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ABSTRACT: False Data Injection Attack (FDIA), a disruptive cyber threat, is becoming increasingly detrimental
to smart grids with the deepening integration of information technology and physical power systems, leading to
system unreliability, data integrity loss and operational vulnerability exposure. Given its widespread harm and impact,
conducting in-depth research on FDIA detection is vitally important. This paper innovatively introduces a FDIA
detection scheme: A Protected Federated Deep Learning (ProFed), which leverages Federated Averaging algorithm
(FedAvg) as a foundational framework to fortify data security, harnesses pre-trained enhanced spatial-temporal graph
neural networks (STGNN) to perform localized model training and integrates the Cheon-Kim-Kim-Song (CKKS)
homomorphic encryption system to secure sensitive information. Simulation tests on IEEE 14-bus and IEEE 118-
bus systems demonstrate that our proposed method outperforms other state-of-the-art detection methods across all
evaluation metrics, with peak improvements reaching up to 35%.
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1 Introduction
As a crucial pillar of national infrastructure, ensuring power system security is paramount. With

growing integration between the power system and the Internet [1], the smart grid [2] is regarded as
the new generation in power systems, merging advanced network communication, intelligent control and
automation technologies to strengthen monitoring, analysis and fault response capabilities for equipment
and data [3]. Nevertheless, the deep coupling of information technology with physical power systems renders
smart grids vulnerable to cyberattacks. Various types of adversarial attacks, such as label flipping, feature
poisoning, vague generative adversarial network-based data poisoning attack (VagueGAN) [4], and even
some unknown web attacks [5] keep emerging one after another, posing a huge threat to the normal and
efficient operation of the smart grid. FDIA is a prominent representative among these threats, which is
first proposed by Liu et al. in 2009 [6]. Specifically, attackers first monitor and analyze system data to
comprehend normal operational patterns, then insert seemingly authentic false data to circumvent detection
mechanisms, resulting in compromised data integrity, diminished system reliability, and even significant
economic repercussions, exemplified by the severe 2015 Ukraine power grid attack [7].

In response to the occurrence of FDIA and its severe impacts, establishing effective detection and
defense mechanisms is essential. Considerable research efforts have been dedicated to False Data Injection
Attacks (FDIA). Numerous centralized FDIA detection methods, such as research [8–11], are capable of
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efficiently identifying anomalous data and significantly improving detection accuracy by integrating all
power data into a central node for centralized analysis and training. However, these methods are highly
dependent on central nodes, which increases the risk of single-point failures and makes the system particu-
larly vulnerable to attacks targeting the central node. Meanwhile, as the system scales up, centralized methods
will encounter scalability issues. For example, the computational and storage resources of centralized
servers may reach their limits swiftly, which put tremendous pressure on centralized nodes. Extensive
decentralized studies [12,13] effectively circumvent the aforementioned challenges by introducing distributed
or decentralized ideas, but the lack of consideration of data leakage during transmission and sharing among
multiple nodes or clients may threaten the security of the entire system. Furthermore, there are also some
works [14,15] that capture information through temporal graphs or spatial graphs, which in turn aid in
decision-making. Although they have achieved satisfactory results, constructing the graph only from a single
perspective leads to one-sided information, thus limiting the further improvement of the detection accuracy.

It can be seen that most of the existing countermeasures cannot simultaneously guarantee the detection
effectiveness, non-dependence on individual nodes as well as security during data transmission. Therefore,
in this paper, we innovatively propose a FDIA detection scheme that combines federated learning, CKKS
encryption system and STGNN detection model. By combining all advantages of each module, we can
achieve a de-centralised, highly secure and accurate FDIA detection technology, addressing the shortcomings
of existing research. Specifically, the Federated Averaging algorithm is first employed to alleviate the pressure
on data storage as well as model training, thus reducing the reliance on centralized nodes. Subsequently, data
security and model security are further guaranteed through leveraging the locally stored data for local model
training and employing the CKKS homomorphic encryption mechanism to transmit model parameters.
Finally, an enhanced spatial-temporal graph neural network (STGNN) proposed in [16] is used to capture the
spatial-temporal correlations and extract more comprehensive features in training data, which significantly
improves the detection accuracy of FDIA. In a word, the main contributions of this paper are as follows:
• We propose a FDIA detection method based on the Federated Averaging algorithm, which enhances

data privacy, eases central server load and lessens the dependence on the central node by locally
performing training.

• We innovatively apply the CKKS homomorphic encryption system to encrypt the weight parameters for
upload, preventing hackers from inferring model information and safeguarding model security.

