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ABSTRACT: Unmanned Aerial Vehicles (UAVs) are increasingly employed in traffic surveillance, urban planning,
and infrastructure monitoring due to their cost-effectiveness, flexibility, and high-resolution imaging. However, vehicle
detection and classification in aerial imagery remain challenging due to scale variations from fluctuating UAV altitudes,
frequent occlusions in dense traffic, and environmental noise, such as shadows and lighting inconsistencies. Traditional
methods, including sliding-window searches and shallow learning techniques, struggle with computational inefficiency
and robustness under dynamic conditions. To address these limitations, this study proposes a six-stage hierarchical
framework integrating radiometric calibration, deep learning, and classical feature engineering. The workflow begins
with radiometric calibration to normalize pixel intensities and mitigate sensor noise, followed by Conditional Random
Field (CRF) segmentation to isolate vehicles. YOLOVY9, equipped with a bi-directional feature pyramid network
(BiFPN), ensures precise multi-scale object detection. Hybrid feature extraction employs Maximally Stable Extremal
Regions (MSER) for stable contour detection, Binary Robust Independent Elementary Features (BRIEF) for texture
encoding, and Affine-SIFT (ASIFT) for viewpoint invariance. Quadratic Discriminant Analysis (QDA) enhances
feature discrimination, while a Probabilistic Neural Network (PNN) performs Bayesian probability-based classification.
Tested on the Roundabout Aerial Imagery (15,474 images, 985K instances) and AU-AIR (32,823 instances, 7 classes)
datasets, the model achieves state-of-the-art accuracy of 95.54% and 94.14%, respectively. Its superior performance in
detecting small-scale vehicles and resolving occlusions highlights its potential for intelligent traffic systems. Future work
will extend testing to nighttime and adverse weather conditions while optimizing real-time UAV inference.

KEYWORDS: Feature extraction; traffic analysis; unmanned aerial vehicles (UAV); you only look once version 9
(YOLOV9); machine learning; remote sensing for traffic monitoring; computer vision

1 Introduction

Unmanned Aerial Vehicles (UAVs) have become vital tools across various fields, including surveillance,
disaster management, traffic monitoring, and urban planning [1]. Their flexibility enables the capture of high-
resolution visual data from diverse angles and altitudes for real-time analysis. UAV-based imaging offers clear
advantages over ground-based methods, such as a broader field of view, better spatial resolution, and greater
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adaptability [2]. Compared to satellite imagery, UAV data is more cost-effective, provides timely updates, and
supports real-time collection, making it ideal for dynamic tasks like traffic surveillance and vehicle detection.
This application has gained importance in Intelligent Transportation Systems (ITS), traffic analysis, and
urban planning [3,4]. However, challenges like object scale variation, occlusion, and computational limits
require more advanced detection techniques. Aerial image classification is also crucial in applications
like traffic analysis, disaster response, and city planning. Its complexity stems from varying object scales,
occlusions, and environmental conditions. Deep learning, especially convolutional neural networks (CNNs),
effectively handles these issues by extracting hierarchical features, improving accuracy and robustness over
traditional methods. Leveraging deep learning, our model ensures efficient and accurate classification across
diverse aerial scenarios. Traditional vehicle detection techniques, such as sliding-window searches and
shallow feature extraction, often fall short in meeting the demands of complex aerial imagery. Sliding-
window methods require exhaustive scanning across multiple scales and positions, resulting in prohibitive
computational costs for high-resolution UAV imagery. Similarly, shallow learning techniques (e.g., Haar
cascades, Histogram object gradients and Support vector machine (HOG-SVM) rely on handcrafted features
that lack robustness to scale variations, occlusions, and lighting changes, leading to poor generalization in
dynamic aerial environments [5]. The advent of CNNs has significantly advanced object detection in aerial
images by automating hierarchical feature extraction, enabling a robust representation of objects across scales
and orientations. Recent studies conducted extensive analyses of the YOLO algorithm family, particularly
YOLOVS, highlighting its advancements in detection precision, inference speed, and real-time applicability
for Intelligent Transportation Systems (ITS). For instance, Bakirci [6] demonstrated that YOLOvV8’s decou-
pled head structure and C2f module improve accuracy by 18% over YOLOVS5 in aerial drone imagery while
maintaining faster inference speeds. Similarly, Bakirci [7] validated the compact YOLOv8n model’s suitability
for ITS, leveraging its C3 modules to balance computational efficiency with detection robustness. However,
these studies also identified critical limitations in YOLOVS, including persistent misclassifications due to
vehicle shape variations, lighting inconsistencies, and occlusion challenges exacerbated in UAV-based aerial
imagery where objects are often small, densely packed, or partially obscured.

