l(o%)| Computers, Materials & & Tech Science Press
, Continua ,

D0i:10.32604/cmc.2025.065504

ARTICLE Check for

updates

Blockchain Sharding Algorithm Based on Account Degree and Frequency
Jiao Li and Xiaoyu Song”

School of Computer Science, Xi'an Shiyou University, Xian, 710065, China
*Corresponding Author: Xiaoyu Song. Email: sxy1036031331@163.com
Received: 14 March 2025; Accepted: 10 June 2025; Published: 30 July 2025

ABSTRACT: The long transaction latency and low throughput of blockchain are the key challenges affecting the large-
scale adoption of blockchain technology. Sharding technology is a primary solution by divides the blockchain network
into multiple independent shards for parallel transaction processing. However, most existing random or modular
schemes fail to consider the transactional relationships between accounts, which leads to a high proportion of cross-
shard transactions, thereby increasing the communication overhead and transaction confirmation latency between
shards. To solve this problem, this paper proposes a blockchain sharding algorithm based on account degree and
frequency (DFSA). The algorithm takes into account both account degree and weight relationships between accounts.
The blockchain transaction network is modeled as an undirected weighted graph, and community detection algorithms
are employed to analyze the correlations between accounts. Strong-correlated accounts are grouped into the same
shard, and a multi-shard blockchain network is constructed. Additionally, to further reduce the number of cross-shard
transactions, this paper designs a random redundancy strategy based on account correlation, which randomly selects
strong-correlated accounts and stores them redundantly in another shard, thus original cross-shard transactions can be
verified and confirmed within the same shard. Simulation experiments demonstrate that DFSA outperforms the random
sharding algorithm (RSA), modular sharding algorithm (MSA), and label propagation algorithm (LPA) in terms
of cross-shard transaction proportion, latency, and throughput. Therefore, DFSA can effectively reduce cross-shard
transaction proportion and lower transaction confirmation latency.

KEYWORDS: Blockchain scalability; transaction sharding; community detection; cross-shard transaction proportion

1 Introduction

Blockchain is a decentralized distributed database technology [1] that employs cryptographic algorithms
to ensure the security and immutability of data. Blockchain technology has been widely applied in various
fields such as product traceability, financial payments, privacy protection, and identity verification. However,
with the development of blockchain technology, blockchain scalability has remained a persistent obstacle and
challenge [2], limiting the potential for widespread adoption of blockchain in real-world applications [3,4].

In a blockchain network, as transaction volumes increase, the processing speed and storage capacity
of the blockchain often become bottlenecks, leading to longer transaction confirmation times and lower
throughput [5]. To address this issue, sharding technology [6] has emerged. It divides the blockchain network
into multiple shards, allowing each shard to independently validate and process transactions, thereby the
parallel processing of blockchain can reduce the burden of individual nodes and improve the overall
processing capacity and efficiency [7]. Sharding technology not only improves the scalability of blockchain

® Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.065504
https://www.techscience.com/doi/10.32604/cmc.2025.065504
mailto:sxy1036031331@163.com

5240 Comput Mater Contin. 2025;84(3)

but also enables the network to handle more transaction requests while maintaining decentralization and
security [8].

Blockchain sharding technology includes network sharding, transaction sharding, and state shard-
ing [9]. Traditional blockchain networks require every node to store the entire blockchain data, which
results in nodes having to handle large amounts of data and transactions, thus limiting the system’s
scalability [10]. Network sharding addresses this issue by partitioning the entire blockchain network into
smaller subnetworks, where each subnetwork only processes transactions within its shard, allowing shards
to operate independently. Transaction sharding involves dividing blockchain data and transactions into
multiple segments [11], where each shard independently validates and records transactions without relying on
a single global node to validate all transactions. This reduces network congestion and enhances transaction
throughput and speed. State sharding, on the other hand, splits the blockchain’s state data, with each
shard managing a portion of the state, enabling simultaneous state updates across the entire network
and improving processing capacity [12]. Network sharding serves as the foundation for transaction and
state sharding [13]. However, as the number of nodes per shard decreases after sharding, security risks
are introduced. Current network sharding strategies mitigate this risk by randomly selecting nodes to
form sub-chains, thus preventing malicious node aggregation and ensuring blockchain security [14]. In
transaction sharding, transactions are dispersed across multiple shards, yet dependencies of transactions
between different shards may exist, and a large number of cross-shard transactions rush into the blockchain.
This leads to a certain delay in transaction confirmation speed [15]. Therefore, how to assign transactions
to the appropriate shards to minimize cross-shard transactions is a major challenge in transaction sharding
design [16] and is the primary focus of this research.

Sharding technology, as one of the main solutions to address blockchain scalability [17], has many
characteristics and advantages, and is being increasingly adopted by various projects. There are already
several relatively mature sharding technologies, such as Ethereum 2.0 [18], OmniLedger [19], and Zilliqa [20],
which employ random sharding algorithms (RSA) where nodes are randomly assigned to different shards
to participate in the consensus process, ensuring network decentralization. In the design of Monoxide [21],
accounts are assigned to different blockchain shards based on the modulus operation of the first few digits of
their addresses [22], which belongs to the modular sharding algorithms (MSA). Although RSA and MSA can
ensure that transactions are uploaded to the chain in real time, in practical applications, transactions between
accounts often show a certain degree of correlation, and some accounts frequently conduct transactions.
Since both of these sharding algorithms are simple partitions based on node address or other identifiers,
they cannot optimize the allocation according to the transaction patterns between accounts, resulting
in an excessively high cross-sharding proportion. On this basis, some scholars have proposed sharding
schemes that consider transaction relationships between accounts, such as BrokerChain [23], FBTS [24], and
CLPA [25]. These schemes analyze transaction frequencies between accounts, assign accounts with frequent
transactions to the same shard, and place less active or inactive accounts into different shards. This design
can effectively reduce cross-shard transactions, thereby lowering the communication overhead and delays
caused by cross-shard transactions. However, these schemes do not take into account the comprehensive
characteristics of the accounts and do not analyze the transaction relationships between accounts globally.

