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ABSTRACT: Among the four candidate algorithms in the fourth round of NIST standardization, the BIKE (Bit
Flipping Key Encapsulation) scheme has a small key size and high efficiency, showing good prospects for application.
However, the BIKE scheme based on QC-MDPC (Quasi Cyclic Medium Density Parity Check) codes still faces
challenges such as the GJS attack and weak key attacks targeting the decoding failure rate (DFR). This paper analyzes
the BGF decoding algorithm of the BIKE scheme, revealing two deep factors that lead to DFR, and proposes a weak
key optimization attack method for the BGF decoding algorithm based on these two factors. The proposed method
constructs a new weak key set, and experiment results eventually indicate that, considering BIKE’s parameter set
targeting 128-bit security, the average decryption failure rate is lowerly bounded by DFRAVG ≥ 2−103.83. This result
not only highlights a significant vulnerability in the BIKE scheme but also provides valuable insights for future
improvements in its design. By addressing these weaknesses, the robustness of QC-MDPC code-based cryptographic
systems can be enhanced, paving the way for more secure post-quantum cryptographic solutions.
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1 Introduction
With the rise of quantum computers, current public key encryption (PKE) schemes face unprecedented

threats [1]. Traditional public key encryption methods, such as RSA and ECC, rely on the difficulty
of integer factorization and discrete logarithm problems. However, quantum computers, by using the
Shor algorithm [2], can solve these problems efficiently in polynomial time, thus invalidating traditional
encryption methods. To address this challenge, the National Institute of Standards and Technology (NIST)
is advancing a standardization project for Post-Quantum Cryptography (PQC), which aims to evaluate and
finalize encryption schemes that can withstand quantum attacks [3]. In this context, a scheme called BIKE
(Bit Flipping Key Encapsulation) has attracted a lot of attention and has entered the final stage of the NIST
PQC standardization competition.

BIKE is a representative QC-MDPC (Quasi Cyclic Medium Density Parity Check) code-based scheme,
which is relatively competitive both in terms of code length and efficiency and communication bandwidth,
and its security relies on the difficult problem of proposed cyclic codes [4]. However, the DFR problem exists
even though BIKE employs a state-of-the-art Black-Gray-Flip (BGF) decoder [5] to reduce the Decoding
Failure Rate (DFR) and to improve the decoding efficiency. The security of BIKE’s IND-CCA relies on the
average Decoding Failure Rate (DFR). The current analysis only gives an estimate of the DFR and does not
give a proven upper bound [6]. Therefore, the BIKE instantiation using the BGF decoder does not formally
declare IND-CCA security. Currently, attacks such as GJS [7], weak keys [8], and side channels [9] still exist
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against the decoding failure probability of BIKE schemes. For example, the amplification principle of Guo
et al. [10] as well as Nilsson et al. [11] introduce a GJS reaction attack based on the QC-MDPC code structure,
which utilizes the existence of a DFR in the decoding so that the attacker can fully recover the key. Drucker
et al. [12] argued that the existence of a weak key affects the DFR and that quantitative proofs of the IND-
CCA security of BIKE are needed. Wang et al. [8] proved that the existence of weak keys and quantization
of the effect on the DFR of the decoder pose threats to the IND-CCA security of BIKE.

Although BIKE shows great potentiality in the field of post-quantum cryptography, its challenges in
terms of DFR and other security aspects suggest that further research and improvements are necessary. To
ensure that the final chosen post-quantum cryptography standard provides sufficient security and efficiency,
this paper addresses the BIKE algorithm, analyzes the performance of its BGF decoder to reveal the factors
that affect the DFR, and proposes a weak-key attack optimization scheme to evaluate the security of the BIKE
scheme by the DFR test of the decoder.

2 Preliminaries

2.1 BIKE
BIKE (Bit Flipping Key Encapsulation) is a post-quantum cryptography-based key encapsulation

mechanism that uses quasi-cyclic moderate-density parity-check (QC-MDPC) codes and the Niederreiter
cryptosystem framework [13]. It features small key sizes, efficient algorithms, and low complexity [14].
Compared to the traditional McEliece cryptosystem, BIKE has smaller communication bandwidth require-
ments, making it suitable for bandwidth-constrained network environments. Its design is simple with
minimal resource usage, making it suitable for both software implementations (such as servers and
PCs) and hardware implementations (such as IoT devices and embedded systems) [15]. It is an efficient,
flexible, and quantum-resistant cryptographic solution with broad application prospects in the field of post-
quantum cryptography [16]. The algorithm of BIKE KEM is divided into three main steps: key generation,
key encapsulation, and key decapsulation. The key encapsulation mechanism (KEM) is described as
Algorithm 1.