This study presents a six-stage framework for vehicle detection and classification in aerial imagery,
combining radiometric calibration, CRF segmentation, YOLOV9 detection, and feature extraction using
MSER, BRIEF, and Affine-SIFT. QDA optimizes features, while PNN handles classification. Evaluated
on three benchmark datasets, the model achieves high accuracy and outperforms traditional and CNN-
based approaches:

The main contributions of our system are listed below:

o The model integrates radiometric calibration and Conditional Random Field (CRF) segmentation to
reduce noise and enhance brightness before the detection phase, reducing model complexity.

« The use of YOLOV9 improves vehicle detection accuracy, especially for objects of varying sizes in
aerial images.

o Multiple features such as MSER, BRIEFE and Affine-SIFT are extracted, providing robust, scale-invariant,
and rotation-invariant descriptors for better vehicle classification.

o Optimized feature representation via Quadratic Discriminant Analysis (QDA) and classification using
Probabilistic Neural Network (PNN) significantly enhances accuracy in aerial vehicle detection, effec-
tively handling image variability.

The rest of this article is structured as follows: Section 2 gives an examination of relevant work and
current techniques. Section 3 covers the architecture of the proposed system. Section 4 offers experimental
setup and performance assessment, followed by the discussion in Section 5. Finally, Section 6 concludes the
study and suggests suggestions for further research.
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2 Literature Review

Vehicle detection and classification in aerial imagery are vital for traffic management, urban planning,
and surveillance. This section reviews key systems, highlighting their methodologies, advancements, and
performance metrics.

2.1 Traditional Methods

Liu et al. [8] introduce a robust vehicle detection scheme that addresses issues such as overhead per-
spectives and complex backgrounds. The proposed algorithm generates oriented proposals, enclosing vehicle
objects as rotated rectangles to better fit their orientation, but limitations include the two-stage detection
process, which can be complex and may require significant computational resources, potentially limiting
real-time application feasibility. Hamadi et al. [9] introduced an automated system for UAV detection and
classification using ground-based cameras. Their method utilizes Histogram of Oriented Gradients (HOG)
features to transform observed UAVs into a 2D feature space, facilitating precise class separation. This
system demonstrates high accuracy and reliability in distinguishing UAV's from other objects, though its
effectiveness is influenced by environmental factors such as lighting and background complexity.

2.2 Machine Learning-Based Methods

Arinaldi et al. [10] proposed two vehicle detection methods: one using a Mixture of Gaussian (MoG) for
background modeling with SVM for classification. Though efficient, it struggled with occlusions and dense
traffic. Kumar et al. [11] introduced a deep neural network-based approach, achieving 92.06% accuracy on
the Vehicle Detection in Aerial Imagery (VEDAI) dataset but noted limitations in real-time performance,
requiring further optimization. Goecks et al. [12] explored deep learning-based fusion of visible and Long-
Wave Infrared (LWIR) imagery for sUAS detection, achieving a 71.2% detection rate with a 2.7% false alarm
rate. While fusion improved detection, challenges remained in distinguishing sUAS from other heat sources.
Lee [13] used synthetic UAV data with traditional ML models like Decision Trees and K-Nearest Neighbors
(KNN), revealing that detection accuracy decreased in nadir views and with varied object poses, highlighting
the need for adaptable models.

2.3 Deep Learning-Based Methods

Li et al. [14] proposed a unified framework for vehicle detection and counting, using a scale-adaptive
anchor generator and feature pyramid to improve multi-scale detection. While efficient, the method faces
real-time computational challenges. Isaac-Medina et al. [15] benchmarked deep neural networks for UAV
detection and tracking, achieving a mAP of 82.8% on infrared data, highlighting the challenges of cross-
modality evaluation. Deng [16] introduced a vehicle-proposal network (AVPN) with hierarchical feature
layers, excelling in small vehicle detection but occasionally missing detections in dense traffic. Tan [17] devel-
oped a CNN-based vehicle categorization method using aerial images, leveraging motion changes and feature
matching, but it struggles with cluttered backgrounds and high computational demand. Jiang [18] proposed a
parallel neural network combining ICA-2D-CNN and 3D-CNN for vehicle classification, enhancing feature
extraction but suffering from noise interference and boundary imprecision. Zhou et al. [19] improved vehicle
detection in urban traffic by integrating EfficientViT into YOLOv8n’s backbone, achieving a lightweight
design for resource-constrained devices. They added a Convolutional Block Attention Module (CBAM)
in the neck and replaced convolutional layers with GhostConv in the head, reducing parameters while
maintaining speed. Experimental results showed a precision of 91.17%, an mAP@0.5 of 75.45%, and a recall
of around 70.01%, outperforming YOLOv8n in complex traffic scenarios. Carion et al. [20] introduced DETR
(DEtection TRansformer), replacing CNN pipelines with transformer architectures, achieving 92.8% mAP
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on aerial datasets but facing impractical quadratic complexity for real-time UAV use. Tan et al. [21] enhanced
scalability with compound scaling and Bidirectional Feature Pyramid Network (BiFPN), achieving 93.6%
mAP on UAV benchmarks. However, EfficientDet lacks affine invariance, addressed in our work through
ASIFT-based feature extraction. While these models excel in general object detection, they struggle with
UAV-specific challenges like scale, viewpoint changes, and occlusions. Our hybrid framework overcomes
this, combining YOLOV9 with classical descriptors (MSER, BRIEE, ASIFT) and QDA optimization, achieving
95.54% accuracy on the Roundabout dataset, outperforming YOLOvV8 and EfficientDet by 1.3%-2.7%.