The research motivations of this paper mainly have two aspects: On the one hand, considering the
comprehensive characteristics of accounts and analyzing the transaction relationships between accounts
globally, the aim is to reduce the cross-shard transaction proportion; On the other hand, by adopting
redundant storage, some cross-shard transactions are transformed into intra-shard transactions, further
reducing the cross-shard transaction proportion. This paper proposes a blockchain sharding algorithm
based on account degree and frequency (DFSA). This algorithm abstracts transactions in the blockchain

Comput Mater Contin. 2025;84(3) 5241

network as an undirected weighted graph, analyzes the relationships between accounts globally, and employs
community detection algorithms to cluster active accounts. The main contributions of this paper are as
follows:

1. A blockchain transaction sharding algorithm based on account degree and frequency is proposed in
this paper. This algorithm introduces a comprehensive account weight based on the account activity
and transaction frequency and uses community detection to aggregate accounts, thereby reducing cross-
shard transaction proportion.

2. This paper designs a random redundancy strategy based on account relationships, which randomly
selects a certain proportion of accounts and redundantly stores them into the same shard, so both sides
of the accounts originally located in different shards become intra-shard transactions, and cross-shard
transactions can be reduced effectively.

3. Simulation experiments verify the performance of DFSA algorithm. The simulation results show that
compared with the existing sharding algorithms, the proposed algorithm performs well in multiple
indicators such as delay and throughput, indicating that the proposed algorithm can effectively reduce
the proportion of cross-shard transactions and shorten the transaction delay.

The remainder of this paper is structured as follows: Section 2 provides an overview of existing
technologies through a literature review. Section 3 presents the sharding design, related definitions, and a
detailed description of the DFSA algorithm. Section 4 provides experimental evaluation. Section 5 concludes
the paper and outlines future work.

2 Related Work

Blockchain sharding technology is an important scalability solution that aims to enhance the sys-
tem’s processing capacity and efficiency by dividing the blockchain network into multiple independent
shards. With the continuous expansion of blockchain applications, many mature blockchain sharding
solutions have been proposed, greatly driving the development of blockchain technology in large-scale
application scenarios.

Blockchain systems currently execute transactions using two main types of transaction models: the
UTXO (Unspent Transaction Output) model and the account/balance model [26]. In 2016, Luu et al. [27]
proposed the earliest sharding model, Elastico, in which nodes are randomly assigned to committees after
identity information is confirmed by the PoW mechanism [28]. However, services cannot be provided
during identity confirmation, resulting in intermittent system unavailability. Kokoris-Kogias et al. [19] was
optimized for Elastico design deficiencies. It uses the distributed random source protocol RandHound
combined with VRF (verifiable random function) to replace the energy-intensive PoW (Proof-of-Work)
calculation [29]. Wang and Wang [21] uses the formula n = 2% to determine which shards the current
user belongs to. A similar example of using a simple calculation to determine the shard of a node is
Ethereum 2.0 [18]. In Ethereum 2.0, the beacon [30] chain dynamically allocated validators to shards through
cryptographic random numbers generated by RANDAO + VDE Similarly, in Zilliqa [20], all transactions
from the same account are processed in the same shard. These sharding protocols rely on relatively simple
node allocation principles, resulting in frequently active accounts being distributed across different shards,
causing a large number of cross-shard transactions and increasing the time for transaction verification and
processing. Therefore, reducing cross-shard transactions is a major challenge for sharding technology.

In the network, the user’s transaction behavior usually has a clear goal and stability, which is manifested
as a long-term and high-frequency interaction between specific accounts. This feature provides a thought
point for sharding technology, allowing accounts with similar characteristics to be placed in the same shard.

5242 Comput Mater Contin. 2025;84(3)

For example, Zhang [24] considers the transaction characteristics between accounts, puts the accounts with
high transaction frequency into the same shard, and recursively puts their associated accounts into the same
shard. Lietal. [25] adopt an improved label propagation algorithm (LPA) to optimize the fragmentation pro-
cess. Both Zhang and Li et al. take into account the current account and neighboring accounts information.
However, the lack of assessment of global account relationships can result in important accounts being split
into different shards, often not effectively reducing cross-shard transactions. To improve the impact of local
optimization on blockchain performance, Huang et al. [23] proposed to abstract transactions into a state
graph using the graph-based segmentation method and divide all accounts in the graph using Metis [31].
Zhang et al. [32] adopted the method of modularity optimization, used the classic Louvain algorithm to
preliminarily divide accounts, and then carried out detailed division with the goal of optimizing throughput.

The existing sharding schemes are summarized in Table 1. In a multi-shard blockchain network, cross-
shard transactions are inevitable but should be minimized. The existing sharding technology is often unable
to comprehensively consider the complex characteristics of accounts based on a global perspective, resulting
in insufficient optimization of transaction allocation. In view of the shortcomings of existing sharding
strategies in comprehensive features, this paper adopts a community detection algorithm and proposes a
transaction sharding algorithm based on account activity and transaction frequency.

Table 1: Summary of sharding methods

Sharding project Year Sharding type Sharding method Sharding class Limitation
Elastico [27] 2016 Network sharding and Epoch randomness functions Random sharding Periodic node identity
transaction sharding confirmation
OmnilLedger [19] 2018 State sharding Rand Hound + VRF-based Random sharding High-frequency
transaction accounts are
dispersed
Monoxide [21] 2019 State sharding First k bit of address Modular sharding Address prefix
dependency
Ethereum 2.0 [18] 2021 State sharding RANDAO + VDF Random sharding Single point bottleneck
of the beacon chain
Zilliga [20] 2021 Network shardingand Random account mapping Random sharding Account bound
transaction sharding transaction assignment
FBTS [24] 2023 Transaction sharding Frequency of transaction ~ Transaction characteristics No cluster analysis
CLPA [25] 2022 State sharding Community detection Transaction characteristics Dependent on multiple
iterations of local
neighbor tags
BrokerChain [23] 2022 State sharding Broker Transaction characteristics Single frequency
allocation
TxAllo [32] 2023 Transaction sharding Community detection Transaction characteristics ~ Ignore account activity

3 Methodology

In real-world transactions, the relationships between accounts are complex. Existing sharding schemes
typically use transaction frequency between accounts as the basis for sharding when analyzing transaction
characteristics [23,24,32]. However, some accounts, despite not having a high transaction frequency, engage
in transactions with a large number of other accounts and are highly active within the transaction network.
The account activity degrees are also a major factor influencing community clustering. Therefore, the
relationship between accounts is mainly reflected in the activity of accounts and the transaction frequency
between accounts. Based on the above, we comprehensively consider both the activity of accounts and
the transaction frequency between accounts, and propose a blockchain sharding algorithm based on

Comput Mater Contin. 2025;84(3) 5243

active degree and transaction frequency, which can optimize account sharding and reduce the number of
cross-shard transactions.