Algorithm 1: The BIKE key encapsulation mechanism
Encaps: h ↦ K , c

KeyGen: () ↦ (h0, h1 , σ), h Input: h ∈R
Output: (h0, h1 , σ) ∈Hw ×M, h ∈R Output: K ∈ K, c ∈R ×M
1: (h0, h1)

D←Hω 1: m $←M
2: h ← h1h−1

0 2: (e0, e1) ← H (m)
3: σ $←M 3: c ← (e0 + e1h, m ⊕ L (e0, e1))

4: K ← K (m, c)
Decaps: (h0, h1 , σ), c ↦ K
Input: ((h0, h1) , σ) ∈Hw ×M, c = (c0, c1) ∈R ×M
Output: K ∈ K
1: e′ ← decoder (c0h0, h0, h1)
2: m′ ← c1 ⊕ L (e′)
3: if e′ = H (m′) then K ← K (m′, c) else K ← K (σ , c)
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To have λ bits of IND-CCA security, the parameters are r, ω, t, and decoder chosen in the setup
such that:

1. QCCFr ,w offers λ bits of security
2. QCSDr ,t offers λ bits of security
3. ∣M∣ = 2� ≥ 2λ

4. DFR (decoder) ≤ 2−λ

The NIST proposal identifies several security categories related to the strength of key search attacks on
grouped ciphers (in the case of AES). The target security levels for BIKE are 1, 3, and 5, which correspond to
the security levels of AES-128, AES-192, and AES-256, respectively. The BIKE parameters corresponding to
different security levels are shown in Table 1:

Table 1: BIKE parameters

Security λ rC PA rCC A ω t DFR
Level 1 128 10163 12323 142 134 2−128

Level 3 192 19853 24659 206 199 2−192

Level 5 256 32749 40973 274 264 2−256

2.2 BGF Decoding Algorithm
The BGF decoding algorithm (Black-Gray-Flip) is an improved version of Gallager’s bit-flip decoding

method [17], addressing the issue of high decoding failure rates in MDPC codes. It employs two predefined
thresholds to divide bits into two groups: the black set and the gray set. In the first step, bits with the highest
number of unsatisfied parity checks are categorized as black bits and are flipped. Bits with fewer unsatisfied
checks are considered gray bits and remain unchanged. In the subsequent step, if the number of unsatisfied
checks on a bit exceeds a second threshold, black bits that breach this threshold are flipped back to their
original state, and gray bits are flipped. After each operation, the algorithm updates the checksum and the
count of unsatisfied checks, continuously adjusting to correct any incorrectly flipped bits. As a result, the
BGF decoder focuses on fewer positions and has a higher concentration of errors compared to the traditional
bit-flip decoder, improving flip accuracy and significantly reducing the likelihood of decoding failure. The
specific steps are shown in Algorithms 2 and 3.

Algorithm 2: The black-gray-flip algorithm
Input: parity-check matrix H ∈ Fr×n

2 , y ∈ Fn
2 , τ ∈ N

Output: errors vector y ∈ Fn
2

a): d ← ColumnWeight (H)
b): maskTH ← (d + 1) /2
c): f or each iter = 1 . . . MaxIter do
d): syndrome ← HyT

e): upc ← ComputeUPC(H, sydrome)
f): th ← threshold(context)
g): bl ack ← gray ← 0n

h): f or each i = 1 . . . n do
(Continued)
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Algorithm 2 (continued)
i): i f upc [i] ≥ th then
j): y [i] = 1 − y [i]
k): bl ack [i] ← 1
l): el se i f upc [i] ≥ th − τ then
m): gray [i] ← 1
n): end i f
o): end f or
p): i f iter = 1 then
q): y ←MaskedBitFlip (y, H, black, maskTh)
r): y ←MaskedBitFlip (y, H, gray, maskTh)
s): end i f
t): end f or
u): return y

Algorithm 3: The masked bit flip function algorithm
a): MaskedBitFlip (y, H, mask, th)
b): syndrome ← HyT

c): upc ← ComputeUPC (H, sydrome)
d): f or each i = 1 . . . n do
e): i f mask [i] = 1 and upc [i] ≥ th then
f): y [i] = 1 − y [i]
g): end i f
h): end f or
i): return y

The reasonableness of the threshold selection can greatly affect the efficiency of the decoding. The
threshold of the BGF decoder is defined as an affine function of the weight of the checker [18], but when the
weight of the checker is between the average values, the threshold formula is also close to the affine function.
Therefore, the lower limit of the threshold is given as:

threshold (∣s′∣) =max ((d + 1) /2, ⌊a ∣s′∣ + b⌋) (1)

The BIKE 128-bit security parameter is used for the test as (d , t) = (71, 134), the value required to achieve
the target DFR for a given number of different iterations. The threshold parameter a = 0.0069722, b = 13.530.
The code length of the BGF decoder, and the DFR relationship are shown in Fig. 1.