3 Materials and Methods

The proposed system for aerial vehicle detection and classification consists of six phases. It begins
with radiometric calibration to correct brightness inconsistencies. CRF segmentation separates vehicles
from the background, and YOLOV9 detects vehicles accurately and swiftly. Feature extraction using MSER,
BRIEE and ASIFT follows, ensuring robust recognition. QDA optimizes features, reducing dimensionality
while retaining key information. Finally, a PNN classifies vehicles into predefined categories, ensuring high
accuracy across diverse datasets. Fig. 1 shows the architecture workflow of the proposed system.

(7 A\ 4
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Radiometric Calibration
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o

ASIFT BRIEF MSER

Figure 1: Architecture of the proposed intelligent traffic surveillance system

3.1 Image Preprocessing via Radiometric Calibration

Preprocessing is crucial for vehicle detection in aerial images. Our method uses radiometric calibration
to correct distortions caused by sensor limitations, environmental factors, and lighting variations. This
procedure ensures pixel values accurately reflect the surface’s reflectance, essential for effective detection
and classification [22]. The process adjusts pixel intensities to match real light detected by the sensor,
compensating for noise and issues like vignetting, sensor upgrades, and ambient interference. Radiometric
calibration is defined in Eq. (1):

Law (x’ )’) —Laark (x> )’)
E(x,y).T (x,y)

©)

Icalibmted (X, y) =
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where I 4jiprateq is the calibrated pixel intensity at (x, ¥), Law (x, y) the raw pixel intensity, Iz« (X, y)
the sensor noise, E (x, y) the exposure time, and T (x, y) the transmission loss from atmospheric effects.
Radiometric calibration also adjusts for the sensor’s response function, typically modeled as in Eq. (2):

Liaw
Lcalibmted = 2 + Oﬁset (2)

Gain

where L,1ipratea is the calibrated luminance, and Gain and Offset represent the cameras gain factor and
offset values, respectively. The final outcome of the preprocessing can be depicted in Fig. 2.

= -}. '/:i ——
=

Figure 2: Enhanced preprocessing results using radiometric calibration on aerial images

3.2 Image Segmentation via Conditional Random Field (CRF)

Segmentation is crucial in vehicle detection, and we use Conditional Random Fields (CRF) to precisely
separate vehicles from the background in aerial images. CRF, a probabilistic graphical model, assigns labels to
pixels while considering contextual dependencies, ensuring spatial coherence and smooth boundaries [23]. It
refines initial detection results by modeling the conditional probability of label assignments based on image
features. The objective is to maximize correct labeling across the image, as formulated in Eq. (3):

P(Y|X) = Z(lx) exp (=2 o Ve(Ye, X)) (3)

where P (Y|X) is the conditional probability of label configuration Y (e.g., vehicle or background) given
features X, with Z (X) ensuring the probability sums to 1, and C representing cliques. The potential function
v. (Y., X,) includes unary potential (label likelihood from pixel features) and pairwise potential, as shown
in Eq. (4).

vu (Yi, X;) = —log P (Y| X;) (4)

where P (Y;| X;) is the likelihood of pixel i being assigned label Y; based on its observed features X;. The
pairwise potential, on the other hand, encourages spatial smoothness by penalizing label changes between
neighboring pixels, ensuring that adjacent pixels with similar features are assigned the same label. The results
of segmentation can be seen in Fig. 3.

Figure 3: Segmentation using CRF over the aerial images
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3.3 Vehicle Detection via YOLOv9

YOLOV9 powers the vehicle detection module, using its hierarchical convolutional transformer
backbone for multi-scale feature extraction and BiFPN for optimal feature aggregation. Its anchor-free
mechanism and attention-weighted modules refine bounding box predictions, improving classification
in dense scenes. The detection process starts with image segmentation, followed by YOLOvV9’s dynamic
keypoint-based bounding box regression, reducing computational overhead [24]. The attention module
enhances spatial focus, making YOLOV9 highly efficient for real-time detection in diverse aerial imagery.
The framework optimizes performance using a weighted loss function that balances classification, bounding
box regression, and objectness scores as defined in Eq. (5).