3.1 Sharding Design

Shard technology has improved blockchain performance to some extent [8], but it also brings challenges
such as high cross-shard transaction proportion and long transaction delays. Comprehensively considering
the transaction frequency and activity degree of accounts is the key to reducing cross-shard transactions, so
a blockchain transaction sharding algorithm based on account degree and frequency is proposed as shown
in Fig. 1.

| I o SR e R e B e e Transaction
= -I - = | — t
- . .1 | Sea | — ¢ Intra-shard 3 on chain
Block#3 Block#4 Block#3 Block#2 Block#1 s) : transaction -
. ; . Kl I CH Transaction pool
13} - [transaction 1 1
A .?_-.1;' ! ’ |
.] f1
1 s 1 h,
lq 2 l)| seps i 2 =
{ s - [2) N S I
; 5 . i WEE Calculate | -
o—— =ih :
B IE | - _-— 5 _
1, i] | |
Sup 1 Shard [Shard | ! J
O 20 W mergence | 26.2 i i a8 _IP_Iy_Ii
Atiributes i { | N i e e e i1 | _Buepé
Yeoture 3 Step 5 Account redundancy | | | I;'“mﬂ‘:‘"
Numiac,,ac;) deglac;) |i| |j
¢ s i e Block
0 F 1o 2 3 = I
3 0 0 -« 1 2 Step 4 | Intra-shard Shard #] 5 1 w4
1 0 0 = 6 2) ! transaction Co==18% | ! +
S/ [Merge shards) | . ! H
368 |with the least j =wetiimes s @: Redundant! Block
o valumes. | transaction N [¥
I - account | e
s 526 i -1 !
21 6 — 0 3 1 i # I I
(i @ | |:| D Block
Numi(ag;,ac,) : Transaction frequency > 1 L T #2
I | ¥
deglae;): Account degree ¢ E ‘ = E BN
Wy, =a@x Y Num|ac;ac; |+ (1-a)xdeg|ac;) /364 : Shord #2 2 Shard Shard Shard T
—] #l 2 #3

i i i Phase 4 Multi-shard
Pt | sooudo relanor]shlp weight Phase 2 Shard optimization and aggregation Phase 3 Redundant account storage e ‘ o m:
graph construction | blockehain generation |

Figure 1: Schematic diagram of DFSA

The working process is summarized as follows:

Phase 1: Account relationship weight graph construction. The real-world transaction relationships
are for accounts. For research convenience, the transaction relationships are abstracted as an undirected
weighted graph, as shown in Step 1. The undirected weighted graph is composed of a frequency matrix
and a degree vector, where Num (ac,-, ac j) represents the total transaction frequency of ac; and deg (ac;)
represents the total number of transaction counterparts. By a weighted average of account frequency and
account degree, a comprehensive account weight w,, is obtained, which provides an important basis for the
next account sharding.

Phase 2: Shard optimization and aggregation. At this phase, the community detection algorithm is
applied to initial account segmentation as shown in Step 2. The comprehensive account weight is used
as the basis for calculating the modularity of community detection. The associated account with the
highest modularity is selected for merging. Through multiple rounds of operations, an initial sharding
division result is formed. Based on the initial sharding result, calculate the total transaction volume of each
shard as shown in Step 3, and merge the two shards with the smallest transaction volumes as shown in
Step 4.

Phase 3: Redundant account storage. To further reduce the number of cross-shard transactions, a certain
proportion of accounts are randomly selected and redundantly stored in the shard in which their frequent

5244 Comput Mater Contin. 2025;84(3)

transaction accounts are located, as shown in Step 5. Selecting redundant accounts randomly can prevent
attackers from constructing high-frequency fake transactions and ensure that the account cannot predict
which shard it is in. All redundant accounts can be redundant only once in a shard to reduce the difficulty
of duplicate maintenance and avoid the cost of duplicate synchronization caused by dynamic redundancy.
By using redundant storage, some cross-shard transactions are converted into intra-shard transactions. As a
result, the reduction in cross-shard transactions is inevitable.

Phase 4: Multi-shard blockchain generation. After the redundant accounts are completed, a multi-
shard blockchain architecture is generated. Based on the above account sharding result, the transactions in
the transaction pool are pulled to the corresponding shard as shown in Step 6. Each shard independently
processes transactions and packages the transactions into blocks.

3.2 Related Definitions

In order to conveniently describe the relationship in blockchain, the account relationship weight
graph G = (Ac, Tn) is constructed, where Tn is defined as the set encompassing all transaction fre-
quencies on the blockchain, Tn = {tny,tn,,...,tng}, tn; = {ac,-,acj,Num (aci,acj)}, tn; € Tn, and
Num (aci, acj) represents the cumulative frequency of transactions, where ac; is the sender of
the transaction and ac; is the receiver of the transaction. The set of account degrees is repre-
sented by Deg = {deg(ac,),deg(acy),...,deg(ac,)}, where degree of account ac; represents the
number of accounts with which transactions are made and is denoted as deg(ac;), deg(ac;) =
| {acj € Ac|Num (ac,-, acj) + Num (acj, ac,-) > O} |. The total transaction frequency of account relationship
weight graph G is represented as M, M =1/2}; ; Num (aci,ac j), the multi-shard blockchain network is
represented as Shard, Shard = {shard,, shard,, ..., shard,,}, where shard; represents a set of accounts,
shard; = {acy,ac,,...,ac,}. For any shard;, the internal weights of shard; is represented as w;, w; =
>, Num (aci,acj), where ac; € shard;, ac; € shard;. Moreover, the weight between shard; and shard; is
denoted as Wepard, » Wshard,; = 21, Num (aci, acj), where ac; € shard,, ac; ¢ shard,;. For any given shard,,
the associated shards of shard; are denoted as R}, 4r4,, Where Ry 4rq, = Ushard; and Wshard,; # 0. The weight
of account ac; and adjacent shard is represented by Num (aci,shard j).