To accurately estimate the decoding failure probability DFR of this decoding algorithm, the extrapo-
lation method Markovian model [19] is used, which is based on the fact that the DFR curve is a concave
function, and the block value of the large parameter can be deduced by testing the DFR under the smaller
code length parameter, given some of the parameters, i.e., r ↦ log DFRD (r). For the decoder, security level
λ, if DFRD (r) ≥ 2−λ , r1 < r2 < r3, the following inequality can be obtained by defining the concavity of
the Formula (2).

log DFRD (r3) ≤ log DFRD (r1) +
log DFRD (r2) − log DFRD (r1)

r2 − r1
⋅ r3 − r1 (2)
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Figure 1: The relationship graph between Block length r and DFR

To accurately assess p3, introduce the Bernoulli experimental function in statistics, assuming that p1
and p2 is the failure probability of two independent Bernoulli tests, in the total number of Bernoulli tests Ni
in the sample to test failure situation Fi , i = 1, 2 and p3 = p−A

1 p1+A
2 , the derivation of the formula is:
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K = A(1 + A)B (F1 + 1, N1 − F1 + 1)B (F2 + 1, N2 − F2 + 1) . (5)

Therefore, two methods, analog extrapolation and formula method, are used to test the decoding DFR
lower bounds respectively. To ensure the security of IND-CCA and find the minimum block size, it is
necessary to ensure that the selected parameter DFR is less than 2−λ . Where the parameters are chosen as
(r1 , r2, r3) = (9803, 9901, 12323), (d , t) = (71, 134), and the confidence interval α is 0.01. The average DFR
test results for the BGF decoding algorithm under the conditions of τ = 3, IND-CCA security parameters
λ = 128, iterations = 7, are shown in Table 2.

To more accurately evaluate the accuracy of these methods and their potential limitations when applied
to practical BIKE parameters, this section provides a detailed analysis of their precision and margin of error.
As specifically demonstrated in Table 2.

From Table 2, it can be seen that the BGF decoding algorithm can achieve a corresponding rCC A, which
achieves better decoding efficiency than other variants of decoding algorithms [20] by exhibiting a lower DFR
in constant time. However, the drawbacks are equally obvious, its efficient and accurate decoding sacrifices
universality, and its error correction capability is limited in the face of longer code lengths or highly weighted
code words, especially at high security levels.
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Table 2: BGF decoding analogue data table

λ = 128 DFR(95%CI)

log2DFR log2(DFR+) Margin of error Recision

log2(DFR−)
Extrapolation method −146.20 −129.31 11.55% ±14.70%

−172.32 17.86%
Formula method −147.26 −130.31 11.51% ±11.51%

−164.21 11.51%

3 DFR Analysis
Decoders for bit-flipping of QC-MDPC codes used by BIKE always have a non-negligible DFR.

Although the BGF decoders currently used have a very small DFR, it does not formally declare the security
of IND-CCA. This section analyzes the reasons for the existence of DFR and analyzes the special structures
that may hinder the decoding to reveal the reasons that affect the decoding.

3.1 Distance Spectrum Analysis
In the GJS reaction attack, Guo [7] found that there is a strong correlation between the DFR and the

distance spectrum of the key, and a large amount of information about the distance spectrum of the key can
be collected from the decoding failure, and then the key can be recovered from the distance spectrum by the
key recovery algorithm. Therefore, the distance spectrum of this attack is the key to whether the key can be
recovered or not.

For h ∈ F2 [x] / (xr − 1), The number of occurrences of a distance can be called multiplicity, and the set
of multiplicities is the distance spectrum, which can be expressed as [21]:

Spectrum (h) = {(δ, μ (δ, h)) ∣ δ ∈ {0, 1, . . . , ⌊r/2⌋}} (6)

Assuming that the multiplicities of the distance spectra are independent, then for 0 ≤ m ≤ d , 1 ≤ δ ≤
⌊r/2⌋ and h ∈ F2 [x] / (xr − 1) then the multiplicity probability distribution formula is:

πm = Pr [μ (δ, h) = m] = Nm

( r
d )

(7)

p≥m = Pr [ max
δ∈{1, . . . ,⌊r/2⌋}

μ (δ, h) ≥ m] = 1 − (1 − πm)⌊r/2⌋ (8)

p=m = Pr [ max
δ∈{1, . . . ,⌊r/2⌋}

μ (δ, h) = m] = p≥m − p≥m+1 (9)