L= AetsLete (G C) + AupeLios (B, B) + AobiLos; (S.5) )

where L, is the classification loss (binary cross-entropy), A5, is the bounding box regression loss (smooth
Ll or GloU), and L,;; measures object confidence. YOLOV9 optimizes with AdamW or Layer-wise Adaptive
Moments optimizer for Batch training (LAMB), fine-tuning hyperparameters. Its anchor-free approach
enhances efficiency. YOLOV9 parameters are in Table I, and detection output is in Fig. 4. YOLOV9 is
employed as the detection backbone due to its recent architectural advancements, such as the Generalized
Efficient Layer Aggregation Network (GELAN) and Programmable Gradient Information (PGI) module,
which improve detection performance across varying object scales, especially important for aerial views.
Compared to earlier YOLO versions, YOLOV9 offers improved precision and speed, making it well-suited
for real-time aerial vehicle detection.

Table 1: Parameters used during the training of the model

Parameter name Values
Learning rate 0.001
Epochs 80
IoU threshold 0.5
Batch size 32
Momentum 0.9
Confidence threshold 0.25
Weight decay 0.0005
Activation function  LeakyReLU
Input layer size 640 x 640
Weight decay 0.0001
Optimizer AdamW

Figure 4: Vehicle detection using the YOLOV9 algorithm
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To further substantiate our choice of YOLOV9 as the detection backbone, we conducted a comparative
analysis against recent YOLO versions. Table 2 presents the detection performance (Precision, Recall,
Flscore) along with model complexity (number of parameters and FLOPs) and processing speed (FPS)
for YOLOvV7, YOLOVS, and YOLOV9. As shown, YOLOV9 not only achieves higher detection accuracy
(Precision: 0.950, Recall: 0.946, F1-Score: 0.949) but also benefits from a leaner architecture and faster
inference, thereby justifying its optimal selection for our aerial vehicle detection framework.

Table 2: Comparative analysis of YOLOv7, YOLOvS, and YOLOVY in detection accuracy, complexity, and inference
speed

Model  Precision Recall Fl-score Parameters (M) FLOPs(B) FPS

YOLOv7 0.930 0.920 0.925 37.2 105.2 65
YOLOvS 0.945 0.935 0.937 36.2 93.1 71
YOLOv9 0.950 0.946 0.949 34.9 91.0 76

3.4 Feature Extraction for Enhanced Classification

After YOLOV9 detects vehicles, additional feature extraction techniques refine classification accuracy.
While YOLOV9 localizes objects and predicts classes, its large-scale training may miss fine-grained distinc-
tions in aerial imagery. To address this, we integrate Maximally Stable Extremal Regions (MSER), Binary
Robust Independent Elementary Features (BRIEF), and Affine-SIFT (ASIFT):

1. MSER enhances edge and contour detection, improving classification under varying lighting.
2. BRIEF provides a compact, efficient descriptor for key vehicle traits with low computational cost.
3. ASIFT ensures scale and viewpoint invariance, maintaining recognition from different angles.

These methods optimize YOLOV9’s performance, enhancing classification accuracy, particularly for
distinguishing between similar vehicle types.

3.4.1 Rationale for Combining YOLOv9 with Classical Descriptors

YOLOV9 excels in rapid detection but struggles with UAV-specific challenges like scale variations,
occlusions, and viewpoint changes. To address this, classical descriptors complement YOLOV9: ASIFT
models affine distortions due to UAV altitude, MSER improves localization for small or occluded vehicles,
and BRIEF enhances texture and edge pattern recognition. Integrating these descriptors with YOLOvV9
reduces overfitting on smaller datasets (e.g., AU-AIR), balancing efficiency and precision while tackling
aerial-specific challenges.

3.4.2 Maximally Stable Extremal Regions (MSER) Feature Extraction

Maximally Stable Extremal Regions (MSER) is used for vehicle feature extraction in aerial images,
handling size, brightness, and affine variations effectively [25]. MSER identifies stable regions with uniform
pixel intensities across different thresholds, making them reliable for vehicle detection in challenging
environments, as shown in Eq. (6).

Ry = {x € Q|I (x) < T(bright regions) or Ry = {x € Q|I (x) > T} (dark regions) (6)
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where QO — R be the intensity function of an image, where x € Q) represents the pixel locations. The stability
of the region is measured as defined in Eq. (7).

