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ABSTRACT: The rapid progression of the Internet of Things (IoT) technology enables its application across various
sectors. However, IoT devices typically acquire inadequate computing power and user interfaces, making them
susceptible to security threats. One significant risk to cloud networks is Distributed Denial-of-Service (DoS) attacks,
where attackers aim to overcome a target system with excessive data and requests. Among these, low-rate DoS (LR-
DoS) attacks present a particular challenge to detection. By sending bursts of attacks at irregular intervals, LR-DoS
significantly degrades the targeted system’s Quality of Service (QoS). The low-rate nature of these attacks confuses their
detection, as they frequently trigger congestion control mechanisms, leading to significant instability in IoT systems.
Therefore, to detect the LR-DoS attack, an innovative deep-learning model has been developed for this research work.
The standard dataset is utilized to collect the required data. Further, the deep feature extraction process is executed
using the Residual Autoencoder with Sparse Attention (ResAE-SA), which helps derive the significant feature required
for detection. Ultimately, the Adaptive Dense Recurrent Neural Network (ADRNN) is implemented to detect LR-DoS
effectively. To enhance the detection process, the parameters present in the ADRNN are optimized using the Renovated
Random Attribute-based Fennec Fox Optimization (RRA-FFA). The proposed optimization reduces the False Discovery
Rate and False Positive Rate, maximizing the Matthews Correlation Coeflicient from 23, 70.8, 76.2, 84.28 in Dataset
1 and 70.28, 73.8, 74.1, 82.6 in Dataset 2 on EPC-ADRNN, DPO-ADRNN, GTO-ADRNN, FFA-ADRNN respectively
to 95.8 on Dataset 1 and 91.7 on Dataset 2 in proposed model. At batch size 4, the accuracy of the designed RRA-
FFA-ADRNN model progressed by 9.2% to GTO-ADRNN, 11.6% to EFC-ADRNN, 10.9% to DPO-ADRNN, and 4% to
FFA-ADRNN for Dataset 1. The accuracy of the proposed RRA-FFA-ADRNN is boosted by 12.9%, 9.09%, 11.6%, and
10.9% over FFCNN, SVM, RNN, and DRNN, using Dataset 2, showing a better improvement in accuracy with that of
the proposed RRA-FFA-ADRNN model with 95.7% using Dataset 1 and 94.1% with Dataset 2, which is better than the
existing baseline models.

KEYWORDS: Detecting low-rate DoS attacks; adaptive dense recurrent neural network; residual autoencoder with
sparse attention; renovated random attribute-based fennec fox optimization

® Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.065260
https://www.techscience.com/doi/10.32604/cmc.2025.065260
mailto:syarifahbahiyah@upnm.edu.my

5832 Comput Mater Contin. 2025;84(3)

1 Introduction

The use of IoT devices is increasing, and network attacks are becoming more frequent. IoT technology
offers solutions that operate autonomously, enabling the development of intelligent systems capable of
monitoring real-time applications [1]. IoT devices consist of multiple layers, and interconnecting these layers
presents a significant challenge [2]. However, IoT devices remain susceptible to security threats, particularly
DosS attacks, which disrupt interaction among IoT users [3]. DoS attacks on a network lead to excessive traffic,
thereby interrupting its normal operations. This results in legitimate users being unable to access services,
which causes substantial damage, especially in cloud systems where multiple services are interdependent [4].
Detecting LR-DoS§ attacks in cloud computing settings is particularly challenging due to its dynamic nature,
the diverse range of potential attack vectors, and the necessity to maintain accuracy during detection while
minimizing the impact on legitimate traffic [5]. LR-DoS attacks lead to invalid synchronous data, ultimately
exhausting their available resources and hindering their ability to respond to legitimate requests.

Conventional detection methods for DoS attacks often struggle to identify LR-DoS attacks due to their
low-volume and inconspicuous nature [6]. Consequently, there is an urgent need for sophisticated detection
frameworks capable of effectively recognizing and mitigating these threats in real time. LR-DoS attacks
frequently duplicate traffic patterns, which complicates the ability of traditional detection systems during
DoS attack detection [7]. Numerous IoT devices and networks function with limited computational and
memory resources, which diminishes the detection accuracy [8]. The dynamic and diverse nature of IoT
networks causes fluctuations in traffic patterns, making it difficult to establish baseline behaviors necessary
for actual anomaly detection [9]. Conventional techniques struggle to recognize new or unknown attack
patterns, as they are mainly designed to identify only the known threats [10]. By linking the utilization of deep
learning, the proposed framework seeks to boost the accuracy and efficiency of LR-DoS attack detection,
thereby sustaining the overall security of IoT networks [11].

Deep learning models can identify intricate patterns within data, facilitating more precise detection of
LR-DoS attacks, even when these attacks closely resemble authentic traffic [12]. These models also adapt to
changing attack schemes and emerging threats, making them particularly effective in dynamic environments
such as IoT networks [I13]. Deep learning models enhance the accuracy of attack detection, leading to
a lessening of false positives and minimizing interruptions to legitimate traffic [14]. Furthermore, deep
learning-based detection systems are integrated with other security measures, bolstering the overall security
framework and providing a multi-layered defense against potential attacks [15]. Additionally, many deep
learning systems are designed for constant learning, allowing them to refine their detection capabilities over
time as they encounter new traffic patterns and attack scenarios [16]. This framework highlights the dynamic
network traffic analysis while incorporating feature extraction methods to extract critical patterns associated
with LR-DoS attacks [17]. The proposed model effectively learns and adjusts to changing attack strategies
by utilizing the temporal dependencies present in network traffic data. This cutting-edge approach aims to
deliver a robust solution for protecting the IoT environment against the rising threat of LR-DoS attacks,
confirming the integrity and availability of essential services. Dong et al. [18] introduced deep reinforcement
learning on abnormal traffic flow detection.

Addressing the overall challenges from existing systems, the need for an innovative deep learning-based
detection framework plays a pivot role:

« Stronger security measures are required because IoT devices are growing across businesses, making them
a prime target for hackers.

o LR-DoS attacks are dynamic, have low traffic volumes, and can imitate legal traffic, and they are difficult
for traditional DoS detection techniques to detect.
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»  Existing security solutions are less effective because many IoT devices have low memory and process-
ing capability.

o IoT networks are so dynamic that it is essential to create security systems constantly learning and
adjusting to new and changing attack techniques.

o Deep learning improves attack detection accuracy while reducing false positives and makes it possible
to identify intricate traffic patterns.

o IoT security can be improved by integrating a deep learning-based detection system with multi-layered
protection tactics.

«  Maintaining continuous access to vital services in IoT contexts requires defense against LR-DoS assaults,
especially for cloud-based applications where service interruptions may have far-reaching effects.

The main contribution of this proposed scheme is provided in the below points.

e An improved deep learning-based detection model is designed to achieve high accuracy in LR-DoS
attack detection. This proposed model aims to reduce false negatives and ensure reliable detection of
LR-DoS attacks by employing advanced methods and feature extraction. Additionally, it has been devel-
oped to enable the real-time detection of LR-DoS attacks, facilitating quick responses and mitigation
strategies. This capability is essential for preserving the integrity and availability of services within
IoT networks.

o The proposed model utilizes ResAE-SA for feature extraction. This method transforms raw data into
significant features, thereby boosting its capability to detect patterns related to LR-DoS attacks. By
incorporating sparse attention, this model highlights essential features while minimizing noise, resulting
in a more efficient and compelling illustration of the data.