Nm =
r

d −m
( d − 1

d −m − 1)(
r − d − 1
d −m − 1) (10)

For a subsequent assessment of the effect of multiplicity on the DFR, the distribution of the parameters
at three different security levels is plotted as Fig. 2. It can be observed that the probability of a specific
multiplicity in the spectrum of a cyclic block is generally low (non-zero), with only a small percentage higher.
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Figure 2: Probability analysis of multiplicity m

Therefore, this explains the strong correlation between the DFR and the distance between non-zero bits
in the private key vector (the first row of the cyclic private key matrix) in the GJS attack. That is, if there is
a distance between two non-zero bits in the same error pattern, then the probability of decoding failure is
much smaller compared to the absence of such a distance.

Such a result is obvious, the result in the cyclic condition of the QC code, using the error pattern between
the two 1’s of the distance and the private key vector of the same distance. Its checksum value decreases due to
multiplicative cancellation when identical distances are encountered. The cancellation frequency is inversely
proportional to the resultant checksum weight, with higher cancellation counts yielding lower weight values.
Therefore, the probability of decoding error when the weight is 0 is greater than the probability of error when
the weight is non-zero, and the corresponding DFR will be larger.

3.2 Checksum Analysis
In coding theory, the checker is an important factor affecting decoding. For bit-flip decoding, the

number of iterations completes the decoding within 3–5 iterations on average, and further iterations have
almost no effect on the decoding probability [22]. Therefore, the first correct flip greatly affects whether the
decoding can be successful or not. In the first round of decoding, the number of errors � in each checksum
equation determines the number of correctly changed counters. For example, if the number of errors in a
checksum equation is even, then all counters will be correctly changed; if it is odd, it means that there is at
least one incorrect bit, in which case all counters will be incremented, but only one bit is incorrect. Thus, all
but one counter will change correctly and the rest will increase incorrectly.

To more accurately analyze the effect of the number of errors in each checksum equation on the
decoding, it is assumed that the number of errors involved in the equations obey the following distribution
for any i ∈ {0, . . . , r − 1}, a ∈ {0, 1}, � ∈ {0, . . . , min (ω, t)}, assuming that the number of errors involved in
the equations H is chosen uniformly at random from Hd ,ω ,r×n , and e uniformly at random from En ,t [23]:

Pr [ρi = � ∣ si] =
gsi (�)
Ngsi

(11)
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ga (�) =
( w

�
)( n −w

t − �
)

( n
t )

1a+2Z (�) (12)

Ng1 = ∑
� is odd

(w
�
)(n −w

t − �
)

( n
t )

, Ng0 = 1 −Ng1 . (13)

where si ∈ {0, 1}, � is the number of errors. When si = 0, the number of errors involved in the equation is
even, the distribution ρi is an odd multiple of the number of errors �, and when si = 0, the distribution is an
even multiple of the number of errors.

Testing the parameters for selecting 128-bit security, it can be observed from the Table 3 that the
probability decreases with an increase of � and the average probability is generally lower for even multiples of
the number of errors than for odd multiples. This is because when the number of errors is even, the number
of counters correctly changed is w − �, and the number of errors changed is �. On the contrary, when the
number of errors is odd, the number of counters correctly changed is �, and the number of errors changed is
w − �. Thus, having an even number of counters helps in decoding, while having an odd number of counters
� has a negative effect on decoding.

Table 3: Probability analysis of �

� log2Pr [ρi = � ∣ si = 0] � log2Pr [ρi = � ∣ si = 0]
0 −0.39 1 −0.14
2 −2.13 3 −3.50
4 −6.53 5 −8.68
6 −12.35 7 −15.03
8 −19.15 9 −22.23
10 −26.72 11 −30.14
12 −34.94 13 −38.65
14 −43.71 15 −47.67
16 −52.98 17 −57.16
18 −62.68 19 −67.08
20 −72.80 21 −77.39
22 −83.30 23 −88.07
24 −94.15 25 −99.09
26 −105.33 27 −110.45
28 −116.85 29 −122.11
30 −128.67 31 −134.08
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4 Optimization of Weak-Key Attack

4.1 Introduction
This scheme is based on the BGF decoding algorithm of the BIKE scheme. Building upon previous

weak key attacks that only considered the multiplicity of the distance spectrum or the influence of error
pattern near-codewords individually, it constructs a weak key that results from the combined effect of both
the multiplicity of the key distance spectrum and the error pattern near-codewords.