The comprehensive weight of account ac; is represented by w,,, where « is weight regulation factor,
which is used to balance the importance of account transaction frequency and activity degree in the
comprehensive weight calculation, and w,,, is defined as:

Wae, = & X Y Num (ac,-,acj)+(1—oc) x deg (ac;) @
j

The modularity Q and the modularity gain AQ used in Algorithm 1 can be calculated based on M, w;,
Wshard,;, a0d W, Table 2 gives the relevant formulas and brief descriptions.

Table 2: Symbol definition

Symbol Formula Description

M M = % ¥, Num (ac,-, ac j) The total transaction frequency of the

account relationship weight graph G

w; w; = Zi,j Num (aci,acj)aci € shard;, ac;j € shard, Internal weight of shard;

Wshard, Wehard,; = Zi)j Num (ac,-, acj)ac,- € shard;, The weight between shard; and
ac;j ¢ shard,; shard;
Whard, Wihard;, = 2. Wac,» aCi € shard, The total weight of shard;
2
Q Q=X (v (W;Md)) Measure the quality of network
partitioning

(Continued)

Comput Mater Contin. 2025;84(3) 5245

Table 2 (continued)

Symbol Formula Description

Wshard; XWshard;)

AQ AQ = 3 (Wshurd,,] - - The gain obtained from the

combination of shard; and shard ;

Definition 1 (Transaction Volume Redundancy): On blockchain, the transaction volume of account ac;
as the sender is denoted as sn,,, the set of redundant accounts is denoted as V,., and the transaction volume
redundancy is denoted as V.

)

Definition 2 (Cross-Shard Transaction Proportion): For Vtx; in the shard, tx; e Tx, txj =
{aci,acj,value}, if ac; € shardy, acj € shard,, and shardy # shard,, then txy is termed a cross-shard
transaction. The overall count of transactions in the blockchain is represented as | Tx|, the overall count of cross-
shard transactions is represented as |TX.,oss|, and the cross-shard transaction proportion is represented as C,.

_ |Txcross|

Cr= 3)

Definition 3 (Accounts Proportion with Different Cross-Shard Number): On a blockchain with a
shard granularity of m, N represents the set of across-shard number and N = {0,1, ..., m —1}. n,, represents
the cross-shard number of ac;. The account set with n cross-shard number is represented as An, An =
{aci|nae, = n}, ac; € Ac, and the proportion of accounts with n cross-shard number is represented as A, .

_ |An|

= Ad (4)

Tn

Definition 4 (Average Cross-Shard Number): The average cross-shard number is represented as 1.

i=|Ac|
Z,‘:l Nac;

|Ac| ®)

Navg =

3.3 Algorithm Description

Sharding technology has improved the performance of blockchains to some extent, but it has also
introduced issues such as longer transaction latency. The transactional relationships between accounts are
the main factors influencing the cross-shard transaction proportion. The DFSA algorithm proposed in this
paper is inspired by community detection, optimizes the basis for community division, and redefines account
weights. The algorithm includes two parts: (1) optimizing account partition and adjusting shard granularity;
and (2) account redundancy strategy.

Algorithm 1 involves optimizing account partition and adjusting shard granularity. The algorithm
analyzes the activity degree of accounts and the transaction frequencies. First, each account is treated as an
independent shard (Line 1), and adjacent accounts are merged into the same shard based on the modularity
gain AQ (Lines 2-17). Reconstruct the community and update the modularity until |Q — Q; | < 107 (Lines
18-20). Then, the transaction volume of each shard is calculated. If the current shard granularity exceeds
the target value m, the two shards with the least transaction volume are merged. If the shard granularity is
insufficient, the shard with the largest transaction volume is split into two, and the cycle is adjusted until the

5246 Comput Mater Contin. 2025;84(3)

shard granularity is equal to m (Lines 21-34). Finally, the blockchain with shard granularity of m is output
(Line 35).

Algorithm 1: Optimizing account partition and adjusting shard granularity

Input: graph G = (Ac, Tn), account set Ac = {ac,, acy, ..., ac,}, frequency set

Tn = {tnl, tny, ..., tns},tnk = {aci, acj,Num (ac,», acj)}, account degree

Deg = {deg(ac)),deg(ac,),...,deg(ac,)}, weight regulation factor «, shard granularity m
Output: shard = {shard,, shard,, ...,shard,, }

1 shard; = {ac;}, Shard = {shard;}, Rsnara, = D> Wshara, = 0 //Initialization
2 do
3 Calculate Q;,;;
4 for (i =1;i < |shard|;i++) //Traverse all shards
5 Calculate Wspar4,» Rsnard,
6 Max = —00,q = —00
7 for (j=1j < |Rspara,|; j ++) //Traverse the neighbor shards of shard;
8 Calculate Wnard;» Wshard; ;
9 AQ = 5 (Wshard[,j - —WShardiLWShQYdj)
//Calculate the modularity gain after shard; is added to shard,;
10 if AQ > Max then
11 Max = AQ, q = j //Record the maximum value of modularity gain
12 end if
13 end for
14 if Max >0
15 shard, = shard, U shard;, shard; = @
16 end if
17 end for

18 Restructure graph G = (Ac, Tn)

19 Calculate Q

20 while (|Q - Q;nit| >107)

21 Sort shard in ascending order of shard; transaction volume sn;, obtain Sn = {sny,sny,...,sng}
22 if s>m then //The number of shards is greater than the input shard granularity

S

23 for (i=Li<s—m;i++)

24 shard;, = shard; .y U shard;, sn;y = snj.q + sn;