« RRA-FFA strategy, enables dynamic adjustments within the optimization process. This flexibility
enhances the model’s responsiveness to data variations, improving its accuracy in classifying LR-DoS
attacks. Additionally, the optimization process facilitates more efficient utilization of computational
resources by fine-tuning the ADRNN parameters. As a result, this leads to quicker processing times and
reduced resource consumption.

« ADRNN, which was specifically designed to process sequential data, makes it highly effective for
analyzing time-series data like network traffic. This feature enables the model to recognize temporal
dependencies and patterns vital for detecting LR-DoS attacks. By tuning the attributes of ADRNN, the
proposed model attains high classification accuracy.

The overall layout of this proposed model is described in the points below. A brief outline of LR-
DoS attacks in IoT is provided in Section 1. Reviews of existing methods for LR-DoS attack detection are
provided in Section 2. Section 3 provides the description of datasets and the proposed model’s architecture.
The explanations of the feature extraction process using attention mechanisms are provided in Section 4.
The objective function for the training process to improve detection accuracy is provided in Section 5. The
experimental results are arranged in Section 6. Finally, the key contributions and future work are provided
in Section 8.

2 Literature Survey

Low-Rate Denial-of-Service (LR-DoS) attacks are growing and are becoming a nightmare despite equal
contributions to their detection. Modified versions of deep learning architectures, such as Feedforward-
Convolutional Neural Networks (FCNN), Bidirectional Long Short-Term Memory (Bi-LSTM), Recurrent
Neural Networks (RNN), and Deep Neural Networks (DNN), contributed to the improvement in perfor-
mance metrics towards the detection of LR-DoS§ attack. Optimization techniques like attention mechanisms,
federated learning, autoencoders, and dropout algorithms to enhance feature extraction, reduce false alarms,
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and ensure real-time classification have greatly supported this aspect. Furthermore, hybrid models that
maximize deep learning frameworks have shown encouraging results in various network settings, including
cloud computing and the Internet of Things. Notwithstanding these developments, there are still issues, like
high processing requirements, the requirement for sizable labeled datasets, and concerns about managing
the time-domain nature of LR-DoS attacks. This section examines significant advancements in LR-DoS
detection, emphasizing optimization strategies, deep learning architectures, and their effects on enhancing
detection performance while filling current research gaps.

2.1 Related Works

In 2022, Ilango et al. [19] proposed a feedforward-convolutional neural Network (FCNN) that achieved
remarkable detection accuracy. A high level of accuracy was essential for effectively differentiating between
benign and malicious traffic. Notably, this model could detect LR-DoS§ attacks using the features extracted
from the network. This efficiency was crucial for real-time monitoring and response in network security.
Furthermore, the design of FFCNN focuses on achieving a very low false alarm rate, which is vital for
preventing the misclassification of legitimate traffic as malicious, thus enhancing the overall reliability of the
detection system.

In 2020, Diaz et al. [20] presented a Support Vector Machine (SVM) method to improve the detection
capabilities and provide guidelines for implementing effective mitigation strategies against intrusions. This
adaptability was essential for responding to emerging threats and incorporating new technologies. Addi-
tionally, this architecture was built to integrate different machine learning models and support deployment
across various environments, including large-scale networks and data centers.

In 2023, Liu et al. [21] presented an innovative data preprocessing technique focused on optimizing
data utilization, thereby improving feature extraction for detecting LDoS attacks. The local model utilized
Bidirectional Long Short-Term Memory (Bi-LSTM) networks integrated with a mechanism of attention
for the classification process. This model aimed to reduce the effects of noise in the data while preserving
temporal dependencies during LDoS attack detection. This framework facilitates high classification accuracy
while ensuring data remains decentralized and minimizing time complexity.

In 2023, Fayoumi et al. [22] introduced an intelligent lightweight detection scheme, specifically the
Decision Tree Classifier (DTC) model. This scheme was designed to be practical for resource-constrained IoT
devices, enhancing their security. This strategy seeks high detection accuracy without sacrificing efficiency,
making it well-suited for environments with limited resources.

In 2023, Pasha et al. [23] developed an artificial intelligence-enabled LR-DoS attack detection framework
designed explicitly for identifying LR-DoS attacks within cloud computing environments. This framework
employed deep autoencoders and dropout methods to enhance detection capabilities and lessen the impact
of these attacks on cloud services.

In 2022, Fu et al. [24] implemented a Deep Neural Network (DNN) for processing original traffic input
to generate detection results, thereby improving the detection process by utilizing real network traffic as
its foundation. In contrast to traditional detection methods that necessitated extensive feature extraction
from numerous packets, the proposed model reduced resource consumption by focusing on fundamental
statistical features, which enhanced its efficiency for real-time applications.

In 2020, Tang et al. [25] investigated the detection method for LR-DoS attacks integrating two-step
cluster analysis. This innovative approach successfully identifies clusters of network traffic affected by LR-
DoS attacks by utilizing the distinct features of TCP traffic alongside the stability of traffic during periods
of congestion. The findings revealed that the proposed detection method accurately identifies LR-DoS
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attacks while maintaining a low false positive rate, highlighting their potential for real-world applications in
network security.

In 2024, Yuvaraja et al. [26] suggested an innovative technique for identifying the LR-DoS and DoS

attacks, which were achieved using Recurrent Neural Networks (RNN). This integrated approach facilitated
prompt categorization of attacks in near real-time, thereby significantly reducing the potential impact on
affected systems. The features and challenges highlighted in the existing deep-learning based LR-DOS
detection models are summarized in Table 1.

Table 1: Features and challenges of existing deep learning-based LR-DoS detection model

Authors  Methodology Features Challenges
Ilango FFCNN It only utilizes the seven-network It requires a large, labeled dataset,
et al. [19] flow feature to achieve accurate which is more expensive to collect.
results in the IoT environment. Evaluating the long-term features is
Identifying the low attack takes a also tricky.
minimum of time.
Diaz SVM It helps to select the explicit pattern It is unsuitable for small-scale
etal. [20] by learning the corresponding deployment, and no timely results
traffic pattern for the detection have been found.
process.
Liu et al. Bi-LSTM It minimizes the overall It needs more memory and
[21] communication rounds. It achieves computational resources.
high performance based on the
preprocessing and federated
learning process.
Fayoumi DTC It can predict individual It is more sensitive to minute
etal. [22] communication traffic. It enhances variations in input data.
the accuracy of performance in
detecting the attack.
Pasha HA-LRDD It can handle tasks such as It has interpretability challenges. It
et al. [23] normalization, feature extraction, takes more training time.
and classification. Training the
model takes minimum time.
Fuetal. Deepneural It effectively analyses the potential =~ More training samples are required
[24] network time-frequency domain. It to complete the modeling.
automatically extracts the data
feature.
Tang BIRCH It helps to compress the data size It includes more arbitrary
etal. [25] effectively. decisions.
Yuvaraja RNN It enables effective mitigation and It has an exploding issue. It is

et al. [26]

timely responses. It provides a
remarkable improvement in
network security.

complex to train the RNN model
for challenging tasks.