4.2 Our Construction
The overall steps of the scheme are as follows:
1. (Constructing the key) Select the parameters (r, d , t) and multiplicity m, get the key h ∈

F2 [x] / (xr − 1) , ∣h∣ = d , μ (δ, h) = m, where δ ∈ {0, 1, . . . , ⌊r/2⌋}.
2. (Sampling error patterns) Select specific parameters � and collect the patterns of the near-codewords

that satisfy the conditions � = ∣hT
i ∗ e∣ according to the key constructed h in the first step (� denotes the

number of keys and error vectors at the same position in the first check equation that are both 1).
3. (Measure the probability of decoding failure) Generate the ciphertext according to the BIKE

encryption encapsulation, send the ciphertext to the target oracle predicate machine decoder decrypt the
ciphertext, test the DFR under the small parameter block, and then use the model of the extrapolation
method to test under the target parameter conditions.

4. (Analysis of search density) First calculate the search density of step 1, defined as the probability
η (m), then calculate the search density of step 2, defined as probability η (�), and finally calculate the density
of the analysis as a whole, that is, the overall probability ηD = η (�) ⋅ η (m).

5. (Analysis of security) Calculate the product of the two based on the results of Step 3 and Step 4, and
perform a comparative analysis to determine whether the results are below the minimum requirements for
NIST standardization, and thus whether there is a negative impact on decoding.

4.3 Scheme Analysis
Based on the analysis in Section 3, the multiplicity of the distance spectrum and the overlapping

characteristics of the error vectors both impact decoding. The higher the multiplicity, the more complex the
key structure, and the higher the decoding failure probability. Conversely, the higher the overlap of the error
vectors, the poorer the error correction capability of the decoder [24].

The core advantage of this scheme lies in combining the key multiplicity with the overlapping charac-
teristics of the near-codeword error vectors. These two factors work together on the decoder, significantly
increasing the decoding failure probability without adding extra density. Theoretically, this combination can
more effectively increase the DFR, thus enhancing the effectiveness of the attack.

4.4 Experimental Methodology
The scheme is based on BIKE’s BGF decoding algorithm and simulates the DFR of QC-MDPC codes

under IND-CCA security conditions in the λ = 128 case. Where the parameters of the BIKE scheme are
(r, w , t) = (12323, 142, 134), w = 2d. The parameter selection for the BGF implementation of the decoding
algorithm is the same as in Section 2.

To ensure the accuracy of evaluating the DFR, for the multiplicity 5 ≤ m ≤ 20, the test values of r are
r1 = 9717 and r2 = 9811, while for the multiplicity m > 20, the block parameters of r are r1 = 10,099 and
r2 = 10,271, the simulated decoding samples for each point are 106 times, the DFR with its iteration number
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of 7 is measured by distributing it under the condition of α = 0.05, and the confidence interval value is 95%.
Then, the test values of the DFR with the small parameters of r1 and r2 are extrapolated to r = 12, 323.

To test out the effect of key multiplicity and error pattern near-codewords on BIKE (i.e., BGF decoder),
increase the weight of the constructed weak key multiplicity m from 5 to 30, and increase the constructed
error pattern parameter � from 5 to 25. The simulation results of the DFR tests are as follows [25].

According to the analysis in Table 4, it can be observed that, without considering the error model
parameters �, the DFR increases as the multiplicity of secret keys m increases, indicating that the failure
probability of the decoding increases. At the same time, when the key has greater multiplicity, the DFR
increases with the number of error parameters �, showing that the error rate and the multiplicity of the secret
key become more significant, and the probability of decoding failure increases.

Table 4: DFR at r = 12323

log2DFR �

0 5 10 15 20 25
m 5 −96.83 −87.26 −75.19 −55.61 −45.44 −23.96

10 −93.45 −82.19 −65.27 −50.95 −42.93 −20.31
15 −80.36 −65.32 −46.31 −43.14 −36.67 −11.65
20 −72.62 −61.37 −43.21 −36.23 −22.34 −8.32
25 −60.19 −45.31 −25.33 −23.29 −13.31 −6.66
30 −19.63 −26.99 −15.61 −12.36 −9.49 −4.23

When considering multiple key multiplicities and error parameters, the increase in DFR is significant,
and the impact of each factor is more prominent. This indicates that the key multiplicity and the near-
codeword error vectors have a strong correlation with DFR, which has a major synergistic effect. By
comparing the original data with � = 0, it can be seen that each row of DFR increases, explaining how the
two factors interact to affect the decoding.

While DFR testing provides foundational insights, solely relying on this metric without assessing the
attack method’s efficacy through holistic cryptanalysis is inadequate. For rigorous security evaluation, we
must examine the cryptographic systematically, as developed in subsequent analysis.