7)

where ¢ is a small change in the threshold T, and |R7| is the size of the region. A region is considered
maximally stable if A (R7) reaches a local minimum as mentioned in Eq. (8).

d |RT+6 _RT|
— =20 o 8
dT( R ®

This equation assures that the regions selected are stable throughout a variety of intensity levels,
enhancing the feature extraction process for vehicle recognition in aerial images. The results of MSER can
be seen in Fig. 5.

Figure 5: Feature extraction via MSER

3.4.3 Binary Robust Independent Elementary Features (BRIEF) Feature Extraction

The feature extraction uses Binary Robust Independent Elementary Features (BRIEF) for efficient
aerial vehicle detection. Its simplicity and speed make it suitable for large-scale image processing and real-
time surveillance. BRIEF encodes image patches into binary strings, improving vehicle differentiation and
robustness to noise and lighting variations. Descriptors are generated by pixel intensity comparisons, with
the formula for point pairs (p,, pp) given in Eq. (9).

T(P;Pa;pb):{l f1(pa) <1(pv) 9)

0 otherwise

The final BRIEF descriptor is a binary string formed by concatenating n such comparisons as mentioned
in Eq. (10). The results of the BRIEF algorithm are illustrated in Fig. 6.

d(p) = [7(ps pars Po1) > T(Ps Pa2s Pv2) >+ - -» T (D3 Pans Pon) (10)

Figure 6: Feature extraction via BRIEF
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3.4.4 Affine-SIFT (ASIFT) Feature Extraction

ASIFT enhances vehicle detection by handling large viewpoint variations in aerial imagery. It extends
SIFT’s invariance to affine transformations, ensuring stable keypoint extraction across diverse perspectives.
ASIFT simulates multiple viewpoints, and SIFT captures invariant keypoints for reliable detection, as defined
in Eq. (11).

D(x,y,0)=(G(x,y,ka) -G (x,y,0)) *I(x,y) (11)

where G(x, 3, 0) is a Gaussian kernel applied to the image I(x, y) at scale 0, and k is a constant multiplicative
factor. The keypoints are then described using local gradients, with each keypoint K characterized by a vector
d(K) of gradient magnitudes and orientations as mentioned in Eq. (12).

d(K) =22, IVI(x, ) (=0 + ((=30)") /20" (12)

The descriptor vector d (K) for each keypoint is used for matching keypoints between images, while
ASIFT ensures that the descriptors remain invariant under affine transformations, making it particularly
suited for aerial imagery analysis. The output of the ASIFT algorithm can be seen in Fig. 7.

Figure 7: ASIFT-based feature extraction

3.5 Feature Optimization via QDA

For feature optimization, Quadratic Discriminant Analysis (QDA) was used to enhance the accuracy
and robustness of extracted features. QDA models each class as a multivariate Gaussian with distinct
covariance matrices, effectively handling non-linear decision boundaries. It optimizes features from MSER,
BRIEE, and ASIFT by projecting them into a higher-dimensional space, where posterior probabilities
are calculated for precise vehicle classification [26]. Mathematically, QDA classifies a feature vector x by
maximizing the posterior probability P (Ck|x), as expressed in Eq. (13).

P (Cylx) o<

exp (—%(x—ﬂk)TZkl (x—Hk)) (13)

bk

where y represents the mean vector of class Cy, and % is the covariance matrix of the corresponding class.
The optimization is performed by finding the decision rule that minimizes the classification error as defined
in Eq. (14).

Ok (x) = —%log|z K| - % (x - ,uk)T Z;l (x— px) +1log P (Cy) (14)

This optimization process ensures that the feature set is refined to improve classification accuracy in the
subsequent module, which involves classifying vehicles using a Probabilistic Neural Network. By leveraging
QDA, we achieve a more effective feature representation, reducing the risk of overfitting and improving
generalization to unseen data. The results of the QDA are illustrated on Fig. 8.
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Figure 8: Feature optimization across several classes using QDA

3.6 Classification via Probabilistic Neural Network (PNN)

The final module classifies optimized features using PNN, an efficient classifier for pattern recognition
tasks. It estimates class probability densities non-parametrically, leveraging Bayesian decision theory for
robust vehicle classification in aerial imagery. PNN processes high-dimensional features optimized by QDA,
computing class likelihoods via a kernel-based estimator [27]. Its four-layer architecture input, pattern,
summation, and output systematically evaluate and assigns the most probable vehicle class. The posterior
probability P (Cy|x) is computed as defined in Eq. (15).

2
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szt 220

202

P(Cilx) = (15)

where x; is a training sample, o is the smoothing parameter (kernel width), and K is the number of classes.
The PNN classifier computes a weighted sum of these probabilities and assigns the class with the highest
probability to the input feature vector. The accuracy of classification is highly dependent on the selection of
0, and tuning this parameter is essential to balance bias and variance in the model. Algorithm 1 shows the
workflow for PNN.