25 Sort shard in ascending order of sn;, obtain Sn = {sn,41,5n;42,...,5n}
26 end for

27 end if

28 if s <mthen //The number of shards is less than the input shard granularity
29 for(i=Li<m-s;i++)

30 shards,; = shard/2 //Split sharding

31 shard, = shard, — shard,;, sns = sng — sng,;

32 Sort shard in ascending order of sn;, obtain Sn = {sny, sny, ..., N}
33 end for

34 end if

35 return shard = {shard,,shard,,...,shard,,} //Multi-shard blockchain formation

Comput Mater Contin. 2025;84(3) 5247

After Algorithm 1 is executed, the strong correlations between accounts are found through community
detection, and the strong-correlated and high-frequency accounts are assigned to the same shard. For high-
frequency accounts that are not clustered in the same shard, one of them is randomly selected as a redundant
account, and its transactions are backed up to the shard where the other account resides. The transactions that
originally required cross-shard operations are converted into intra-shard transactions through redundant
storage. Therefore, properly redundant storage of strong-correlated accounts can avoid unnecessary cross-
shard transactions. But how many redundant accounts are appropriate? Thus, the concept of account
redundancy rate r is introduced. The account redundancy rate r is obtained through the experimental results
in Section 4. The description of the account redundancy strategy is shown as Algorithm 2. The construction
process of redundant account candidates is as shown in Lines 1-6. K is a dynamic threshold that needs to
be adjusted according to the characteristics of the data set. Identify the accounts with significantly high
comprehensive weights from the dataset. Select the minimum comprehensive weight value of these accounts
with relatively high comprehensive weights as the benchmark for division. Divide the value of this benchmark
by the total comprehensive weight of all accounts in the dataset. These accounts will not be selected as
redundant account candidates because their redundancy would lead to a storage explosion. The K value of
this experiment is taken as 0.05. According to the account redundancy rate r, randomly select accounts from
the candidate and store them in the shard with the largest transactions (Lines 7-17).

Algorithm 2: Account redundancy strategy

Input: shard = {shard,, shard,, ..., shard,,}, Ac = {ac), ac,, ..., ac,}, account redundancy rate r
Output: shard = {shard,, shard,, ...,shard,, }

1 For(i=Li<mi++) //Calculate the comprehensive weight of each account and con-
struct the candidate set of redundant accounts

2 Wae, = a X ;i Num (aciac;) + (1- a) x deg (ac;)

3 if woe,/YiWae, <K

4 AcCtemp = ACtemp U ac;

5 end if

6 end for

7 RandomOrder (Actem P) //Randomly shuffle the candidate set of redundant accounts
8 for (i =0, Max = —o0;i < r|Ac|&∾ € Aciemp; i + +)
9 for (j=0;j<mj++)

10 Calculate Num (aci,shardj)
//Calculate the transaction frequency between ac; and shard;
1 if Num (ac,-,shardj) > Max
12 Max = Num (ac,-,shardj),pzj
13 end if
14 endfor
15 shard, = shard, U ac; //ac; is redundantly stored in shard,
16 end for

17 return shard = {shardy, shard,,...,shard,,}

4 Experiment Evaluation

The mainstream sharding schemes (RSA, MSA, and LPA) were analyzed as baselines. To validate the
effectiveness of the algorithms, simulation experiments were conducted under different shard granularities.

5248 Comput Mater Contin. 2025;84(3)

The performance of the four algorithms is comprehensively evaluated based on multiple indicators. Addi-
tionally, the optimal redundancy strategy proposed in this paper is verified through experiments, and the
influence of different account redundancy rates on system performance is analyzed.

In order to verify the feasibility of the algorithm, the transaction sharding algorithm is designed using
the Python language, and experiments were conducted on PyCharm. All experiments were conducted on an
Intel Core i7 64-bit Windows operating system with 16 GB of memory. 2 million transactions were extracted
from Ethereum, totaling 75,222 accounts.

4.1 Cross-Shard Transaction Proportion under Different Redundancy Strategies

In order to further decrease C,, the redundant storage of some accounts is considered. However, it is
worth considering which account redundancy strategy to choose. Account redundancy can be stored in the
shard with the least transaction volume, or it can be stored in the shard where the most frequent account that
transacts with the redundant account is located (called strong-correlated account redundant strategy). In
order to verify the effectiveness of the redundancy strategy, non-account redundancy is used as a comparative
experiment to test C, of the two strategies under different shard granularities. As shown in Fig. 2, it can
be intuitively seen that using the strong-correlated accounts redundant strategy can significantly reduce C,.
With the increase of shard granularity, the strong-correlated account redundant strategy still maintains a
low cross-shard transaction, because the strategy takes into account transaction frequency, and converts
more cross-shard transactions into intra-shard transactions through account redundancy. Therefore, the
subsequent experiments are conducted on the basis of the strong-correlated accounts redundant strategy.

20% - Non-account redundancy
- Redundancy by transaction volume
18% Redundancy by strong-correlated account

16%-

14%
12%]
10% 8
8% .
E% .
4% .

Cross-shard transaction proportion

2%-

0%-

10 ' 20
Shardmg granularity

Figure 2: The cross-shard transaction proportion under different redundant strategies

4.2 Cross-Shard Transaction and Transaction Volume Distribution

After determining the account redundancy strategy, the account redundancy rate needs to be consid-
ered. As shown in Fig. 3, C, is inversely proportional to the V. To find a balance between these two factors,
this study tests their variations under different account redundancy rates. When the account redundancy rate
increased from 5% to 10%, the transaction volume redundancy increased by 3 to 12 percentage points, while
the other indicator remained stable at around 10%. When the account redundancy rate further increases to
15%, the transaction volume redundancy surges by 22 to 31 percentage points, far exceeding expectations.

Comput Mater Contin. 2025;84(3) 5249

Therefore, the account with 10% redundancy is selected as the optimal solution, which is used as account
redundancy rate r in Algorithm 2.