(Continued)
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Table 1 (continued)

Authors Methodology Features Challenges
Rostami  Transformers The results highlight a significant ~ With the development of the EKF
etal. [27] & LSTM improvement in estimation and UKF estimation theory,
accuracy and system performance, nonlinear conditions should be
validating the robustness of the considered to model the DC
proposed method. microgrid process more accurately.

2.2 Problem Statement

IoT network nodes are generally subjected to multiple attacks, deeply affecting integrity, availability, and
confidentiality. LR-DoS is a complex DoS attack type that affects the computing resources on the server. It is
a kind of attack with heavy time-domain characteristics in IoT. Various approaches have been developed to
detect LR-DoS in existing literature. Still, some complex issues need to be solved, which are listed below.

o  Although the existing hybrid model performs better, it requires all the network flow features to detect
the attack. Therefore, better feature extraction is needed to compute the feature before the flow is benign
or malicious. Hence, this work implements the attention mechanism-based feature extraction to solve
the complexity.

o The existing models face various challenges, such as the network device’s requirement to be placed
inside the network traffic model to determine the entropy value eftectively. To solve this issue, this work
utilizes the adaptive deep learning model.

o The existing detection and mitigation model is not more efficient because of the limited resource usage
in IoT devices. Hence, an efficient and effective protocol is required to detect the LR-DoS attack in the
IoT environment. Therefore, the proposed model utilized a detection scheme based on the deep network
with the added heuristic mechanism.

o Because of the inadequate training samples, the existing machine learning models are ineffective for
attack detection. To address these challenges, this work implements feature extraction and the adaptive
detection model to identify the LR-DoS attack with an effective solution.

o The traditional detection model for LR-DoS involves a rule-based system, statistical analysis, and
anomaly detection. However, because of their prolonged nature, these mechanisms often face challenges
in accurately detecting and mitigating minimum-rate attacks. This work implements the new adaptive
deep learning framework to solve this issue.

3 Proposed Model and Description

LR-DoS attacks are typically subtle and persist over long durations, which are difficult to detect
with conventional methods. Their low-rate nature enables them to produce legitimate traffic, complicat-
ing the identification process. Traditional detection systems, including statistical analysis and rule-based
approaches, often struggle to accurately recognize LR-DoS attacks due to the attackers’ ability to spread
malicious traffic over time, thereby evading detection mechanisms. Additionally, the growing complexity of
network environments, particularly in IoT contexts, introduces further challenges. IoT traffic’s varied and
dynamic characteristics obscure attack patterns, making detection even more challenging. LR-DoS attacks
are designed to gradually deplete system resources, resulting in significant service degradation without
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triggering immediate alerts, extending the attack’s impact. To overcome such drawbacks, an effective LR-
DoS attack detection model is implemented. The diagrammatic specification of the proposed LR-DoS§ attack
detection scheme is provided in Fig. 1.
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Figure 1: Diagrammatic representation of proposed LR-DoS attack detection model

The proposed LR-DoS attack detection model is developed to detect LR-DoS in an IoT environment,
enhancing the reliability of data transmission through a detection scheme that focuses on fundamental
statistical features, thereby reducing resource consumption for real-time applications. The data needed for
this model is collected from the relevant source, which provides various attack scenarios and typical traffic
patterns. Extracting the relevant features starts with the raw data, which is processed using a ResAE. This
network architecture is enhanced with sparse attention mechanisms to confine the most pertinent features
from the input data successfully. The residual Autoencoder allows efficient learning of the fundamental
patterns in the data, while sparse attention focuses on the most considerable features, improving the quality
of the extracted information. Once the features are extracted, they are fed into an ADRNN for classification.
Sequential data are effectively handled using this method, making it suitable for detecting LR-DoS attacks.
The efficiency of the proposed detection network is enhanced by optimizing the attributes from DRNN with
the support of RRA-FFA. The objective function of the optimization process is to classify the input features
using the ADRNN and evaluate the performance by comparing the target labels with the classified outcomes,
ensuring that the ADRNN effectively identifies LR-DoS attacks. Furthermore, the integration of the RRA-
FFA facilitates dynamic adjustments within the optimization process. This adaptability enables the model to
respond more effectively to data variations, improving its accuracy in classifying LR-DoS§ attacks.

Dataset 1 (LR-DoS dataset): The LR-DoS dataset generally comprises network traffic data replicating
different low-rate DoS attacks. It features benign and attack traffic, enabling researchers to train effectively
and assess detection models. The relevant data are collected from the link https://data.mendeley.com/
datasets/bzf9jcvhx4/1 (accessed on 12 September 2024). This dataset is usually gathered from controlled
environments where network traffic is generated and observed, often utilized to simulate attack scenarios
while capturing the resulting traffic patterns.

Dataset 2 (Cyber Security Dataset): This proposed model utilizes a cyber security dataset. This dataset
provides data that helps identify common vulnerabilities in the system. The relevant data are collected from
the link wwwkaggle.com/datasets/mohamedamineferrag/edgeiiotset-cyber-security-dataset-of-iot-iiot
(accessed on 12 September 2025). This dataset helps train the deep learning model effectively. The entire
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collected data is represented as LIx, where the term X is the count of total data collected from the dataset.
Datasets 1 and 2 are well summarized on their size, Class distribution and Attack types in Table 2.

Table 2: Dataset description

Low rate DDoS (MQTT)
dataset

Feature/Characteristic

Edge-IToTset dataset

Size Balanced classes of Train and
Test comprising 160,000 on
train and 39,994 on test

Class distribution Normal, DDoS
99,995—Normal
99,999—DDoS
Attack types Low-Rate DDoS attacks over
MQTT protocol

Unbalanced classes (later balanced on
preprocessing) of Train and Test
comprising 79,999 data on train and
20,000 data on test.

Normal, DDoS (HTTP, ICMP, TCP, UDP)
Normal—24,302
DDo0S—49,396
14 attack types categorized into 5 threats:
DoS/DDoS attacks, Information

Gathering, Man-in-the-Middle attacks,
Injection attacks, and Malware attacks but
only 4 types of DDoS attacks were
considered for study.

4 Attention-Aided Deep Learning-Based Feature Extraction for Improving Classification Processes

A key element of LR-DoS attack detection is efficient feature extraction, which guarantees that
unprocessed network traffic data is converted into classification-relevant representations. High-dimensional
data and noise are common problems for traditional deep learning techniques, which results in ineffective
detection. To overcome these obstacles, this section presents an attention-aid deep Learning-Based Feature
Extraction framework that combines sparse attention methods with residual autoencoders to improve
classification accuracy. The Residual Autoencoder (ResAE) uses skip connections to enable deeper network
training, improve learning efficiency, and decrease overfitting. Furthermore, the model may selectively con-
centrate on the most pertinent features while lessening the influence of redundant or noisy input thanks to the
addition of sparse attention (SA). By integrating these methods, the suggested model successfully identifies
key patterns in the data, leading to better feature extraction and more accurate LR-DoS attack categorization.