4.5 Scheme Security Analysis
In order to gain insight into the impact of weak keys on the IND-CCA security of the BIKE mechanism,

introduce the concept of PD = ηD ⋅DFRD ,H. For weak keys, a set of weak keys is considered weak if there
exists a set of weak keys such that the average DFR of the keys in it is higher than the average DFR of the
overall set of keys and the density of the keys W is sufficiently high that it significantly affects the average
DFR of the overall set of keys for the security parameter λ, i.e.,

∣W ∣
∣H∣DFRD ,H > 2−λ (14)
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Therefore, the following inequality must be satisfied, otherwise the IND-CCA security of BIKE is
considered to be potentially problematic as it is affected by weak keys.

PD =
∣W ∣
∣H∣DFRD ,H = ηD ⋅DFRD ,H < 2−λ (15)

Under the IND-CCA language security condition, the attack collects the key of μ (δ, h) = m , 0 ≤ m < d.
The multiplicity m of the distance spectrum of (r, d), and the upper bound of the weak key set of the decoder
W can be expressed as:

∣W (m)∣ ≤ 2 ⌊ r
2
⌋ r

d −m
( d − 1

d −m − 1)(
r − d − 1
d −m − 1) (16)

In particularly, when m = d − 1 then the upper bound for the weak key set is ∣W (m)∣ = 2r⌊r/2⌋,
however, for when m < d − 1, then the upper bound is detailed in the distance spectral analysis 2.2. Thus, the
overall upper η (m) bound on the density is:

η (m) = ∣W (m)∣∣H (m)∣ ≤
2 ⋅ r ⌊ r

2 ⌋ (
d − 1

d −m − 1)(
r − d − 1
d −m − 1)

(d −m)( r
d )

(17)

For the near-codewords in N , assume that there exist weights ω such that ∀u ∈ N , then ∀v ∈
At ,� ( N ) , ∣v − u∣ = w + t − 2�, giving an upper bound on the density η (N ) as [26]:

η (�) = DN ,t (�) ≤ ∣N ∣
( d

�
)( r − d

t − �
)

( r
t )

(18)

The search complexity of this scheme is the product of the densities of the two, ηD = η (m) ⋅ η (�).
Therefore, the search density is upper bounded:

ηD = η (m) ⋅ η (�) ≤ ∣N ∣
2 ⋅ r ⌊ r

2 ⌋ (
d − 1

d −m − 1)(
r − d − 1
d −m − 1)(

d
�
)(r − d

t − �
)

(d −m)( r
d )(

r
t )

(19)

To facilitate the analysis, the overall complexity of the scheme can be calculated according to the above
formula, and the data are shown in Table 5.

Without considering the error pattern parameter �, the density gradually decreases as the multiplicity m
increases. This is because the structure of high-multiplicity keys is more complex, making it more difficult to
find keys with the same multiplicity. Similarly, without considering the multiplicity m, the density gradually
decreases as the parameter � increases. This indicates that the higher the overlap between the error vector
and the key, the more difficult it is to find such an error vector.
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Table 5: Density analysis

log2ηD �

0 5 10 15 20 25
m 5 −10.22 −16.87 −28.64 −50.87 −76.41 −122.97

10 −48.16 −51.74 −62.16 −73.74 −99.28 −145.84
15 −86.69 −90.37 −96.14 −101.37 −126.91 −173.47
20 −125.86 −131.66 −141.43 −152.66 −158.20 −204.76
25 −165.72 −170.15 −175.92 −181.15 −192.69 −239.25
30 −206.55 −215.64 −237.41 −250.64 −262.18 −276.74

When both the key multiplicity m and the error pattern parameter � are considered simultaneously,
the density is smaller than when only a single factor is considered. This is because meeting the conditions
for both factors is more stringent. For example, when m = 30 and � = 25, there are fewer keys that meet the
requirements, and their density in the Table 5 is necessarily the smallest. However, the higher the search
complexity, the more difficult it is for an attacker to find keys and error patterns that meet specific conditions.

To comprehensively analyze the variation of the upper bound of density under the influence of dual
factors, a visualization of the density ηD as a function of m and � was plotted based on formula 20. From
the Fig. 3, it can be observed that high-density regions (such as the yellow areas) correspond to lower search
complexity, indicating that attackers can more easily find weak keys or error patterns. Conversely, low-density
regions (such as the deep purple areas) correspond to higher search complexity, meaning that attackers
find it difficult to locate keys and error patterns that meet the specified conditions. Therefore, searching for
keys and error vectors that satisfy both conditions simultaneously is extremely challenging, with a very low
numerical density, as seen in the low-density deep purple regions, where the magnitude can be as low as
2−276.74. Compared to the total number of weak keys, this is negligible. However, more attention should be
paid to the yellow regions at the front, where the density is extremely high. The average DFR in these regions
may not meet security standards, and this part is highly likely to enhance the effectiveness of attacks. For an
in-depth analysis to evaluate the IND-CCA security of the BIKE scheme in the presence of weak keys, after
evaluating the overall density of the weak keys, it is also necessary to compute the value of PD (the product
of the density and the DFR), which must satisfy the following inequality [27].