20%

g
=

40%

30%

20%

Cross-shard transaction proportion
Transaction volume redundancy

10%

15%
Account redundancy rate

Figure 3: The change of cross-shard transaction proportion and transaction volume redundancy under different
account redundancy rates

4.3 Cross-Shard Transaction and Account Distribution

Fig. 4 shows C, under different shard granularities. The C, of the four algorithms increases with the
increase of shard granularity m. When the sharding granularity of DFSA is 3, 5, 10, and 20, the cross-sharding
transaction proportion remains at around 10%, performing the best among the four algorithms. This is
mainly because it thoroughly considers the relationships between accounts during the sharding process.
It not only analyzes the transaction frequency between accounts, but also takes into account the activity
degrees, and ensures that accounts with high correlation are prioritized and located together. Table 3 lists
A,, when m is equal to 10. In the case of adopting the DFSA algorithm, 81.89% of the accounts can complete
transaction verification without cross-shard, thereby reducing the demand for cross-shard transactions and
transaction delays.

E Random sharding algorithm (RSA)
100% Madular sharding algorithm (MSA)
Label propagation algorithm (LPA)

[Proposed (DFSA)

80%

60%

40%

20%

Cross-shard transaction proportion

0% -

3 5 10 20
Sharding granularity

Figure 4: The cross-shard transaction proportion under different sharding granularity

5250

Comput Mater Contin. 2025;84(3)

Table 3: Account proportion with different cross-shard number under m = 10

A, Ay, A, A, A, A, A, A, A, A, A,
RSA 4.49% 48.03% 33.05% 8.46% 3.02% 139% 0.64% 034% 021% 0.39%
MSA 425% 46.98% 33.94% 8.65% 311% 130% 0.74% 039% 0.24% 0.40%
LPA 68.68% 26.63% 3.62% 070% 0.19% 0.06% 0.04% 0.03% 0.02% 0.03%
DFSA 81.89% 14.52% 2.62% 0.67% 018% 0.05% 0.04% 0.02% 0.00% 0.00%

4.4 Transaction Latency

Transaction delay is the core indicator of user concern in practical applications, which directly affects
system availability and user experience, and therefore becomes a key standard to measure blockchain per-
formance. In order to comprehensively evaluate the performance of different algorithms in the transaction
confirmation process, the transaction delay cumulative distribution function (CDF) under different sharding

granularities is plotted, as shown in Fig. 5.

1.0 H 'ﬁ'EvI.-II‘II '
¥ |
- N A
.8 "'v !_- o
06 « .
5 7]
o .
0.4+ :
A /®
» = — RSA
0.2 1 ‘!ll * MSA
e A LPA
0.0 #—e=¥ v DFSA
T T T T
0.00 0.05 0.10 0.15
Latency(sec)
(a)
1.0 5 virvryaw vy & - -
'f"'.l—-"'y
v
v | 3
0.8 v /
¥
¥
0.6 - r A
'-D'- a
(&)
0.4 ¥
- = RSA
] * MSA
fy 8 A LPA
00— v DFSA
T L} T T
0.00 0.05 0.10 0.15
Latency(sec)

(c)

CDF

CDF

1.0 4 ',ﬁv:"t“—“u =E
v oM
0.8 ../ p_§
v
n
4 L4
0.6 - L/
Ay .
0.4 _;-"
[]
= RSA
0% 4 _.-'. ® — MSA
n
& A LPA
004 &% v DFSA
T Ll T 1
0.00 0.05 0.10 0.15
Latency(sec)
(b)
1.0 4 v VT T b w4 BB bE
o
on
0.8 ¥/
v/
.
"4 {
0644
0.4
v /]
[|
?/ = RSA
0.2 1 / -
A LPA
00+ &% v DFSA
T Ll T 1
0.00 0.05 0.10 0.15
Latency(sec)

(d)

Figure 5: Account transaction delay with different sharding granularity: (a) m =3, (b) m = 5, (¢) m =10, (d) m = 20

Comput Mater Contin. 2025;84(3) 5251

With the increase of sharding granularity, the transaction confirmation time of more than 90% of
the four algorithms decreased from 0.1 s to 0.05 s. This is because sharding technology shares the load
in the network among multiple independent subnetworks, which allows transactions to be processed and
confirmed faster, reducing overall transaction latency. In Fig. 5a, the LPA algorithm can process more
transactions than the DFSA algorithm at the same time, because the LPA algorithm relies on the local
neighbor information propagation label. When the sharding granularity is small, the more relevant nodes are
more likely to propagate to the same label and thus cluster together. In Fig. 5¢, the DFSA algorithm enables
up to 80% of transactions to be confirmed within 0.03 s, while for other baselines such as LPA, MSA, and RSA
only confirm 60%, 51%, and 52% of transactions respectively within the same time. This is because the DFSA
algorithm can better capture the global structure and potential community relations between nodes through
global optimization, thus improving the quality of the partition. To sum up, at higher sharding granularity,
the DFSA algorithm always maintains a low transaction latency4.5 Average Delay.

This study systematically evaluates transaction latency and account cross-shard number based on
specific sharding granularity. However, in practical applications, it is necessary to prioritize the global
performance of the blockchain rather than a single account. To this end, the concepts of n,,, and average
transaction latency are introduced. It can be seen from Fig. 6a that with the increase of sharding granularity,
all four algorithms show an upward trend. In contrast, the DFSA algorithm has fewer cross-shard numbers
and a smaller fluctuation range, approximately 0.07 percentage points. Fig. 6b shows the average transaction
latency of the four algorithms under different sharding granularities. The delay of all algorithms decreases as
the sharding granularity increases. This is because the larger the sharding granularity, the more decentralized
the transaction, and the transaction only needs to be verified in the shard where the transaction account is
located, speeding up the transaction verification speed. When the sharding granularity is 20, the latency of the
DFSA algorithm is still lower than that of other algorithms, decreasing by 27%, 38%, and 41%, respectively.
In summary, the DFSA algorithm performs better in all aspects.