Furthermore, the model may selectively concentrate on the most pertinent features while lessening
the influence of redundant or noisy input thanks to the addition of sparse attention (SA). By integrating
these methods, the suggested model successfully identifies key patterns in the data, leading to better feature
extraction and more accurate LR-DoS attack categorization. The following subsections detail the architecture,
optimization techniques, and benefits of the ResAE-SA-based feature extraction module in enhancing
classification performance.

4.1 Residual Autoencoder with Sparse Attention

Residual autoencoder [28] is a neural network architecture that integrates the function of autoencoders
with residual learning. It comprises both an encoder and a decoder component. The encoder reduces the
input data into a lower-dimensional representation, and the decoder reconstructs the original data. Residual
learning incorporates skip connections, enabling the input to pass one or more layers within the network.
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This approach reduces the overfitting problems and facilitates the training of deeper networks. In a residual
autoencoder, the encoder’s output is combined with the input to produce the network’ final output.

Network Architecture: Residual autoencoder is composed of multiple layers, including convolutional
and pooling layers. Its primary function is to lessen the dimensionality of raw data.

Convolutional layer: This layer is designed to extract features from the input data by performing
convolution operations using learnable filters. It is mathematically expressed in Eq. (1).

T

B-1 1
R(pJ)ZbZOh OS'Vb+fp )

here, the input term is represented as S, and the bias term is indicated as J,. The convolution operation is
specified as S - y;. The output feature map is indicated R, ;) at the position R(, ;). The dimensions of the
filter are indicated as b and h, respectively.

Pooling layer: It reduces the facial feature dimension and performs a down-sampling process to
decrease the computational complexity of data. The mathematical expression of the pooling layer is indicated
inEq. (2).

Ep(p,1) = max (R, (pD (p+1) D)) (2)

here, the width of the pooling layer is indicated as D.

Residual block: It enables the input to bypass specific layers, which enhances gradient flow during
training. The residual block Br is mathematically expressed in Eq. (3).

Br=G(D,p)+J, 3)

here, the term G (D, p) is the layer’s output within the residual block. The residual autoencoder is designed
to reconstruct the input data. This capability enhances feature extraction and denoising, as the model
concentrates on capturing the essential characteristics of the data by reducing noise.

Incorporating residual blocks makes the design and tuning process more difficult. Integrating residual
blocks into the autoencoder framework requires careful attention to layer configurations and hyperparame-
ters. As the model becomes more complex with adding layers and parameters, the risk of overfitting increases,
mainly when the training dataset is small. To address this challenge, sparse attention is included in this
proposed feature extraction model.

4.2 Feature Extraction Module

The collected input data LIy is applied to the feature extraction phase. Feature extraction is vital in
LR-DoS attack detection, where raw data is converted into representative features. The process starts with
raw data. The raw data frequently includes noise and irrelevant information, making it essential to extract
meaningful features that capture the underlying patterns. The main part of the feature extraction process
is the residual Autoencoder, which consists of the encoder and the decoder, which ensure the accuracy of
the features extracted during this module. This ensures that the features extracted by the encoder accurately
represent the input data. To further improve the feature extraction process, sparse attention mechanisms are
incorporated into the residual Autoencoder. It enables the model to focus on the valuable features of the input
data by removing the less significant information. This is especially beneficial in high-dimensional datasets.
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The attention mechanism assigns weights to different input data segments based on relevance. In the
context of ResAE-SA, this allows the model to selectively highlight certain features while down-weighting
others, resulting in a more efficient and effective representation. By enforcing sparsity in the attention
weights, the ResAE-SA model is encouraged to focus on a limited number of key features, which helps to
reduce noise and boost the interpretability of the extracted features. The output of the ResAE-SA network is
a collection of features that capture the essential information from the raw data. These features are generally
lower-dimensional and more informative than the original input, making them well-suited for classifying
LR-DoS attacks. Finally, the extracted features are represented as D}{“AE . The diagrammatic demonstration

of the ResAE-SA-based feature extraction model is given in Fig. 2.
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Figure 2: Diagrammatic representation of ResAE-SA-based feature extraction model

5 Adaptive Deep Learning Network for Classification of Attacks and Its Objective Function

To accurately classify Low-Rate Denial-of-Service (LR-DoS) attacks in Internet of Things (IoT) net-
works, sophisticated deep learning models that can effectively process sequential data are required. This
section presents an Adaptive Deep Learning Network that is intended to improve the classification process
by dynamically modifying its architecture and processing techniques. The Dense Recurrent Neural Network
(DRNN) is the foundation of this model, which combines dense layers with recurrent connections to capture
complex temporal dependencies in network traffic data. However, traditional DRNNs have issues with
overfitting, high computational demands, and imbalanced datasets. To address these issues, this work sug-
gests an Adaptive DRNN (ADRNN) optimized using the RRA-FFA (Resilient and Resource-Aware Fennec
Fox Algorithm), which improves feature selection and dimensionality reduction. This section describes
the DRNN framework, the adaptive learning mechanism, and the optimization strategy, emphasizing its
efficacy in enhancing LR-DoS attack detection in resource-constrained IoT environments. The optimization
process intends to minimize False Discovery Rate (FDR) and False Positive Rate (FPR) while maximizing
the Matthews Correlation Coefficient (MCC), guaranteeing robust and reliable attack classification. Dense
Recurrent Neural Network Description.
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DRNN [29] is a specific type of architecture based on the function of RNN. It integrates the concepts
of dense (fully connected) layers with a recurrent function, enabling the network to process sequential data
effectively. DRNNs are particularly well-suited for tasks where the sequence of inputs is crucial, such as
time series analysis. The recurrent connections in a DRNN enable preserving a hidden state that generates
information from prior time steps, allowing the model to learn temporal dependencies effectively.

In a DRNN, every neuron in a layer is connected to all preceding layer neurons. This dense connectivity
helps the network learn intricate input data representations. Dense layers capture complex patterns among
the data, thereby improving the model’s predictive accuracy. The input to a DRNN consists of sequences of
feature vectors and is mathematically expressed in Eq. (4).

S={s1,s2,...,8v} (4)

here, the term V indicates the sequences’ overall length. The network can collect earlier information in the
sequence by updating the hidden state at each step, relying on the prior hidden state and the current input. A
nonlinear activation function is typically used to determine the hidden state, giving the model non-linearity
and permitting it to learn more intricate functions. It is statically expressed in Eq. (5).

Sh=a (st + Fsh,_; + ]p) (5)

here, the hidden state is indicated as Sh, F is the weighted matrix of the hidden layer, « is the function of
activation and D is the weight of the input layer. The output of the DRNN is derived from the hidden state
at the current time step p. The output term is mathematically expressed in Eq. (6).

R(p) =y (YSh+],) (6)

here, the softmax function is indicated as y, the weight matrix of the output layer is indicated as Y. The
output layer typically uses an activation function like softmax for multi-class classification, converting the
raw output scores into probabilities.

5.1 Low-Rate DoS Attack Detection in IoT

The process begins with a set of features D?"SAE extracted from the raw data. These features are necessary
for identifying patterns indicative of LR-DoS attacks. Here, the classification is performed using ADRNN.
This architecture is designed to handle sequential data effectively, making it appropriate for analyzing time-
dependent network data.