PD = ηD ⋅DFRD ,H > 2−λ (20)

To explore the specific negative impact of the key on the security of the scheme, it is necessary to quantify
the test results. Table 6 shows the quantized values of PD the product of ηD and the DFR in Tables 4 and 5,
which calculates the overall security of the scheme with the changes of the parameters variables and the
values denoted by log2PD .

In Table 6, the value of PD reflects the effectiveness of the attacker’s. The lower the PD value, the worse
the attacker’s effectiveness. For example, m = 30 and � = 25, PD = 2−280.97, which means that the attacker
can hardly find a key and error pattern that meet the conditions in this case. However, the higher the PD
value, the better the attack effectiveness. For instance, when m = 5 and � = 10, the PD value can reach up
to 2−103.83, which is higher than 2−107.05, when m = 5 and � = 0, improving the attack effectiveness by three
percentage points.
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Figure 3: Bivariate density analysis plot

Table 6: Overall security

log2PD �

0 5 10 15 20 25
m 5 −107.05 −104.13 −103.83 −106.48 −121.85 −146.93

10 −141.61 −133.93 −127.43 −124.69 −142.21 −166.15
15 −167.06 −155.69 −142.45 −144.51 −163.58 −185.12
20 −198.48 −193.03 −184.64 −188.89 −180.54 −213.08
25 −225.91 −215.46 −201.25 −204.44 −206.00 −245.91
30 −226.18 −242.63 −253.02 −217.00 −271.67 −280.97

To more intuitively demonstrate the improvement in attack effectiveness, Fig. 4 illustrates the enhance-
ment within the region 5 ≤ m ≤ 25, 0 < � ≤ 10 (hereinafter referred to as the effective region). In the effective
region, for each m value, the three bar graphs from bottom to top represent � values of 0, 5, and 10,
respectively. By comparing the original data marked on the white background, it can be observed that the
attack effectiveness is improved by an average of 5 to 6 percentage points, especially when m = 15 and � = 15,
where the maximum improvement can reach 14.7 percentage points.

Additionally, when m = 10, by selecting an appropriate � parameter (� = 10), the PD value can be
increased to 2−127.43, which fails to meet the minimum NIST security standard of 128-bit. This indicates that
attackers can effectively enhance their attack effectiveness by the � parameter within the effective region.
The bar graphs in Fig. 4 show the improvement in attack effectiveness under different combinations of m
and �, providing a more comprehensive understanding of the impact of key multiplicity and error vector
parameters on the security of the BIKE scheme. This optimized attack scheme significantly enhances the
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effectiveness of the attack. By selecting appropriate parameters m and �, the attack scheme achieves notable
improvements within the effective region, with an average enhancement of 5 to 6 percentage points and a
maximum improvement of up to 14.7 percentage points. The optimized scheme brings keys that originally
met security standards close to or slightly below the NIST security threshold (for example, when m = 10 and
� = 10, PD = 2−127.43). The best attack effectiveness can reach 2−103.83, significantly increasing the efficiency of
the attack and posing a potential threat to the existing BIKE algorithm.

Figure 4: Effectiveness of scheme upgrading

4.6 Comparative Analysis
Wang et al. [8] re-evaluated the DFR of the QC-MDPC code-based scheme by introducing a new

concept called the “gathering property”. The aggregation property is defined as follows: For (y0, y1) ∈ R2, R =
F2 [X] / (Xr − 1), if there exists a consecutive sequence of m positions in y0 containing at least ωH (y0)− ε

instances of the element 1, then it is said to satisfy the gathering property. Research has shown a strong
correlation between the gathering property and the DFR of QC-MDPC codes. Experimental results indicate
that when both the key and the error satisfy the gathering property, the DFR is significantly higher than the
average level. Based on the gathering property, the following important theoretical results regarding the DFR
of the QC-MDPC scheme were derived.