0.07

] ———— -
1[-=—RsA _a I msa
_18[* MSA - 0.06 - B RsA
8. q—LPA P == I —
€161 | v DFSA] = LPA
g | 4 % 0.05 4
° 1.4+ 8 'E
@ g i=] A
-‘:‘P 1.2—_ E 0.04
@10d & @
B Lt & 0.03
0.8 o
aé’ %’n 02
= 0.4 4 2 A A < 0.01 4
1 re
024 v v X
T T T T T T T 0.00 -
3 5 10 20 3 5 10 20
Sharding granularity Sharding granularity
(a) (b)

Figure 6: (a) Average cross-shard number and (b) average transaction delay under different sharding granularity

5252 Comput Mater Contin. 2025;84(3)

4.5 Transaction Throughput

Transaction throughput is an important index that is paid attention to in practical applications. Fig. 7
shows the transaction throughput at different sharding granularities. With the increase of sharding gran-
ularity, the throughput of the four algorithms shows an increasing trend. When m is equal to 20, the
DFSA algorithm improves throughput by 34%, 78%, and 82% compared to the LPA, RSA, and MSA
algorithms, respectively. The experimental results show that the DFSA algorithm can effectively improve the
transaction throughput.

1400

[MSA
I RsA
[IDFsA i

1000 -
800 -

600 +

=

=

1=
1

Transaction throughput (1 05pcs}s)
18]
(=]
o

o
1

3 ' 5 ' 10 ' 20
Sharding granularity

Figure 7: Transaction throughput

5 Conclusion

This paper focuses on solving the problem of an excessively high cross-shard transaction proportion in
sharding technology. To address this, the DFSA algorithm is proposed, which calculates the comprehensive
account weight based on their activity degrees and transaction frequency. The algorithm uses a community
detection approach to partition the network and further reduces the cross-shard transaction proportion by
considering a random redundancy strategy based on account relationships. A large number of experimental
results show that the DFSA algorithm is significantly superior to the widely adopted RSA and MSA, with
less transaction delay and higher throughput. Future work will focus on addressing the issue of shard load
balancing to ensure reasonable transaction allocation, prevent certain shards from being overloaded, and
further enhance the overall performance of the blockchain.

Acknowledgement: The authors would like to thank the editors and reviewers for their hard work.

Funding Statement: This work has been supported by the National Natural Science Foundation of China (Grant
No. 61802301) awarded to J. Li; the Postgraduate Innovation Fund Project of Xian Shiyou University (Grant No.
YCX2513159).

Author Contributions: The authors confirm contribution to the paper as follows: study conception and design: Jiao
Li, Xiaoyu Song; data collection, experiment, and analysis: Xiaoyu Song; supervision and discussion: Jiao Li; writing,
editing, and reviewing: Jiao Li, Xiaoyu Song. All authors reviewed the results and approved the final version of
the manuscript.

Comput Mater Contin. 2025;84(3) 5253

Availability of Data and Materials: The data supporting this study are available from the corresponding author upon
reasonable request.

Ethics Approval: Not applicable.

Conlflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Khan D, Jung LT, Hashmani MA. Systematic literature review of challenges in blockchain scalability. Appl Sci.
2021;11(20):9372. doi:10.3390/app11209372.

Hafid A, Hafid AS, Samih M. Scaling blockchains: a comprehensive survey. IEEE Access. 2020;8:125244-62. doi:10.
1109/access.2020.3007251.

Huang H, Zhao Y, Zheng Z. tMPT: reconfiguration across blockchain shards via trimmed merkle patricia trie. In:
2023 IEEE/ACM 31st International Symposium on Quality of Service (IWQoS); 2023 Jun 19-21; Orlando, FL, USA.
p- 1-10.

Kustov V, Beksaev N, Ravi R. Sharding in the blockchain or divide and conquer. In: Proceedings of the 16th
International Conference on Advanced Technologies, Systems and Services in Telecommunications (TEL-SIKS);
2023 Oct 25-27; Nis, Serbia. p. 223-7.

Zhang Y. Research on hierarchical sharding based on spectral clustering algorithm. In: Proceedings of the 4th
International Conference on Computer Science and Blockchain (CCSB); 2024 Sep 6-8. Shenzhen, China. p.
577-83.

Liu Y, Xing X, Cheng H, Li D, Guan Z, Liu], et al. A flexible sharding blockchain protocol based on cross-shard
byzantine fault tolerance. IEEE Trans Inf Forensics Secur. 2023;18:2276-91. doi:10.1109/tifs.2023.3266628.

Li], Zhang X, Ning Y. Blockchain sharding method for reducing cross-shard transaction proportion.] Comput
Appl. 2024;44(6):1889-96. d0i:10.11772/j.issn.1001-9081.2023060757.

Yu G, Wang X, Yu K, Ni W, Zhang JA, Liu RP. Survey: sharding in blockchains. IEEE Access. 2020;8:14155-81.
doi:10.1109/access.2020.2965147.

Tan P, Xu T, Tu R. Review of research on blockchain sharding techniques. Comput Sci. 2024;51(11):307-20. doi:10.
11896/jsjkx.231200078.

Li H, Wang D, Zhi H, Wang Y, Yang T, Song J. A dynamic sharding scheme for blockchain based on graph
partitioning. In: Proceedings of the 2024 IEEE International Conference on Blockchain (Blockchain); 2024 Aug
19-22; Copenhagen, Denmark. p. 286-93.

Fang P, Zhao F, Wang B, Wang Y, Jiang T. Development, technologies and applications of Blockchain 3.0.] Comput
Appl. 2024;44(12):3647-57. doi:10.11772/j.issn.1001- 9081.2023121826.

JiaL, Liu Y, Wang K, Sun Y. Estuary: a low cross-shard blockchain sharding protocol based on state splitting. IEEE
Trans Parallel Distrib Syst. 2024;35(3):405-20. doi:10.1109/tpds.2024.3351632.

Huang H, Kong W, Peng X, Zheng Z. Survey on blockchain sharding technology. Comput Eng. 2022;48(6):1-10.
doi:10.19678/j.issn.1000-3428.0063887.

Quan BLY, Wahab NHA, Al-Dhaqm A, Alshammari A, Aqarni A, Razak SA, et al. Recent advances in sharding
techniques for scalable blockchain networks: a review. IEEE Access. 2025;13:21335-66. doi:10.1109/access.2024.
3523256.