• We employ an enhanced STGNN model, which is capable of extracting more comprehensive and accu-
rate features by capturing the dependencies between temporal and spatial aspects, thereby enhancing
the detection accuracy of FDIA.
The rest of this paper is structured as follows: Section 2 outlines the problem background and reviews

related studies; Section 3 provides an overview of several algorithms involved in this paper; Section 4 details
the proposed algorithm; Section 5 presents the experimental results along with clear analysis; Section 6
concludes this paper.

2 Background
In this section, we introduce the principles of FDIA and review the existing FDIA detection methods,

offering a clear introduction of FDIA.

2.1 False Data Injection Attack
False Data Injection Attack (FDIA) is a type of network attack targeting networked control systems and

power systems. In this attack, the attacker injects erroneous information into the system by tampering with
sensor or communication data, which causes the system to make incorrect judgments or decisions and leads
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to system malfunctions or failures [17]. Based on the complex structure of the smart grid, the nonlinear
measurement equation for state estimation can be established as Eq. (1):

z = h(x) + e , (1)

where z, h(x), x, e represent the vector of measurements, the nonlinear measurement function, the vector
of state variables and the measurement error vector, respectively. After being subjected to a FDIA, the
measurement is denoted by z f , as represented by Eq. (2):

z f = z + a, (2)

where a = [a1 , a2, ..., am]
T is the attack vector of dimension m. Assuming x̂ represents the normal state, the

estimated state after FDIA can be expressed as x f in Eq. (3):

x f = x̂ + c, (3)

where c = [c1 , c2, ..., cn]
T represents the estimation error vector of dimension n caused by the FDIA. Let the

pre-attack and post-attack residuals be denoted as r and r f , respectively. They can be computed by Eq. (4):

r = z − h(x̂), r f = z f − h(x f ). (4)

By transforming Eqs. (2) and (3), r f can be derived as Eq. (5):

r f = z f − h(x f ) = (z + a) − h(x̂ + c) = (z − h(x̂)) + (a − h(x̂ + c) + h(x̂)). (5)

At this point, the attack vector a can be represented by Eq. (6):

a = r f − r + h(x̂) − h(x f ). (6)

Given the stealthy nature of FDIA, the residuals of the power grid remain unchanged before and after
the attack, i.e., r f = r. Hence, a will be denoted as Eq. (7):

a = h(x̂) − h(x f ). (7)

Eq. (7) can be regarded as the constraint condition for the attack vector. Once this condition is fulfilled,
FDIA can successfully bypass bad data detection [18].

2.2 FDIA Detection
Since FDIA is extremely harmful, it is imperative to establish an effective FDIA detection and defense

mechanism. So far, numerous related researches have been conducted. Kosut et al. [8] propose an easy-to-
compute heuristic algorithm which can trace undetectable destructive attacks in all scenarios. In addition,
they also introduce the Bayesian formula for bad data problems and the optimized L∞ detector which
is superior to the L2 norm-based detector, to better detect FDIA. Luo et al. [9] propose an unknown
input observer (UIO)-based method for FDIA detection and isolation. Combining the internal physical
dynamics as well as the residual properties of the UIO, an algorithm with adaptive threshold settings is
proposed for fast detection of FDIA. In [10], Li et al. propose a security and resilience enhancement scheme
(SECDM), designing a centralized FDIA detector that utilizes a decentralized homomorphic computation
paradigm and a hierarchical knowledge-sharing algorithm for attack detection and mitigation in smart
grids. Zhang et al. [11] integrate an autoencoder into a Generative Adversarial Network (GAN) to detect
FDIA by capturing inconsistencies between anomalous data and normal measurements. Huang et al. and
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Huang et al. [12,13] abandon the traditional centralized detection framework and propose a distributed
detection method based on edge computation. Although replacing the centralized framework with a
distributed computing framework alleviates the computational pressure, the risk of data leakage during
data transmission between the central server and edge users is not considered. Boyaci et al. [14] propose a
GNN-based, scalable real-time FDIA detector by leveraging power grid physics and measurement spatial
correlations. However, this approach only considers spatial correlations without taking the time series into
account. Wu et al. [15] propose a robust FDIA model adaptable to topological changes and a distributed
unsupervised detection method combining dynamic time warping and clustering techniques to effectively
identify FDIA. Nevertheless, the method only considers the temporal correlation and ignores the spatial
correlation of power data.