Algorithm 1: Harnessing the strength of PNN

Input: Image frames I = {image,, image,, ..., image, }
Output: Classification C = (n¢, ny, ..., ny)

Detections D < []: vehicle detections

Feature vector F « []

Method:

Video = Video,eader (‘Vpath’)

Imgrame = read(video)

For k =1to size (image frame)

resizeimage = imresize (image frame,, 640 x 640)

(Continued)



Comput Mater Contin. 2025;84(3) 4501

Algorithm 1 (continued)

seZimage = CRF (resizeimage)
D < YOLOV9 (Segme”tedimage)
for detection =1 to size(D)

F < MSER (Ddetection)

F < BRIEF (Ddetection)

F < Affine-SIFT (Dgesection)
Vehicle,.;,sc = PNN (F)

End For

Return Vehicle s

return imgs.qme

4 Experimentation and Results

The proposed method was implemented and validated in the Python 3.8 environment, utilizing widely
used deep learning and image processing libraries. Key dependencies include:

o PyTorch 1.10 (for YOLOvV9-based vehicle detection)

o OpenCV 4.5 (for image preprocessing and feature extraction)
o scikit-learn 0.24 (for QDA and PNN classification)

« pydensecrf 1.0 (for CRF-based segmentation)

Experiments were performed on an Intel Core i5-12500H 2.50 GHz processor with 24 GB RAM and
an RTX-3050 GPU with 4 GB RAM. The model demonstrated superior performance across both datasets:
Roundabout Aerial Image and AU-AIR datasets. The details of the datasets are as follows.

4.1 Dataset Description
4.1.1 Roundabout Aerial Image Dataset

The Roundabout Aerial Image Dataset comprises 15,474 high-resolution (1920 x 1080 px) drone-
captured images from 8 roundabouts with varying traffic flows. It includes 985,260 instances: 236,850
vehicles, 4899 motorcycles, 2262 trucks, 1752 buses, and 552 empty roundabouts. An additional 46,422
images were generated via data augmentation. Annotated for vehicle detection and classification across four
classes, this dataset supports research in object detection and trajectory analysis in complex traffic scenarios.

4.1.2 AU-AIR Dataset

The AU-AIR dataset, designed for low-altitude UAV-based detection, contains 32,823 labeled instances
across seven vehicle categories: Car, Truck, Bus, Cycle, Van, Trailer, and Bike. It introduces challenges
like occlusions, motion blur, and complex backgrounds, reflecting real-world aerial surveillance. The class
distribution includes Cars (24,581), Trucks (3102), Buses (1854), Cycles (2412), Vans (874), Trailers (650), and
Bikes (350).

4.2 Model Evaluation and Experimental Results

We evaluated the system on three datasets, repeating trials five times for accuracy. Table 3 shows the
precision, recall, and Fl-score of the detection algorithm, while Table 4 compares YOLOV9 with the proposed
model (YOLOV9 + QDA + PNN). Results confirm that QDA optimization and PNN classification enhance
performance, with variations due to dataset characteristics.
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Table 3: Precision, recall, and Fl-score for the detection algorithm

Datasets Precision Recall Fl-score No of classes

Roundabout 0.9502 0.9460 0.9487 4
AU-AIR 0.9437 0.9422 0.9428 7

Table 4: YOLOV9 vs. proposed model performance across both datasets

Datasets Model Precision Recall Fl-score
YOLOV9 (Detection Only) 0.9502 0.9460 0.9487
Roundabout
YOLOV9 + QDA + PNN (Proposed Model) 0.9589 0.9505 0.9547
AU-AIR YOLOV9 (Detection Only) 0.9437 0.9422  0.9428

YOLOV9 + QDA + PNN (Proposed Model) 0.9513 0.9440  0.9476

Tables 5 and 6 show vehicle detection metrics for the Roundabout and AU-AIR datasets, with Figs. 9
and 10 displaying the classification confusion matrices. Tables 7 and 8 compare classification perfor-
mance, while Tables 9 and 10 benchmark against state-of-the-art models. Table 11 analyzes computational
complexity.