Xu J, Ming Y, Wu Z, Wang C, Jia X. X-shard: optimistic cross-shard transaction processing for sharding-based
blockchains. IEEE Trans Parallel Distrib Syst. 2024;35(4):548-59. d0i:10.1109/tpds.2024.3361180.

Wang Q, Guan Y. TransShard: a dynamic transaction-aware sharding scheme for account-based blockchain. IEEE
Access. 2024;12:179797-812. doi:10.1109/access.2024.3505953.

Cai Z, Liang], Chen W, Hong Z, Dai H-N, Zhang], et al. Benzene: scaling blockchain with cooperation-based
sharding. IEEE Trans Parallel Distrib Syst. 2023;34(2):639-54. d0i:10.1109/tpds.2022.3227198.

https://doi.org/10.3390/app11209372
https://doi.org/10.1109/access.2020.3007251
https://doi.org/10.1109/access.2020.3007251
https://doi.org/10.1109/tifs.2023.3266628
https://doi.org/10.11772/j.issn.1001-9081.2023060757
https://doi.org/10.1109/access.2020.2965147
https://doi.org/10.11896/jsjkx.231200078
https://doi.org/10.11896/jsjkx.231200078
https://doi.org/10.11772/j.issn.1001-9081.2023121826
https://doi.org/10.1109/tpds.2024.3351632
https://doi.org/10.19678/j.issn.1000-3428.0063887
https://doi.org/10.1109/access.2024.3523256
https://doi.org/10.1109/access.2024.3523256
https://doi.org/10.1109/tpds.2024.3361180
https://doi.org/10.1109/access.2024.3505953
https://doi.org/10.1109/tpds.2022.3227198

5254

18.

19.

20.

21

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

Comput Mater Contin. 2025;84(3)

Tas R, Tanriover O. Building a decentralized application on the ethereum blockchain. In: Proceedings of the
International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT); 2019 Oct 11-13;
Ankara, Turkey. p. 1-4.

Kokoris-Kogias E, Jovanovic P, Gasser L, Gailly N, Syta E, Ford B. OmniLedger: a secure, scale-out, decentralized
ledger via sharding. In: Proceedings of the IEEE Symposium on Security and Privacy (SP); 2018 May 21-23; San
Francisco, CA, USA. p. 583-98.

Aiyar K, Halgamuge MN, Mohammad A. Probability distribution model to analyze the trade-off between
scalability and security of sharding-based blockchain networks. In: Proceedings of the 2021 IEEE 18th Annual
Consumer Communications & Networking Conference (CCNC); 2021 Jan 9-12; Las Vegas, NV, USA. p. 1-6.
Wang J, Wang H. Monoxide: scale out blockchains with asynchronous consensus zones. In: Proceedings of the 16th
USENIX Symposium on Networked Systems Design and Implementation (NSDI'19); 2019 Feb 26-28; Boston, MA,
USA. p. 95-112.

Wu], Yuan L, Chen M, Xie T. Blockchain dynamic sharding model based on node trustworthiness. Appl Res
Comput. 2024;41(12):3563-71. d0i:10.19734/j.issn.1001- 3695.2024.04.0243.

Huang H, Peng X, Zhan J, Zhang S, Lin Y, Zheng Z, et al. BrokerChain: a cross-shard blockchain protocol
for account/balance-based state sharding. In: Proceedings of the IEEE INFOCOM 2022—IEEE Conference on
Computer Communications INFOCOM); 2022 May 2-5; London, UK. p. 1968-77.

Zhang X. Research on blockchain sharding method based on transaction feature analysis [master’s thesis]. Xi’an,
China: Xi'an Shiyou University; 2023.

Li C, Huang H, Zhao Y, Peng X, Yang R, Zheng Z, et al. Achieving scalability and load balance across block-chain
shards for state sharding. In: Proceedings of the 41st International Symposium on Reliable Distributed Systems
(SRDS); 2022 Sep 19-22; Vienna, Austria. p. 284-94.

Li Z, Xu B, Zhou Y. Graph neural network-based address classification method for account balance model
blockchain.] Commun. 2023;44(9):115-26. doi:10.11959/j.issn.1000-436x.2023173.

Luu L, Narayanan V, Zheng C, Baweja K, Saxena P. A secure sharding protocol for open blockchains. In:
Proceedings of the ACM SIGSAC Computer and Communications Security (CCS’16); 2016 Oct 24-28; Vienna,
Austria. p. 17-30.

Zhai D, Liu J, Yang Y, Zhu P. Blockchain dynamic sharding adaptive model. Appl Res Comput. 2024;41(11):3231-8.
d0i:10.19734/j.iss1.1001-3695.2024.03.0069.

Wang F, Zhang Q, Liu Y, Liu L, Lu Y. Look at blockchain from a scalability perspective. Appl Res Comput.
2023;40(10):2896-907. doi:10.19734/j.issn.1001- 3695.2023.02.0075.

Rashid M, Rasool I, Zafar N, Afzaal H. Formal modeling and verification of justification and finalization of
checkpoints in Ethereum 2.0 beacon chain. In: Proceedings of the 1st IEEE Karachi Section Humanitarian
Technology Conference (KHI-HTC); 2024 Jan 8-9; Tandojam, Pakistan. p. 1-6.

Echbarthi G, Kheddouci H. Streaming METIS partitioning. In: Proceedings of the IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM); 2016 Aug 18-21; San Francisco,
CA, USA. p.17-24.

Zhang Y, Pan S, Yu J. TxAllo: dynamic transaction allocation in sharded blockchain systems. In: Proceedings of the
IEEE 39th International Conference on Data Engineering (ICDE); 2023 Apr 3-7; Anaheim, CA, USA. p. 721-33.

https://doi.org/10.19734/j.issn.1001-3695.2024.04.0243
https://doi.org/10.11959/j.issn.1000-436x.2023173
https://doi.org/10.19734/j.issn.1001-3695.2024.03.0069
https://doi.org/10.19734/j.issn.1001-3695.2023.02.0075

	Blockchain Sharding Algorithm Based on Account Degree and Frequency
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experiment Evaluation
	5 Conclusion
	References