3 Preliminary
This section provides an overview of the current research status and principles of FedAvg, STGNN, and

CKKS, which will serve as a research foundation for ProdFed in the following sections.

3.1 Federated Averaging Algorithm
As a classic and widely used distributed optimization algorithm in Federated Learning (FL), the Feder-

ated Averaging (FedAvg) algorithm is suitable for scenarios where data privacy is sensitive, communication
costs are limited and data distribution is heterogeneous. This technology has been widely applied in fields
with large amounts of data and high requirements for data security, such as healthcare [19,20], finance
[21] and communications [22,23]. The FedAvg algorithm achieves data privacy preservation through local
training and parameter aggregation, and has demonstrated some achievements [24,25] in FDIA detection
field. Meanwhile, on the basis of optimizing the model using decentralized data, FedAvg reduces the
number of communication rounds required for training by increasing client computation, thereby improving
computational efficiency.

Specifically, its basic framework is shown in Fig. 1. Based on Stochastic Gradient Descent (SGD) [26],
the FedAvg algorithm selects clients for local model training according to the actual situation. After multiple
local iterations, the updates (such as weights or gradients) are uploaded to the central server for aggregation,
thereby updating the global model. It allows participants to perform joint modeling without sharing the
original data, thus ensuring data privacy. Meanwhile, multiple iterations are carried out locally, which
reduces the communication cost. Since different grid nodes may have similar devices (the same features) but
different operational data and fault conditions (different samples), the FedAvg algorithm enables all nodes
to collaborate in training a more effective detector.

3.2 Enhanced Spatial-Temporal Graph Neural Network
Aiming to simultaneously capture spatial and temporal dependencies in multivariate time series (MTS)

[27] data, this paper adopts the spatial-temporal graphical neural network (STGNN), which has a promising
application prospect in the fields of traffic prediction [28,29,30], medicine [31,32] and smart grid [33,34].
Moreover, it also holds promising prospects in the domain of attack identification [35,36] and abnormal data
detection [37]. However, due to the low information density of time series data, STGNN can only extract
information from short time intervals, struggling to capture long-term temporal sequences. To address this
issue, the Enhanced Spatial-Temporal Graph Neural Network proposed in [16] is cited, which includes the
Pre-training Stage and Forecasting Stage. Fig. 2 shows the flowchart.
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Figure 1: Federated averaging algorithm

The Pre-training Stage includes four stages: Masking, Encoding, Decoding and Reconstruction.

• Masking: In order to adapt to downstream model STGNNs and achieve efficient training, the input
sequence is divided into non-overlapping segments which are selected for masking to create a challeng-
ing self-supervised task.

• Encoding: The encoder only operates on unmasked fragments to generate latent representations which
serve as preparations for subsequent tasks.

• Decoding: The decoder operates on the full set of patches (including the mask tokens) to reconstruct
the latent representations back to numerical information.

• Reconstruction: The mean absolute error is calculated in parallel for all time series to evaluate the quality
of reconstruction.

The Forecasting Stage includes two stages: Discrete Sparse Graph Learning and Downstream Spatial-
Temporal Graph Neural Network.

• Discrete Sparse Graph Learning: The pre-trained TSFormer is utilized for discrete sparse graph
structure learning to address the challenges faced by STGNNs in graph structure learning, providing
preparation for downstream tasks.

• Downstream Spatial-Temporal Graph Neural Network: An enhanced STGNN framework combining
TSFormer and Graph WaveNet is proposed to improve the performance and completion efficiency of
downstream tasks.

3.3 CKKS Homomorphic Encryption
The Cheon-Kim-Kim-Song (CKKS) homomorphic encryption scheme, proposed by Cheon et al. in

[38], is a widely adopted homomorphic encryption scheme based on the Brakerski Gentry Vaikuntenathan
(BGV) or Brakerski Fan Vercauteren (BFV) schemes. It is distinguished primarily by its capability to process
floating-point numbers through the introduction of approximate calculation, allowing for a certain degree of
error. Compared with other traditional fully homomorphic encryption schemes, CKKS simplifies the details
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when processing floating-point numbers and has higher computational efficiency. Efficient encryption and
decryption make it highly promising in the fields of machine learning [39–41] and privacy protection
[42–45]. In this article, we utilize CKKS Homomorphic Encryption Algorithm to protect the model weight
parameters during the information transmission process between the central server and the client, thus
achieving the goal of protecting federated learning. The CKKS encryption parameters (e.g., polynomial
degree, coefficient size) used in this article adhere to the security level settings recommended by the
Homomorphic Encryption Standardization Group (HESG), with the specific configuration set to a 128-bit
security level.