In ADRNN, the extracted features are fed to recurrent connections that enable it to retain a hidden
state across different time steps. This functionality lets the network capture past inputs needed to interpret
intricate patterns. Furthermore, each neuron in one layer gets linked to every other neuron in the layer below
because of the inclusion of thick layers. This dense connection increases the network’s capability to collect
complicated properties of the input sequences, making it easier for the network to discover detailed patterns
and correlations within the data.

Yet, an imbalanced dataset delays the DRNN’s learning process, as it may become biased towards
the majority class and struggle to identify the minority class. Additionally, network traffic data is often
high-dimensional, including numerous features representing different aspects of the traffic. This high
dimensionality complicates the training process, making it difficult for the DRNN to recognize relevant
patterns without risking overfitting. Furthermore, training DRNNS is resource-intensive, demanding consid-
erable computational power and memory, which poses a challenge for deployment in resource-constrained
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environments. To overcome these challenges, an adaptive nature of DRNN is designed with the aid of
RRA-FFA in this proposed LR-DoS attack detection model.

The adaptive characteristics of the DRNN allow it to conduct feature selection and dimensionality
reduction dynamically. By identifying and emphasizing the most pertinent features during training, RRA-
FFA-ADRNN concentrates on the essential elements of the data that facilitate effective pattern recognition.
This approach diminishes the risk of overfitting and improves the model’s capacity. Additionally, the RRA-
FFA-ADRNN adjusts its architecture and processing methods according to the available computational
resources by optimizing the attributes of DRNN. This flexibility enables the RRA-FFA-ADRNN to function
proficiently in resource-constrained settings. The objective functions of the proposed RRA-FFA-ADRNN-
based LR-DoS attack detection are the minimization of the False Discovery Rate (FDR) and the false Positive
Rate (FPR) along with the maximization of the Matthews Correlation Coefficient (MCC). The mathematical
expression of the objective function is provided in Eq. (7).

1
Fopj = arg min (( ) +FDR + FPR) 7)
{NHﬂ)RNN’ CEVDRNt’RLi’)RNN} MCC

here, the term NHEPRNN js the optimized hidden neuron count that varies in the range of [5-225], CEPRN!
is the optimized neuron count that varies in the range of [5-50], RL}*NN
varies in the range of [0.01-0.99]. The fitness function is a comprehensive measure that guides the training

is the optimized learning rate that

and evaluation of this proposed model, ensuring that it effectively identifies LR-DoS. The mathematical
formulas used for calculating FDR, FPR, and MCC are provided in the equations below.

FDR: In this proposed model, minimum FDR reduces the number of instances where the model is
incorrectly identified as usual or attacked. It is mathematically expressed in Eq. (8).

Rt

FDR =
Gt + Rt

(8)

FPR: A lower FPR in this proposed model indicates that the model reduces misclassification. It is
mathematically expressed in Eq. (9).

Rt
FPR = , )
Rt + Gj
The MCC of the proposed model is calculated using Eq. (10).
Gt * Gj) — (Rt * Rj
MCC (Gt * Gj) - (Rt * Rj) (10)

" /(Gt#Ri) % (GL+ Rj) * (G + Ri) * (G] + R))

here, the valid positive and negative values are indicated as Gt and G j, respectively. False positive and negative
values are indicated as Rt and Rj, respectively. Fig. 3 shows the diagrammatic depiction of the suggested
LR-DoS attack detection in the IoT system.
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Figure 3: Diagrammatic representation of proposed LR-DoS attacks detection in IoT model

5.2 Presented RRA-FFA

FFA [30] is enthused by the behaviors and survival strategies of the fennec fox, especially its adaptability
to harsh environments and its effective hunting methods. This algorithm’s adaptive mechanisms allow it to
adjust its search efforts based on the unique features of the optimization issue, enhancing its performance
in various situations. Furthermore, its performance on benchmark functions shows that FFA has proven
resilient in handling a variety of optimization issues. Based on these conditions, the position is updated
using Eq. (11).

+ Ur : -H- B < B
Reg = { Tkl (rux.1 k1) Bii < Bg } )

e+ Ur (ruxn — k1) else

here, the term ry g ; is the initial position, Ry ; is the updated position, U, is the random variable, H is the
influence factor, and B is the fitness value. Yet, FFA converges more slowly than expected, especially in com-
plex settings. This slower convergence impacts the efficiency of identifying optimal solutions. Additionally,
preserving diversity within the population of solutions is essential for successful exploration. Therefore, FFA
needs to incorporate mechanisms that prevent premature convergence by updating its random variable U, .

N represents the population size (number of fennec foxes or candidate solutions in the optimization
process). T represents the number of iterations (how often the algorithm runs to refine the solutions).
Hence, the overall time complexity is O(N-T), which makes it scalable for large datasets. Since each iteration
performs operations on all population members, the total number of operations grows proportionally to N x
T, leading to an O(N-T) time complexity. As discussed in step 2, the decision logic includes Exploration and
Exploitation, wherein the objective of the Exploration phase is to discover diverse and promising regions in
the solution space.

The strategy includes: N represents the population size (number of fennec foxes or candidate solutions
in the optimization process). T represents the number of iterations (how often the algorithm runs to refine
the solutions). Hence, the overall time complexity is O(N-T), which makes it scalable for large datasets.
Since each iteration performs operations on all population members, the total number of operations grows
proportionally to N x T, leading to an O(N-T) time complexity. As discussed in step 2, the decision logic
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includes Exploration and Exploitation, wherein the objective of the Exploration phase is to discover diverse
and promising regions in the solution space.

o The random variable r in Eq. (12) is large, resulting in more significant jumps in the search space.

o  This high randomness helps the Fennec fox solutions explore new potential optimal solutions instead of
getting stuck in local optima.

« Encourages diversity in the population to avoid premature convergence.

Exploitation phase aims to fine-tune solutions and converge to the best possible value. The strategy
includes:

o The random variable r is reduced in Eq. (12), making movements smaller and more refined.
o The focus shifts towards intensification, improving promising solutions rather than exploring new ones.
o This phase refines the best candidate solutions identified earlier, ensuring precise convergence.

The improved algorithm RRA-FFA focuses on the iterative process of updating the positions of the
solution population. The mathematical form of the newly developed concept for updating the random
variable is provided in Eq. (12).

Fct
U, =
(Fwt + Fmt — Fbt + Fct)

(12)

here, the best, worst, mean, and current fitness values are indicated as Fbt, Fwt, Fmt and Fct, respectively.
The computation of U,. Considering the current, worst, mean, and best fitness values enables a more dynamic
evaluation of each solution’s performance. By including the worst and mean fitness values in the calculation
of U,, the RRA-FFA accurately identifies underperforming solutions, promoting exploration of new regions
within the solution space and potentially enhancing the performance in the LR-DoS attack detection phase.
The pseudocode of the proposed RRA-FFA model is provided in Algorithm 1.