DFRav g ≥ 2−116.61 (21)

Reference [26] proposed a weak-key model construction method based on the multiplicity analysis
of a single-variable distance spectrum (detailed analysis is provided in Section 3.1). The weak-key model
structure is defined as h = (h0, h1), where each hi is generated via a mapping function ϕδ . The specific
expression is:

hi = ϕδ (x l [(1 + x + x2 + . . . + x f−1) + h′i]) , i ∈ {0, 1} (22)

In this model, δ ∈ {1, 2, 3, . . . , [r/2]} represents the distance between non-zero bits in the weak key,
while the parameter l ∈ {0, 1, 2, . . . , r − 1} determines the starting position of the non-zero pattern. The
mapping function ϕδ operates by replacing the variable x with xδ , ensuring that the distance between any two
consecutive non-zero bits in the polynomial 1 + x + x2 + . . . + x f−1 remains constant at δ. The study further
analyzed the impact of this weak-key model on the security of the BIKE scheme. For the BIKE scheme with
parameters (r, ω, t) = (12323, 142, 134) and λ = 128, the authors experimentally evaluated the performance
of weak keys under IND-CCA. The relevant data is presented in Table 7.
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Table 7: Average Decoding Failure Rate (DFR) Table for the Distance Spectrum Attack Scheme

f log2DFR log2ηD DFR ⋅ ηD
5 −96.83 −10.22 2−107.05

10 −93.45 −48.16 2−141.61

15 −80.36 −86.69 2−167.06

20 −72.62 −125.86 2−198.48

25 −60.19 −165.72 2−225.91

30 −41.63 −194.55 2−236.18

Compared to the aggregation degree scheme proposed by Wang et al. and the distance spectrum scheme
in Reference [8], our proposed scheme demonstrates superior attack performance. In Wang et al.’s scheme,
the lower bound of the average DFR is DFRav g ≥ 2−116.61, while in Reference [23], the lower bound is 2−107.05.
By optimizing the attack strategy, our scheme successfully increases the average DFR to DFRavg ≥ 2−103.83.
This improvement means attackers can trigger decoding failures with higher probability, thereby more easily
extracting key-related information. A comparative analysis of the schemes is presented in Table 8.

Table 8: Comparative analysis

log2DFR log2ηD log2PD

Optimized scheme 2−75.19 2−28.64 2−103.83

Reference [8] 2−87.28 2−29.33 2−116.61

Reference [23] 2−96.83 2−10.22 2−107.05

The key innovation of our scheme lies in its ability to increase the decoding failure probability without
introducing additional search density. This characteristic allows attackers to significantly enhance the success
rate of key recovery while maintaining low computational resource consumption. Specifically, by refining
the attack model and algorithms, our scheme enables attackers to more efficiently leverage decoding failure
information for key recovery under the same computational complexity.

4.7 Weak-Key Detection
The general methods for dealing with weak keys primarily include three dimensions: static analysis,

dynamic testing, and algorithm-specific detection. In terms of static analysis, the evaluation mainly relies
on the following technical approaches: key space size analysis, repetition and predictable pattern recog-
nition, known weak key dictionary comparison, and information entropy calculation. Dynamic testing
employs practical attack validation techniques, including brute-force attempts, differential analysis, and
linear analysis, to empirically assess the key’s resistance to attacks.

For algorithm-specific detection, the sample autocorrelation function test stands out due to its
exceptional capability in detecting key periodicity. The principle of this method involves calculating the
autocorrelation coefficient between the initial sequence and its left-shifted sequence by k positions, thereby
quantifying the degree of internal correlation within the sequence. In practical implementation, by analyzing
the distribution of autocorrelation coefficients at different lag orders, a significant peak at a specific lag
order indicates the presence of correlation at that period. This method not only effectively identifies internal
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sequence variation characteristics but also accurately detects periodic properties of the sequence, making it
particularly suitable for weak key periodicity detection based on distance spectrum analysis.

In summary, by integrating the technical approaches of static analysis, dynamic testing, and algorithm-
specific detection, a comprehensive weak key detection system can be constructed. Among these, the
autocorrelation function test, as a critical method in algorithm-specific detection, provides effective technical
support for the periodic analysis of weak keys.

5 Conclusion
This study delves into the BGF decoding algorithm of the BIKE scheme and addressing its potential weak

key issue, proposes an innovative optimized attack strategy. Through experiments, the specific impact of
weak keys on the BGF decoder’s DFR is assessed. The analysis indicates that these weak keys pose a potential
threat to the IND-CCA security of the BIKE scheme. Therefore, before claiming the IND-CCA security of
the BIKE scheme, the security issues caused by weak keys must be addressed. In the future, this research will
be extended to algorithms with higher security levels to further validate its universality and effectiveness.
This study not only provides new insights into the security of the BIKE scheme but also offers a reference for
the future security evaluation of post-quantum cryptography.
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