Table 5: Vehicle detection having precision, recall, and Fl-score evaluation of the Roundabout Aerial Image dataset

Classes Precision (D) Recall (D) Fl-score (D)

Car 0.9500 0.9500 0.9500
Cycle 0.9485 0.9402 0.9447
Truck 0.9501 0.9600 0.9552

Bus 0.9523 0.9341 0.9451
Mean 0.9502 0.9460 0.9487

Table 6: Vehicle detection having precision, recall, and Fl-score evaluation of the AU-AIR dataset

Classes Precision (D) Recall (D) Fl-score (D)

Car 0.9536 0.9745 0.9610
Truck 0.9478 0.9180 0.9382
Bus 0.9491 0.9421 0.9493
Cycle 0.9249 0.9429 0.9352
Van 0.9157 0.9195 0.9109
Trailer 0.9733 0.9631 0.9604
Bike 0.9417 0.9355 0.9447

Mean 0.9437 0.9422 0.9428
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Figure 9: Confusion matrix for individual class accuracy over the Roundabout Aerial Image dataset
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Figure 10: Confusion matrix for individual class accuracies over the AU-AIR dataset
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Table 7: Vehicle classification having precision, recall, and Fl-score evaluation of the Roundabout dataset

Classes Precision (C) Recall (C) Fl-score (C)

Car 0.9500 0.9500 0.9500
Cycle 0.9490 0.9400 0.9445
Truck 0.9600 0.9600 0.9600

Bus 0.9796 0.9700 0.9748

Table 8: Vehicle classification having precision, recall, and Fl-score evaluation of the AU-AIR dataset

Classes Precision (C) Recall (C) Fl-score (C)

Car 0.9700 0.9700 0.9700
Truck 0.9592 0.9203 0.9392
Bus 0.9400 0.9380 0.9400
Cycle 0.9400 0.9400 0.9400
Van 0.9394 0.9200 0.9296
Trailer 0.9600 0.9600 0.9600
Bike 0.9500 0.9400 0.9450

Table 9: Comparison of model detection rate with other state-of-the-art methods

Datasets Models Precision
Single shot detector (SSD) [28] 0.80
RetinaNet [29] 0.86
Roundabout Faster RCNN [30] 0.82
Proposed method 0.95
Yolov4 [31] 0.81
Yolov3 [31] 0.69

AU-AI

U-AIR Blob detection [32] 0.87
Proposed method 0.943

Table 10: Classification Comparison with other state-of-the-art models

Method Roundabout AU-AIR
Wang et al. [33] 91.40% -
Mujtaba and Jalal [34] 91% -
Bozcan and Kayacan [35] - 88.2%
Yusuf et al. [36] - 87.0%
Qureshi et al. [37] - 93.1%

Proposed method 95.54% 94.14%
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Table 11: Computational complexity analysis

Methods Computational complexity =~ Execution time (s) Optimized time
Pre-processing O(m*n), ®(m*n), Q(m) 0.40 0.40
m = pixels, n = images
Segmentation (CRF) O(m*logn) ® (m*logn) Q(m), 0.60 0.20
m = pixels, n = segments
Vehicle detection (YOLOV9) 0(n?), ®(n*p), Q(n), 0.75 0.52
n = images, p = features
Feature extraction (MSER, O(n*m), ®(n*m), Q(n), 0.88 0.53
BRIEF, Affine-SIFT) n = features, m = images
Feature optimization (QDA) O(n®), O(n?), Q(n), 0.50 0.25
n = vehicles
Classification (PNN) O(n2), ©(n*p), O(n) 0.85 0.30

The confusion matrix demonstrates strong classification across Car, Cycle, Truck, and Bus classes,
with recall rates exceeding 94%. Minor misclassifications between Car-Cycle and Truck-Bus likely result
from structural similarities, occlusions, or dataset bias. While the model shows robust performance, further
refinement is needed to better distinguish similar vehicle types.

The confusion matrix shows strong classification across all seven classes, with Car, Bus, and Bike
achieving over 94% recall. Minor confusions occur between Truck-Van, Van-Trailer, and Cycle-Bike/Bus,
likely due to shape similarities and perspective distortions. Despite these, the model performs excellently,
with future work focused on enhancing feature extraction for better class separability.

Table 11 analyzes computational complexity, including worst-case, average-case, and best-case com-
plexities. Image preprocessing and segmentation are logarithmic, YOLOV9 detection is quadratic, feature
extraction and QDA are polynomial, and PNN classification is quadratic in high-dimensional spaces.
Execution times balance accuracy and efficiency for real-time detection. Table 12 presents the ablation study
across both datasets.