Figure 2: Enhanced spatial-temporal graph neural network

4 Methodology
The core idea of the ProFed scheme is to combine the Federated Averaging algorithm with CKKS

homomorphic encryption to collaboratively train a FDlA detection model: Enhanced Spatial-Temporal
Graph Neural Network for each client with locally stored data. Fig. 3 shows the flowchart of the ProFed-
STGNN. The upper part illustrates the general workflow of federated learning, while the lower part outlines
the corresponding steps taken for training local model (the pre-training enhanced STGNN). Specifically,
the above process consists of Model Initialization, Local Model Training and Iteration, Encrypting Weights,
Aggregating Model Weights and Updating Local Models.
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Figure 3: Flow chart of the ProFed-STGNN

4.1 Model Initialization
In ProFed, the central server first initializes the global model and sends the model parameters θ0 to

each client. Meanwhile, according to the CKKS homomorphic encryption scheme, the key generator will
generate the public key (PK) for encryption and the private key (SK) for decryption. The CKKS encryption
scheme is constructed based on the Ring-LWE (Learning With Errors) problem, which has strong security
assurance. In the ProFed scheme, the key generation depends on the security parameter λ, which represents
the length of the bit-length sequence of the moduli used for encryption. Then, the generated key is leveraged
to accomplish the encryption operation via polynomials defined over the ring Zq[x]/(xn + 1), where n is
the upper limit of polynomial degree, which is usually a power of 2. Zq[x] represents the polynomial ring of
coefficients in Zq and q is the modulus, which is usually a large prime or a power of a prime.

4.2 Local Model Training and Iteration
4.2.1 Local Model Training

After initialization, each client uses local data to train a pre-trained enhanced FDIA detector based on
enhanced spatial-temporal graph neural networks, which is described as the lower part of Fig. 3. Through
extracting effective temporal information from long time series by unsupervised learning strategies (such
as masked autoencoders), ProFed utilizes the pre-trained model to further enhance the model’s robustness
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against False Data Injection Attack (FDIA). In addition, ProFed introduces a graph structure learner which
applies graph structure regularization and leverages TSFormer to reflect the dependencies between nodes
to handle missing dependency graphs. This ensures the successful construction of the graph structure
and provides useful information for the subsequent spatio-temporal graph neural network. As a result,
the performance of STGNN is improved, empowering the module to identify abnormal data and detect
potential attack behaviors with greater accuracy. In ProFed, by combining STGNN with pre-trained models,
we can learn the temporal patterns from long-term historical time series effectively, generating segment-
level representations rich in contextual information. These representations promote the performance of
downstream models in FDIA detection, especially when dealing with complex power system data.

4.2.2 Iteration
ProFed employs federated learning (FL) to orchestrate interactions between a central server and clients.

In each iteration, clients compute model updates (such as gradient or weight updates) based on their
local power system datasets and the current global model parameters, enabling decentralized training
without direct data sharing. To reduce computational costs and the number of communication rounds,
ProFed utilizes the Federated Averaging (FedAvg) algorithm which is described in Section 3.1 during the
iteration process.

In the t-th round of iteration, i-th client first receives the global model parameters θt . Then, multiple
iterations are locally executed to update the model, aiming to minimize the loss function L(θt

i ; Di) using the
local dataset Di ,

θt
i ← θt

i − η▽ L(θt
i ; Di), (8)

where η is the learning rate; ▽L(θt
i ; Di) is the gradient of the loss function with respect to the model

parameters. For a client with ni local samples, the number of local updates per round is denoted as:

ui = E ni

B
, (9)

where E represents the number of training epochs each client performs on its local dataset per round; B rep-
resents the local batch size used for client updates. ProFed utilizes the Federated Averaging algorithm, which
enables clients to perform multiple iterations locally. By minimizing the transmission of intermediate results
to the server, client-server communication is significantly reduced, effectively easing network transmission
pressure and cutting communication costs. Meanwhile, the parallel local computing mode in ProFed allows
the model to converge faster, significantly improving the overall training efficiency.