Algorithm 1: RRA-FFA algorithm

Input: Attribute set for optimization
Output: Optimized attribute set
Step I: Initialization
1. Define Parameters:
Set population size N, maximum iterations T, and control parameters for optimization.
2. Initialize Population:
Randomly initialize the positions of fennec foxes (solutions).
Evaluate the fitness function for each fox to determine the initial quality of solutions.
Step 2: Iterative Optimization Process
3.For t=1toTdo
For each fox iin N do
1. Modify Random Variable (Exploration-Exploitation Balance):
Adjust the random coefficient using Eq. (11) to control search intensity.

Early Phase iteration — Prioritize exploration (high randomness).
Later Phase iteration — Prioritize exploitation (low randomness).
2. Digging Phase (Exploration Mechanism):
Search for prey (better solutions) by modifying the position vector.

(Continued)
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Algorithm 1 (continued)

If fitness improves after digging — update the position.
Else — retain the previous best position.
3. Status Update (Position Refinement):
Update the position using Eq. (10) based on the best-found solution.
If the new position provides a lower error value — accept the change.
Else — retain the prior position to prevent unnecessary perturbations.
4. Escaping Strategy (Avoiding Local Optima—Exploitation Phase):
Adjust the movement to escape predators and prevent premature convergence.
If fox € suboptimal region — introduce a large perturbation for exploration.
If fox is close to the global best — apply small adjustments to refine accuracy.
5. Position Update:
Store the newly identified best solution for the fox.
End For
Global Best Selection:
Identify the best-performing fox (solution) in the current iteration.
If it is better than the previously stored global best — update it.
4. End For
Step 3: Output Optimized Solution
5. Return the final optimized attributes after convergence.

6 Results and Discussion

This section thoroughly analyzes the suggested RRA-FFA-ADRNN model for LR-DoS attack detec-
tion, demonstrating how variations affect accuracy and computational efficiency. The experimental setup
describes the model's implementation and training procedure, and then it is evaluated using standard
performance metrics like accuracy, Critical Success Index (CSI), and False Omission Rate (FOR). A
convergence analysis is carried out to validate the model’s effectiveness further, looking at the model’s stability
and optimization during training. In conclusion, the accuracy analysis highlights the superior detection
capability of the RRA-FFA-ADRNN model by comparing it to existing deep learning and optimization.
The results confirm that the suggested model performs better than traditional methods, achieving higher
accuracy and robustness in identifying LR-DoS attacks within IoT environments.

6.1 Experimental Setup

A practical model for LR-DoS attack detection was designed and implemented with Python language
support. With a maximum iteration of 50 and a population size of 10, the obtained data is split into 75% for
training and 25% for testing. The chromosomal length is set at 3. By comparing the suggested model to the
current detection models, the success rate of the former was evaluated. The existing algorithms are Gorilla
Troops Optimizer (GTO) [31], Emperor Penguins Colony (EPC) [32], Dolphin Pod Optimization (DPO)
[33], and FFA [30]. Conventional techniques like FFCNN [19], SVM [20], RNN [24], and DRNN were also
utilized to assess the validation of the proposed model.

6.2 Performance Metrics

The mathematical formulas of performance metrics utilized for the validation process are speci-
fied below.
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Accuracy (Cy): The accuracy of the proposed model is calculated using the formula in Eq. (13).

B Gt+Gj
~ (Gt+Gj+ Rt +Rj)

Cy (13)

Critical Success Index (CSI): This metric assesses correctly detected attacks’ proportions. It is considered
using the formula in Eq. (14).

t
CSI = G— (14)
(Gt + Rt + Rj)
The proposed model’s false Omission Rate (FOR) is assessed using Eq. (15).
Ri
FOR = — (15)
Rj+ Gt
The proposed scheme’s Bookmaker Informedness (BM) is dignified using the formula in Eq. (16).
BM = Specificity + Sensitiivity (16)
The Markedness (MK) of the considered model is dignified using the formula in Eq. (17).
MK =Pr+NPV (17)
here, the term Pr is precision and it is dignified using the formula in Eq. (18).
Pr = Gt - (18)
Gt +Rj

6.3 Convergence Analysis of the Proposed Model

The convergence analysis of the proposed model performance across different detection models is given
in Fig. 4a. The optimal classification threshold value for the task is identified by examining the convergence
curve. The proposed outcome is compared against various models. Convergences analysis assesses how
quickly and reliably the proposed RRA-FFA-ADRNN model achieves a stable solution during training,
which is vital for ensuring effective deployment in real-time environments. The given plots in Fig. 4a,b
represent different algorithms’ convergence behavior in minimizing the cost function over iterations on
Datasets 1 and 2, respectively. The x-axis represents the number of iterations, while the y-axis represents the
cost function value. Convergence curves on Dataset 1 include an interpretation wherein the initial phase
of 0-10 iterations shows that the cost function starts at a relatively high value (~1.7-1.8) for almost all
the comparative algorithms. A sharp decline is observed within the first few iterations, indicating rapid
convergence. RRA-FFA-ADRNN and FFA-ADRNN shows the fastest reduction in cost, reaching around
1.2-1.3. The middle phase including 10-30 iterations shows that the curves begin to stabilize, with small
fluctuations in cost values. GTO-ADRNN exhibits a sudden drop around iteration 40, suggesting delayed
convergence compared to other algorithms. Most algorithms reach a plateau, meaning minimal further
improvements by the end of 50 iterations. RRA-FFA-ADRNN achieves the lowest cost function value (~1.2),
indicating superior performance. Similarly, convergence curves on the Dataset 2 interprets that in the initial
stages of iterations the cost function starts at a higher value (~2.0 for some algorithms). The EPC-ADRNN
has a drastic drop initially, but it fluctuates heavily before stabilizing. Followed by some fluctuations, but
most algorithms start settling around 1.3-1.4. FFA-ADRNN and RRA-FFA-ADRNN consistently maintain
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lower cost values, suggesting better stability. Finally, by the end of iterative performance RRA-FFA-ADRNN
remains the most stable and achieves the lowest cost function, similar to the first dataset. The GTO-ADRNN
and DPO-ADRNN models show minor improvements but do not reach the optimal convergence levels of
RRA-FFA-ADRNN. Consolidating the interpretation:

« RRA-FFA-ADRNN consistently outperforms other methods, achieving the lowest final cost values across
both datasets.

« FFA-ADRNN also shows strong convergence but is slightly less stable than RRA-FFA-ADRNN.

+ GTO-ADRNN and EPC-ADRNN experience delays in convergence, with sudden improvements in
later iterations.

« DPO-ADRNN performs reasonably well but does not reach the lowest cost values.

o Overall, RRA-FFA-ADRNN is the most effective approach, demonstrating faster convergence, lower cost
function values, and improved stability across both datasets.