Table 12: Ablation study evaluating the impact of different components in our proposed model across the Roundabout
Aerial image and AU-AIR datasets

Experiment  Radiometric CRF seg- YOLOv9  MSER BRIEF ASIFT QDAopti- PNN Roundabout AUAIR

calibration mentation  detection mization (%) (%)
Full model v v v v v v v v 95.5 94.1
(Baseline)
Without X v v v v v v v 92.3 91.5
radiometric
calibration
Without CRF v X v v v v v v 91.8 90.9
Without v X v v v v v 88.7 872
YOLOvV9
detection
Without MSER v v v X v v v v 93.2 92.1
Without BRIEF v v v v X v v v 94.0 93.2
Without ASIFT v v v v v X v v 92.8 91.6
Without QDA v v v v v v X v 90.5 89.4
optimization

(Continued)
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Table 12 (continued)

Experiment  Radiometric CRF seg- YOLOv9  MSER BRIEF ASIFT QDAopti- PNN Roundabout AUAIR

calibration mentation  detection mization (%) (%)
With simple v v v v v v v SVM 89.7 88.2
classifier
YOLOV9 + v v v X X X X ResNet- 91.3 89.7
ResNet-50 50
YOLOVY + v v 4 X X X X Inception 92.1 90.2
inception-v3
YOLOV9 + v v v X X X X ViT 93.5 91.8
ViT-base

The ablation study confirms that the full model achieves the highest accuracy, with each module
essential. Removing any module, including Radiometric Calibration, CRE, YOLOvV9, MSER, BRIEFE, ASIFT,
or QDA, reduces performance, while replacing PNN with a basic classifier weakens accuracy. Table 11
shows that the proposed model outperforms CNN/ViT classifiers by 2-4%, highlighting the importance of
hybrid features.

5 Discussion/Limitations

The framework shows strong vehicle detection in urban daytime scenarios but has limitations. Eval-
uation is limited to the Roundabout Aerial Image and AU-AIR datasets, lacking geographic and temporal
diversity. MSER and BRIEF may underperform in low-contrast or noisy environments. The framework
assumes fixed UAV altitude and sensor configurations, affecting performance with variations. Class imbal-
ance in AU-AIR introduces bias, limiting generalizability. Current gaps highlight the need for multi-modal
datasets, adaptive extraction, and ethical focus. The YOLOV9 + QDA + PNN model improves vehicle
classification, surpassing existing methods in precision, recall, and Fl-score. While QDA optimizes features
and PNN enhances class separability, limitations include the absence of pedestrian detection and higher
computational cost. Fig. 11 illustrates system limitations.

Figure 11: Limitation results of the proposed system

5.1 Scalability and Real-Time Feasibility

To reconcile accuracy with real-world operational constraints, we propose the following optimizations:

1. Model Pruning & Quantization: Reducing parameters in YOLOv9 with pruning and INT8 quantization
cuts model size and inference time by ~30% with minimal accuracy loss.

2. Feature Selection Optimization: Using mutual information scoring, prioritizing ASIFT for viewpoint
invariance, reducing extraction time by ~25%.

3. Efficient Classification: Replacing PNN with MobileNetV3 or pruned ResNet reduces classification time
by 65% while maintaining >92% accuracy. Using PCA/t-SNE instead of QDA simplifies optimization.
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4. Parallel Processing & Edge Computing: Using UAV-compatible hardware and hybrid cloud-UAV frame-
works achieves 2-3x speedups, improving runtime to 1.20 s/image with 93.8% accuracy on Roundabout
and 92.6% on AU-AIR, a 70% improvement.

This optimization achieves real-time performance with slight accuracy trade-ofts, ideal for UAV-based
traffic monitoring. Further speedup is possible through hardware-software co-design or hybrid frameworks.

5.2 Deployment Considerations: Ground Station vs. Onboard Inference

The proposed method is implemented as a post-processing pipeline on a ground station with sufficient
computational resources, enabling full use of the multi-stage framework. Although designed for off-board
processing, Section 5.1 discusses optimizations for real-time onboard UAV inference, including model
pruning, INT8 quantization, and feature selection to reduce complexity and latency.

5.3 Root Causes of Class-Wise Performance Disparities in Aerial Vehicle Detection
The disparities in precision and recall across vehicle classes can be attributed to the following factors:

o Trucks (AU-AIR): Lower recall due to underrepresentation, size, and occlusion. Feature ambiguity with
buses and trailers also causes misclassification.

«  Cycles and Bikes: Lower precision due to small size and motion blur, affecting descriptor reliability.

« Buses (Roundabout): Higher precision due to distinctive shape and consistent placement in round-
abouts.

These variations underscore the impact of class imbalance, scale variability, and occlusion frequency on
model performance.

6 Conclusion

This work presents a multi-stage vehicle detection and classification framework using YOLOV9 for
detection and Probabilistic Neural Network (PNN) for classification in aerial imagery. Feature extraction
techniques like MSER, BRIEF, and Affine-SIFT enhance classification accuracy. Experiments on Round-
about Aerial Image and AU-AIR datasets show YOLOV9 achieving high detection precision (0.9502 for
Roundabout, 0.942 for AU-AIR), while PNN attains 95.54% and 94.14% accuracy, respectively. Our approach
outperforms state-of-the-art methods in precision, recall, and Fl-score. Future work can integrate pedestrian
recognition and optimize computational efficiency for real-time applications.
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