4.3 Encrypting Weights
In the ProFed framework, although the original data is not required in the data-sharing process,

participants still need to upload model weights to build a federated model. These model weights are actually
mappings of the original data, which can be reverse-engineered to obtain the original data, thus causing
data leakage. To solve this problem, it is necessary to encrypt the model weight parameters using CKKS in
ProFed to reduce the risk of data leakage during transmission between the central server and the clients. The
encryption process first maps floating point numbers to polynomials and then encrypts them. Assuming that
there are d parameters to be transmitted, the encryption complexity is O(d ∗ nlogn), where n represents
the polynomial degree. The specific operations are as follows:

Epk(m) = (c1, c2), (10)
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where m represents the real-valued model parameters (or updates); c1 and c2 are the two parts of the
ciphertext and are constructed using a polynomial ring; pk is the public key.

As mentioned above, the ciphertext E(θt
i) = CKKS .Encr ypt(pk, θt

i) is obtained by encrypting the
local model parameters, thus reducing the risk of data information leakage during the subsequent transmis-
sion and aggregation processes. Meanwhile, this step enhances the confidentiality of the model weights or
gradients uploaded by the clients, which may contain sensitive information.

4.4 Aggregating Model Weights
After each client sends the encrypted model parameters to the central server, rather than utilizing all

clients, the central server randomly selects N clients from the received encrypted models and performs
the aggregate operations. The server-side aggregation process mainly involves addition and multiplication
operations. The addition has a complexity of O(d) and can be performed in batch, while the multiplication
operation involves relinearization and modulus switching, which usually has a complexity of O(d ∗ n ∗
logn). Assuming that the number of aggregations T, the overall complexity of the encryption process is
O(T ∗ d ∗ nlogn). Since the central server can access the public key, decryption is not required during
the aggregation process. The weighted average of each obtained encrypted parameter is calculated for
aggregation with the process shown in Eq. (11):

E(θt+1) =
ni

N
E(θt

i), (11)

where t represents the training round; i represents the client number; ni is the number of local samples for
clients i; N is the number of selected clients.

4.5 Updating Local Models
In ProFed, the aggregated and updated parameters sent from the central server to each client are still

in an encrypted form. So, the decryption of the ciphertext is carried out locally. Based on the Learning With
Errors (LWE) problem, ProFed typically uses a private key (SK) to decrypt ciphertext. The decryption process
mainly consists of ciphertext decoding and modular reduction, where ciphertext decoding is dominated by
polynomial multiplication with complexity O(d*n log n). After decoding, the coefficients of the plaintext
polynomial are reduced modulo, and the complexity of this reduction is O(d ∗ n). Assuming that the
number of aggregations T, the overall complexity of the decryption process is O(T ∗ d ∗ nlogn). Therefore,
the computational complexity of the Federated Averaging algorithm combined with CKKS encryption is
O(T ∗ d ∗ nlogn). Given a ciphertext (c1, c2), the decryption process can be represented as Eq. (12):

Dsk(Epk(m)) = m + error. (12)

Finally, each client will decrypt the ciphertext sent by the central server to obtain the updated model
parameters θt+1 = CKKS .Decr ypt(sk, E(θt+1)), which are utilized to update their local models.

It’s worth noting that we assume that all clients have similar computational power to train the same local
models. Additionally, this paper is based on theoretical analysis and does not consider practical issues such
as data loss during communication.

5 Experenment
In this section, we first detail the data generation process and outline the specific settings for the exper-

iment environment and hyperparameters. Then, we describe the evaluation metrics and the comparative
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algorithms. Finally, we present the experiment results and illustrate the superiority of the proposed method
through charts.

5.1 Data Generation
1) Normal data: To simulate the normal operation of the actual power grid, we first generate normal

data based on the IEEE 14-bus system and IEEE 118-bus system. These data are designed as a dataset with a
mean equal to the base load with a 5% variance.

2) Compromised data: By injecting attacks into the IEEE 14-bus system and IEEE 118-bus system, a series
of damaged data based on normal data is generated. Specifically, we set two levels of FDIA samples, weak
attack and strong attack, based on the “strength” of the attack. Weak attack refers to the ratio of the average
deviation of injected power to the standard value being less than 10%, the ratio of the average deviation of
voltage amplitude to the standard value being less than 5%, and the average deviation of voltage angle being
less than 2○. Strong attack implies that the mean deviations of the above variables are respectively greater than
30%, 10%, and 5%, respectively. 10% nodes and 10% edges are randomly selected as attack nodes and edges.

3) Training and testing dataset settings: The training set contains 10,000 normal data samples and 10,000
damaged data samples, while the testing set contains 1000 normal data samples and 1000 compromised data
samples. The ratio of weak attacks to strong attacks on damaged data is 1:1 in both the training and test sets.

5.2 Experiment Setting
The specific environment settings and hyperparameter settings used in this article are shown in Tables 1

and 2, respectively.