=P GTO-ADRNN == GTO-ADRNN

o == EPC-ADRNN ool == EPC-ADRNN
=p= DPO-ADRNN =p= DPO-ADRNN
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Figure 4: Convergence analysis of proposed LR-DoS attack detection model regarding (a) Dataset 1 and (b) Dataset 2

6.4 Performance Analysis Based on Batch Size

-

Fig. 5 specifies the graphical view of performance comparison of various optimization algorithms
on Dataset 1 and Dataset 2, and Fig. 6 provides the graphical view of performance metrics on various
deep learning methods using Dataset 1 and Dataset 2. Different batch sizes impact the speed of training.
Analyzing accuracy helps to identify the detection efficiency that provides detection results based on
training data. At batch size 4, the accuracy of the designed RRA-FFA-ADRNN model progressed by 9.2%
compared to GTO-ADRNN, 11.6% compared to EFC-ADRNN, 10.9% compared to DPO-ADRNN, and 4%
compared to FFA-ADRNN. The choice of batch size influences the model’s ability. Higher batches with
less noise in the gradient estimation help boost the proposed model’s flexibility. Analyzing accuracy helps
to assess how the RRA-FFA-ADRNN model performs on validation data with different batch sizes. Based
on Fig. 6a, the accuracy of the proposed RRA-FFA-ADRNN is boosted by 12.9%, 9.09%, 11.6%, and 10.9%
over FFCNN, SVM, RNN, and DRNN, using Dataset 2 at the batch size of 4. Analyzing accuracy with
varying batch sizes, the proposed RRA-FFA-ADRNN detection performance is compared against other
techniques, highlighting its strengths and weaknesses in different training scenarios. Based on these analyses,
the proposed RRA-FFA-ADRNN model is more effective in LR-DoS§ attack detection.
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Figure 6: Performance metrics analysis of the deep learning models of attack detection using Datasets 1 and 2

Fig. 5 shows that accuracy increases with batch size for all models. RFA-FHA-ADRNN consistently
achieves the highest accuracy, nearing 96% in both datasets. FHA-ADRNN follows closely, maintaining a
significant lead over the other models. EPC-ADRNN has the lowest accuracy performance. BM values also
improve as batch size increases. Similar to accuracy, RFA-FHA-ADRNN remains the best performer, followed
by FHA-ADRNN.GTO-ADRNN and DPO-ADRNN (Green) show steady improvements but remain below
FHA-ADRNN.EPC-ADRNN consistently performs the worst.

The CSI metric follows the same pattern of increasing with batch size. REFA-FHA-ADRNN consistently
outperforms all others. FHA-ADRNN is the second-best performer. EPC-ADRNN has the lowest CSI scores.
False Omission Rate (FOR) decreases as batch size increases. RFA-FHA-ADRNN maintains the lowest
FOR at all batch sizes. EPC-ADRNN has the highest FOR, indicating weaker performance in avoiding
false omissions. FHA-ADRNN consistently outperforms other models except RFA-FHA-ADRNN. Matthew’s
Correlation Coefficient (MCC) increases with batch size. RFA-FHA-ADRNN has the highest MCC, reaching
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values around 96% at large batch sizes. FHA-ADRNN follows, with MCC above 90%. GTO-ADRNN and
DPO-ADRNN show similar trends but at lower values. EPC-ADRNN performs the worst. MK Metric shows
a positive correlation with batch size. RFA-FHA-ADRNN has the best results. FHA-ADRNN follows closely.
Other models lag, with EPC-ADRNN being the weakest. Precision increases with batch size. RFA-FHA-
ADRNN maintains the highest precision across all batch sizes (near 100%). FHA-ADRNN is the second-best
performer. EPC-ADRNN has the lowest precision. Consolidating the performance metrics, RFA-FHA-
ADRNN is the best-performing model across all metrics and datasets. FHA-ADRNN is the second-best in all
metrics. EPC-ADRNN consistently underperforms compared to other models. Larger batch sizes improve
all performance metrics, particularly reducing FOR and increasing MCC, MK, and Precision.

Accuracy increases with batch size for all models. RFA-FFA-ADRNN consistently has the highest
accuracy at larger batch sizes, close to 98-100%. FF-CNN, SVM, PNN, and DNN perform similarly, but FE-
CNN and DNN appear slightly better than SVM and PNN. Smaller batch sizes (4, 8) show lower accuracy
across all models. BM values improve as batch size increases. RFA-FFA-ADRNN has the best BM score across
all batch sizes. Other models show close competition, with FF-CNN and DNN performing slightly better
than SVM and PNN. BM values range between 150 and 200, with RFA-FFA-ADRNN reaching the upper
limit. CSI follows the same trend as accuracy and BM, increasing with batch size. RFA-FFA-ADRNN has the
highest CSI values, close to 90+%. FF-CNN, SVM, and DNN are closely matched, but SVM lags slightly.

PNN consistently has the lowest CSI values, indicating weaker performance. RWA-FFA-ADNN consis-
tently achieves lower rates compared to other models, indicating better performance in terms of minimizing
false negatives and false discoveries. SVM and FICNN tend to have higher FOR and FDR values, indicating
they are less reliable in this context. RWA-FFA-ADNN generally shows higher values of MCC and MK,
suggesting strong positive predictive power and balanced accuracy. FICNN and SVM often have slightly
lower scores, while RNN and DNN are competitive but not as consistently high as RWA-FFA-ADNN.RWA-
FFA-ADNN has consistently high precision across all batch sizes, followed closely by DNN. The difference
in precision between models is less pronounced here than other metrics. Finally, as the batch size increases,
performance for most metrics generally improves or remains stable, particularly for RWA-FFA-ADNN and
DNN. Smaller batch sizes exhibit more variation and lower performance, especially in the FOR and FDR
metrics. RFA-FFA-ADRNN outperforms all other models in Accuracy, BM, and CSI. DNN and FF-CNN are
better than SVM and PNN but are still significantly weaker than RFA-FFA-ADRNN. SVM and DNN show
the weakest results across all metrics.

6.5 Accuracy Analysis of Proposed Model

Table 3 presents the accuracy analysis of numerical outcomes Comparison analysis of optimization
algorithms and approaches using Dataset 1 and the analysis based on Dataset 2.

The best design with the highest accuracy for LR-DoS§ attack detection is found by adjusting the number
of hidden neurons. This aids in adjusting the model to detect LR-DoS attacks as effectively as feasible. As
a result, accuracy analysis is crucial for confirming the suggested LR-DoS attack detection model’s success
rate. It should be considered with other metrics to assess its capacity to accurately identify LR-DoS$ assaults
in an IoT context.
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Table 3: Comparison analysis of optimization algorithms and techniques using datasets 1 and 2—accuracy analysis

Dataset 1
Comparison analysis of optimization Comparison analysis of deep learning
algorithms methods
Hidden GTO- EPC- DPO- FFA- RRA- FFCNN SVM RNN DRNN RRA-
neuron FFA- FFA- FFA- FFA- FFA- [19] [20] [24] FFA-
counts ADRNN ADRNN ADRNN ADRNN ADRNN ADRNN
[31] [32] [33] [30]

100 87.794 86.118  86.942 92.28 95.144 89132 91.87 89.518 90.034 95.144
200 88.684 87154  88.098 92.666 95.266 88.856 91.4 89.306 90.152 95.266
300 89.492  88.066  89.292 92942 95412 88596 90.944 89.204 90.204 95.412
400 90.35 89.248  90.582 93324  95.604 88.348 90.47 89  90.246 95.604
500 91.234  90.358 91756  93.658  95.716 88.04 90.012 88.82 90.356 95.716

Dataset 2

100 86.93 85.23 86.002 91.38 9417 88.692 91.43 88.76 89.584 94.17
200 87.856  86.384 873 91.712 94.378 88.294 90.872 88.46 89.416 94.378
300 88.622 87482 88.5 921 94536 87992 90.23 88374 89.186 94.536
400 89.568 88584  89.764 92.486 94.724 87658 89.708 88.102 89.102 94.724
500 90.494 89.736  91.034  92.842 94916 8726 89.212 88.008 88.864 94.916

The accuracy of the RRA-FFA-ADRNN model varies based on the quality of the training and testing
datasets. A well-balanced dataset with diverse attack types and benign samples will likely produce a more
accurate model. At the hidden neuron count 500, the accuracy of the proposed RRA-FFA-ADRNN model
is 95.7% using Dataset 1 and 94.1% using Dataset 2, which is better than the existing models. Thus, our
approach’s accuracy is more extensive compared to baseline techniques.

