmarked against state-of-the-art methods in Table 6, our approach stands out for achieving
high accuracy comparable to advanced deep learning models (e.g., ResNet50, MobileNetV2) while signif-
icantly outperforming them in inference speed and power efficiency, particularly on FPGA. For example,
while Xiong et al. [28] achieved similar accuracy on GPU and FPGA, our implementation delivers faster
inference and lower power use. Additionally, many CPU-based implementations listed in the literature lack
real-time capability or detailed power metrics, making our results more applicable to deployable embedded
medical systems.

These findings validate the effectiveness and flexibility of our hybrid hardware-software design, which
allows tuning the quantization level based on the constraints of the target application. Whether the goal
is to maximize accuracy (FP32), balance performance and energy (FP16), or prioritize efficiency for real-
time deployment (INT8), our architecture supports scalable optimization, making it a strong candidate for
practical use in portable brain tumor detection systems.

To assess the effectiveness of our proposed hybrid implementation, we compare its performance with
state-of-the-art approaches, as summarized in Table 6. The comparison considers key evaluation metrics,
including accuracy, inference time, and power consumption, across different platforms such as GPUs, CPUs,
and FPGAs.

Our proposed method, implemented on the PYNQ-Z2 FPGA, demonstrates significant advantages over
recent state-of-the-art works in terms of accuracy (Fig. 12), energy efficiency, and real-world performance
(Fig. 13). With FP32 quantization, our approach achieves 94.2% accuracy, which notably surpasses the 88.5%
reported by Xiong et al. [28] on GPU, 89% by Khan et al. [29], and 85% by Chen et al. [30]. Even when
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quantized to INTS, our system maintains a high accuracy of 92.7% while consuming only 2.8 W of power,
compared to Xiong et al’s FPGA implementation which consumes 45 W but yields lower accuracy (88.2%).
Additionally, our method attains a throughput of 1.562 frames per second (FPS) with INT8 quantization,
outperforming Xiong et al. on FPGA (1.282 FPS with FP32) and Sharif et al. [31] (1.408 FPS), the latter lacking
detailed hardware specifications. Unlike Khan et al. and Sharif et al., whose results are based on simulations
without real hardware deployment, our approach has been validated on actual hardware (PYNQ-Z2 FPGA
combined with an ARM Cortex-A9 CPU), making it a more reliable solution for resource-constrained
embedded applications. By accelerating the most computationally intensive Conv2D layer in hardware while
executing the rest of the CNN in software, our hybrid implementation strikes an optimal balance between
accuracy, inference latency, and power consumption, enabling real-time performance suitable for edge-based
medical diagnostics. Furthermore, although recent studies by Rao et al. [33], Islam et al. [34], Wang et al. [35],
Mahmud et al. [36], and Pedada et al. [37] report high classification accuracies between 91% and 96%, these
works primarily run on general-purpose CPUs and lack critical deployment metrics such as inference latency,
power consumption, and throughput. This absence of hardware-oriented evaluation limits their applicability
in practical, portable medical systems where both accuracy and system-level efficiency are essential. Overall,
our approach offers a comprehensive and hardware-validated solution with a superior trade-oft between
performance and energy efficiency, making it particularly well-suited for embedded medical applications
requiring real-time processing.

B FPGA (FP32) mFPGA (FP16) mFPGA (FP8) mGPU (FPS) mGPU (FP32) M Cortex-A9 (FP32)

This Work 92.7
94.2
Xiong et al. 28.5

<) Sharif et al.