Table 1: Operating system and environment settings

Experiment environment

Operating system Distributor ID Ubuntu
Description Ubuntu 18.04.6 LTS

Release 18.04
Codename bionic

GPU NVIDIA GeForce RTX 3090
Driver Version 535.183.01
CUDA Version 11.8

Python Python 3.9.19

Environment easy-torch 1.2.10
numpy 1.24.3
torch 1.10.0+cu111
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Table 2: Hyperparameter setting

Model settings Training mode Pre-train
patch_size 4
in_channel 9
embed_dim 96
num_heads 4
mlp_ratio 4
Dropout 0.1

num_token 3
mask_ratio 0.75

encoder_depth 4
decoder_depth 1

Hyperparameter setting Learning rate (Lr) 0.0005
weight_decay 0

Eps 1.0e-8
Betas (0.9 0.95)

CFG.TRAIN.NUM_EPOCHS 100
CFG.TRAIN.DATA.BATCH_SIZE 8

5.3 Performance Evaluation Metrics
We choose precision, recall, F1-score [46] and Mean Absolute Error (MAE) [47] for evaluating the

performance of the proposed method and exploring appropriate hyperparameter settings. Supposing that the
meanings represented by TP, TN, FN, and FP are shown in Table 3, the aforementioned metrics are described
as follows:

Table 3: Content explanation of TP, TN, FN, and FP

Actually damaged Actually undamaged
Detected as damaged True positive False positive

Detected as undamaged False negative True negative

1. Precision (P): It indicates the proportion of actual positives among all samples predicted as positive.

Precision = TP
TP + FP

(13)

2. Recall (R): It represents the proportion of correctly predicted positives among all actual positives.

Recal l = TP
TP + FN

(14)

3. F1-score (F): The F1-score is the harmonic mean of precision and recall, used to evaluate the model’s
performance comprehensively, especially in cases of class imbalance.
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F1 − score = 2 × Precision × Recal l
Precision + Recal l

(15)

4. Mean Absolute Error (MAE): MAE represents the average absolute error between predicted and
observed values. It can be obtained by taking the mean of the MAEs from each communication round.
The smaller the MAE value, the more ideal the actual operation of the model is. During the process of
model performance evaluation, the MAE value can be influenced by the setting of hyperparameters. If the
hyperparameters are improperly set, the actual values detected may exhibit a shift, resulting in an increased
MAE value. Conversely, we can assess hyperparameter settings and the model performance by observing the
fluctuations in MAE and calculating the average MAE value.

5.4 Experimental Result
1. IEEE 14-bus system: Tables 4 and 5, respectively, show the results from Convolutional Neural

Networks (CNN) [48], Long Short-Term Memory (LSTM) [49] and the method proposed in this paper for
the IEEE 14-bus system under weak attack and strong attack. We choose bus2 and bus3 as sampling points and
communication rounds (CR), which represent the number of communication interactions between multiple
clients and servers to train a shared model in federated learning, as independent variables to observe the
changes in the evaluation metrics. It can be seen that with the increase of communication rounds (CR), the
performance of each detection model gradually improves and eventually stabilizes. All evaluation metrics
reach their maximum when CR = 6. Therefore, the distributed learning can widely utilize data from various
sources to train models efficiently.

Table 4: Experimental results of two IEEE 14-bus nodes under different communication rounds (weak attacks)

Bus CR CNN LSTM Our method

P R F P R F P R F
2 0 0.9762 0.9704 0.9748 0.9886 0.9843 0.9871 0.9915 0.9906 0.9917

2 0.9857 0.9762 0.9793 0.9878 0.9835 0.9864 0.9956 0.9937 0.9946
4 0.9865 0.9852 0.9859 0.9881 0.9870 0.9876 0.9965 0.9952 0.9958
6 0.9880 0.9867 0.9873 0.9895 0.9884 0.9889 0.9965 0.9953 0.9958

3 0 0.5436 0.4521 0.4963 0.6274 0.5196 0.5582 0.9732 0.7641 0.8239
2 0.5532 0.4620 0.5081 0.6320 0.5235 0.5634 0.9778 0.7685 0.8296
4 0.5587 0.4685 0.5154 0.6395 0.5284 0.5692 0.9821 0.7728 0.8340
6 0.5650 0.4740 0.5223 0.6458 0.5332 0.5750 0.9824 0.7752 0.8346

Under weak attacks, taking bus3 and CR = 6 as sampling points, the algorithm proposed in this paper
respectively improves precision, recall, and F1 score by 0.4174, 0.3012, and 0.3123 compared to CNN, and
0.3366, 0.2420, and 0.2596 compared to LSTM. Under strong attacks, the algorithm proposed in this paper
respectively improves precision, recall, and F1-score by 0.2336, 0.2902, and 0.2633 compared to CNN, and
0.0335, 0.1027, and 0.0750 compared to LSTM. It can be seen that the proposed method is superior to
traditional deep learning models CNN and LSTM under both types of attacks. Finally, since the difference
between normal data and compromised data is more pronounced under strong attacks, the detection
performance is superior to that under weak attacks.
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Table 5: Experimental results of two IEEE 14-bus nodes under different communication rounds (strong attacks)

Bus CR CNN LSTM Our method

P R F P R F P R F
2 0 0.9985 0.9992 0.9994 0.9999 0.9785 0.9992 0.9995 0.9999 0.9992

2 1 1 1 1 0.9963 0.9968 1 1 0.9999
4 1 0.9999 1 0.9994 1 1 1 0.9997 1
6 1 1 1 1 1 1 1 1 1

3 0 0.7436 0.6627 0.6093 0.8497 0.6690 0.7591 0.9999 0.9084 0.9525
2 0.7582 0.6985 0.6954 0.9153 0.7854 0.8645 0.9999 0.9948 0.9959
4 0.7628 0.7042 0.7213 0.9509 0.8418 0.9098 0.9998 0.9999 0.9986
6 0.7664 0.7098 0.7367 0.9665 0.8973 0.9250 0.9999 0.9998 0.9999

Fig. 4 illustrates the loss curve of the IEEE 14-bus system in the training process. It can be seen that
the difference between training loss and validation loss is minimal, and with the increase in the number of
communication rounds (CR), both training loss and validation loss decrease and finally stabilize at a lower
value, which shows that the performance of the proposed model increases steadily and finally converges
reasonably. In addition, the curve shows a reasonable fluctuation trend, indicating that the hyperparameters
of the model have been well-adjusted without under-fitting or over-fitting.

Figure 4: The loss curve during the training process of the IEEE 14-bus system

2. IEEE 118-bus system: Tables 6 and 7, respectively, show the evaluation metrics of CNN, LSTM, and
the method proposed for the IEEE 118-bus system under weak and strong attacks. We select nodes 55 and
87 as sampling points to evaluate the performance changes of models with the increase of communication
rounds (CR), and the results are similar to those obtained from the IEEE 14-bus system. Fig. 5 shows the loss
curve during the training process of the IEEE 118-bus system, and its trend characteristics are basically the
same as those of the IEEE 14-bus system, which indicates that the proposed method can be applied to both
large and small systems.
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Table 6: Experimental results of two IEEE 118-bus nodes under different communication rounds (weak attacks)

Bus CR CNN LSTM Our method

P R F P R F P R F
55 0 0.5873 0.6322 0.6028 0.6090 0.6264 0.6147 0.8193 0.8089 0.8154

2 0.8031 0.6980 0.7584 0.7147 0.6825 0.7203 0.9656 0.9052 0.9317
4 0.8290 0.7038 0.7742 0.9005 0.7586 0.8061 0.9721 0.9217 0.9582
6 0.8448 0.7096 0.7899 0.9262 0.7548 0.8318 0.9885 0.9281 0.9647

87 0 0.5529 0.5395 0.5489 0.7538 0.6578 0.7039 0.8057 0.6995 0.7484
2 0.5581 0.5448 0.5540 0.9090 0.7831 0.8295 0.9721 0.8058 0.8843
4 0.5634 0.5500 0.5593 0.9143 0.8085 0.8451 0.9886 0.9727 0.9778
6 0.5687 0.5553 0.5647 0.9297 0.8139 0.8508 0.9951 0.9834 0.9865

Table 7: Experimental results of two IEEE 14-bus nodes under different communication rounds (strong attacks)

Bus CR CNN LSTM Our method

P R F P R F P R F
55 0 0.7385 0.8289 0.7820 0.8596 0.7828 0.8156 0.9999 0.8892 0.9195

2 0.8842 0.8647 0.8878 0.9751 0.9386 0.9313 0.9998 0.9999 0.9999
4 0.9099 0.8805 0.9036 0.9807 0.9544 0.9671 0.9999 0.9998 0.9999
6 0.9257 0.8963 0.9094 0.9863 0.9602 0.9729 0.9998 0.9999 0.9998