é 89

o

2 Chen et al

85

Khan et al. (Inception-v3)

75

Khan et al. (ResNet-50)

89

0 20 40 60 80 100
ACCURACY (%)

Figure 12: Accuracy comparison of the proposed model with state-of-the-art methods [27-30]

Deploying the hybrid model for brain cancer classification, implemented on the ARM Cortex-A9 and
XC7Z020 FPGA, in mobile devices and other highly constrained devices is feasible for our work. The
combination of the Cortex-A9 processor and FPGA-based acceleration allows for a highly efficient system
that balances computational power with low power consumption key requirements for mobile and highly
constrained devices. Our model’s low power consumption, particularly when using INT8 quantization,
ensures that it can operate effectively within the strict power limits of these devices, such as smartphones
or portable diagnostic tools. The high accuracy of 94.2% with FP32 and 92.7% with INT8 quantization
ensures that the system can deliver reliable brain cancer classification results in real-time, an essential
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feature for medical applications. Moreover, the real-time processing capability of 1.562 FPS with INT8
quantization ensures the model can process data quickly enough for mobile use cases that require immediate
feedback. The compact nature of the ARM Cortex-A9 and XC7Z020 FPGA platforms also makes them
suitable for integration into small, resource-constrained devices. The scalability of the model, with its varying
quantization options, further allows for fine-tuning to achieve an optimal balance between accuracy, power
consumption, and processing speed based on the device’s constraints. While challenges like optimizing the
system for even lower power consumption in ultra-compact devices remain, the hybrid model represents a
promising solution for brain cancer classification in mobile and highly constrained medical devices, offering
both efficiency and performance within the limitations of these environments.

B FPGA (FP32) mFPGA (FP16) FPGA (FP8) m GPU (FPS) GPU (FP32) m Cortex-A9 (FP32)
32

This Work 28
2 I 62
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=
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Figure 13: Power consumption comparison of the proposed model with state-of-the-art methods [27]

The proposed hybrid hardware-software CNN acceleration strategy holds strong potential for clinical
integration, particularly in point-of-care and portable diagnostic devices. Its low-latency and energy-
efficient design makes it suitable for real-time inference in resource-constrained environments such as
rural clinics, emergency units, and mobile screening platforms. Deployment can be streamlined through
integration with existing imaging modalities like MRI scanners, where the FPGA-based module can be
embedded directly within the acquisition hardware or connected via edge-computing interfaces. Future work
will involve developing a user-friendly interface, validating performance with larger clinical datasets, and
complying with medical device regulations (e.g., FDA, CE marking). Furthermore, with support for multiple
numerical formats (INT8, FP16, FP32), the design allows scalability across a spectrum of clinical workloads,
from preliminary triage to detailed diagnostic support, facilitating broader adoption in next-generation
Al-assisted medical imaging systems.

5 Conclusion

In this work, we proposed a hybrid hardware-software CNN architecture for brain cancer multi-
classification, leveraging FPGA acceleration for the first Conv2D layer while executing the remaining layers
on an embedded Cortex-A9 CPU. Our approach effectively balances accuracy, computational efficiency,
and power consumption, making it suitable for real-time medical diagnostics on edge devices. Through
extensive evaluations, we demonstrated that hardware acceleration significantly improves inference speed
and reduces power consumption compared to a purely software-based implementation. The PYNQ-Z2
FPGA implementation using INTS8, FP16, and FP32 quantization strategies showcased a trade-off between
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accuracy and efficiency, with FP16 offering the best balance (94.1% accuracy, 683 ms inference time, and
32 W power consumption). Compared to state-of-the-art methods, our model achieves higher classification
accuracy (94.2%) while consuming significantly less power than GPU-based solutions. Our work highlights
the potential of hybrid CNN implementations for edge-based medical Al, paving the way for more efficient
and accurate real-time tumor classification solutions.

To further enhance the performance and efficiency of our model, future work will focus on extending the
current FPGA-based acceleration to a full Convolutional Neural Network (CNN) implementation. This will
involve optimizing all layers of the CNN, from convolutions to fully connected layers, on FPGA hardware to
further enhance performance and resource efficiency. Additionally, real-time testing in clinical environments
will be conducted to validate the system’s practicality and reliability in actual medical imaging workflows.
This will include evaluating the model’s robustness across different brain tumor datasets, testing scalability
for larger images, and assessing the real-time inference capabilities within operational healthcare settings.
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