87 0 0.7592 0.7574 0.7526 0.9294 0.8282 0.8859 0.9998 0.9996 0.9995
2 0.7834 0.7717 0.7771 0.9442 0.9137 0.9313 0.9997 0.9999 0.9999
4 0.8276 0.7860 0.8216 0.9490 0.9192 0.9467 0.9999 0.9998 0.9999
6 0.8418 0.7903 0.8261 0.9538 0.9347 0.9521 0.9998 0.9999 0.9998

Figure 5: The loss curve during the training process of the IEEE 118-bus system
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3. To reliably evaluate the performance of our proposed model and obtain suitable hyperparameter
settings, we utilize 10-fold cross-validation to analyze and assess the model, calculating the MAE values and
the average MAE. Fig. 6 shows that both the overall MAE and the average MAE are at a low level, which
indicates that the model proposed in this paper has a small prediction error. In addition, by observing the
fluctuations in the MAE data, it can be found that the MAE obtains the minimum in the 6th round of
communication, which supports us in adjusting hyperparameters and optimizing the model.

Figure 6: IEEE 14-bus system validation set 10-fold cross-validation loss plot

5.5 Discussion on Federated Aggregation Algorithm
In order to investigate the performance and technical characteristics of federated learning algorithms

in different scenarios, we compare and analyze the Federated Average Algorithm (FedAvg) with other
representative federated learning algorithms (e.g., Krum, FedProx), as these algorithms may exhibit distinct
advantages under different scenarios [50]. The specific analysis process is as follows: 1) FedAvg balances
simplicity and efficiency by averaging client updates after local training, making it suitable for large-
scale deployments with reduced communication overhead. 2) Krum, in contrast, enhances robustness by
selecting the update closest to the majority but at a higher computational cost due to pairwise distance
calculations. 3) FedProx further addresses heterogeneous data distributions by mitigating local training
bias via regularization, though it suffers from slower convergence in balanced datasets. It can be seen
that different methods have their own advantages and disadvantages. Future work will explore tailored
aggregation strategies to optimize trade-offs between robustness, efficiency, and adaptability.

5.6 Discussion on the Impact of CKKS Homomorphic Encryption
The introduction of CKKS will increase the training time to some extent for several reasons: 1.)

Encryption and encoding operations are complex, which will increase the computational overhead and
time. 2.) Homomorphic encryption operations (i.e., computations performed on encrypted data) are much
slower than normal unencrypted arithmetic operations. 3.) Encrypted data is much larger than plaintext
data (typically 10 to 100 times larger). Besides, unlike traditional fully homomorphic encryption, CKKS is an
approximate homomorphic encryption, which may introduce some errors when encrypting and computing
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data. However, most studies (e.g., real-world reports from IBM, Microsoft) indicate that in real-world
experiments, the effect of errors on model accuracy is small [51]. In the article, the impact is almost negligible.

6 Conclusion
Aiming at false data injection attacks faced by smart grids, this paper proposes a FDIA detection method

based on the Federated Averaging algorithm. We first train an enhanced spatial-temporal graph neural
network through pre-training and send the model parameter weights to the central server. Subsequently, we
update the resultant model by aggregating the detection models from all the nodes and return it to each node.
Additionally, we introduce the Cheon-Kim-Kim-Song (CKKS) homomorphic encryption scheme to protect
the transmitted information, ensuring data security and minimizing the risk of data leakage. Numerous
experiments have proven that the FDIA detection method proposed in this paper is effective and superior
to traditional deep learning algorithms. It not only reduces the computational pressure on the central server
but also has significant advantages in data privacy protection. Moreover, by utilizing pre-training enhanced
spatial-temporal graph neural networks to mine sequences from both spatial and temporal perspectives, it
captures more comprehensive contextual relationships, making data detection more accurate. Although the
method proposed in this article demonstrates excellent performance in detecting FDIA, the efficiency issue
of generating graph structures is also crucial as the complexity of smart grid structures increases. Meanwhile,
during the decryption and aggregation process, there may be some potential vulnerabilities which may
lead to key leakage. In the future, we will explore technologies such as non-disclosure key management,
application of secure hardware and access control strategies to construct corresponding protection systems,
thus further enhancing the security of the model. Furthermore, the emergence of sophisticated adversarial
attacks, such as label flipping, underscores the urgent need for enhanced detection robustness in the face of
evolving attack vectors. In the future, we will develop new detection methods to adapt to the increasingly
complex modern power grid structures.
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