7 CSI Analysis of Proposed Model

The CSI analysis of the designed LR-DoS§ attack detection model using Dataset 1 is provided in Table 4,
and the analysis using Dataset 2 is provided in Table 5. A high detection rate is essential for the effectiveness
of attack detection as it demonstrates the model’s capability to recognize malicious traffic. At the hidden
neuron count 500, the CSI of the proposed model is progressed with 16.7% than FFCNN, 12.1% than SVM,
14.8% than RNN, and 11.3% than DRNN using Dataset 1. CSI analysis helps in achieving a balance between
bias and variance. Based on Dataset 2, the CSI of the proposed model is 90.3% using Dataset 2, which is
better than traditional algorithms. A model with few hidden neurons exhibits high bias, while a higher
count generates high variance. Hidden neuron count is a critical hyperparameter for selecting the most
effective configuration for the LR-DoS detection system. Thus, CSI analysis proved that the evaluation and
improvement of the detection system with the support of the RRA-FFA-ADRNN model is better than existing
models. As new types of LR-DoS§ attacks emerge, continuous monitoring of CSI helps the RRA-FFA-ADRNN
model to maintain high detection rates.
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Table 4: Comparison analysis of optimization algorithms and techniques using datasets 1 and 2—CSI analysis

Dataset 1
Comparison analysis of optimization Comparison analysis of deep learning
algorithms methods
Hidden GTO- EPC- DPO- FFA- RRA- FFCNN SVM RNN DRNN RRA-
Neuron  FFA- FFA- FFA- FFA- FFA- [19] [20] [24] FFA-
Counts ADRNN ADRNN ADRNN ADRNN ADRNN ADRNN
[31] [32] [33] [30]

100 78.2377 75.6096 76.8974 85.6633 90.7345 80.3989 84.9656 81.0328 81.8734 90.73459
200 79.6738 772234 78.7289 86.3339  90.959 79.9438 84.1626 80.6765 82.0776 90.95909
300 80.983 78.6771 80.6547 86.8143 91.2245 79.5253 83.395 80.5238 82.1488 91.22451
400 82.3995 80.5906 82.7906 874854 91.5785 79.1295 82.598 80.1866 82.2176 91.57854
500 83.8854 82.4192 84.7694 88.0699 91.7817 78.6344 81.8367 79.887 82.4072 91.78177

Dataset 2

100 76.8909 74.2853 75.4498 84.1299 88.9842 79.6786 84.2144 79.7819 81.1345 88.9842
200 78.3514  76.0315 774702 84.6904 89.3546 79.0432 83.2716 79.3071 80.8552 89.35469
300 79.5756 777481 79.3707 85.3589 89.6389 78.5632 82.1988 79.182 80.4815 89.63896
400 81.1185 79.4846 81.4208 86.0183 89.9772 78.0321 81.3449 78.7231 80.3476 89.9772
500 82.6368 813869 83.5456 86.6415 90.3246 774017 80.5256 78.5803 79.9705 90.32467

Table 5: Statistical analysis of the proposed LR-DoS attack detection model

Dataset 1 Dataset 2
GTO- EPC- DPO- FFA- RRA- GTO- EPC- DPO- FFA- RRA-
FFA- FFA- FFA- FFA- FFA- FFA- FFA- FFA- FFA- FFA-
ADRNN ADRNN ADRNN ADRNN ADRNN ADRNN ADRNN ADRNN ADRNN ADRNN
[31] [32] [33] [30] [31] [32] [33] [30]

Best 1.1972 1.2629 1.2788 1.26854 1.1532 1.16806 1.1454 1.2562 1.2280 1.1190
Worst 1.7532 1.5789 1.73081 1.58517 1.6501 1.65642 1.3753 2.0832 1.5008 1.7728
Mean 1.2946 1.2780 1.30259  1.28754 1.1632 1.19062 1.1684 1.2967 1.2677 1.2838
Median 1.3136 1.2629 1.28302  1.26854 1.1532 1.16806 1.1454 1.2562 1.2458 1.3976
std.dev 0.1290 0.0522 0.07549  0.07519 0.0695 0.08368  0.0689 0.1279 0.0859 0.1549

Statistical Analysis of the Proposed LR-DoS Attack Detection Model

The proposed statistical analysis of the LR-DoS attack detection model, which involves varying the
hidden neuron count, focuses on systematically assessing modifications in the number of hidden neurons
among different conventional methods. For each configuration of hidden neurons, it is essential to compute
the performance metrics’ mean, median, variance, and standard deviation. The best value of the proposed
RRA-FFA-ADRNN model is 4.19% better than GTO-FFA-ADRNN, 2.29% than EPC-FFA-ADRNN, 10.9
than DPO-FFA-ADRNN, and 8.8% than FFA-FFA-ADRNN using Dataset 2. This comprehensive statistical
analysis identifies the best method for detecting LR-DoS attacks, ultimately informing the development of
more effective IoT security systems. Table 5 presents numerical values of the statistical analysis among both
Dataset 1 and Dataset 2.
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8 Conclusion

An innovative deep-learning framework was created to recognize LR-DoS attacks in IoT settings. The
framework employed an ADRNN model with a residual autoencoder and sparse attention for efficient feature
extraction with classification. The RRA-FFA algorithm was utilized to fine-tune critical parameters of the
ADRNN, thereby improving the classification accuracy. The findings indicate that this framework effectively
reduces FDR and FPR while maximizing the MCC, highlighting its strong ability to identify LR-DoS attacks
accurately. At the hidden neuron count 100, the designed model accuracy progressed with 6.1% than FFCNN,
2.9% than SVM, 6.09% than RNN, and 5.1% than DRNN using Dataset 2. Thus, the RRA-FFA-ADRNN model
was designed to achieve high detection accuracy, which was crucial for effectively identifying LR-DoS attacks.

Research Limitations and Future Scopes: Despite the promising results demonstrated by the proposed
RRA-FFA-ADRNN model, several areas warrant further investigation to enhance its applicability and
robustness in real-world scenarios. The study’s contribution would be strengthened, and future developments
in LR-DoS detection would be guided by addressing these limitations and investigating potential research
avenues. One of the main drawbacks of the proposed framework is its potential scalability issues when
applied to large, dynamic datasets. It is unclear whether the model can maintain high detection accuracy and
low computing costs on massive data streams as IoT networks continue to expand in size and complexity.
To ensure scalability without compromising performance, future studies could focus on refining the model
design and leveraging distributed computing strategies. Furthermore, the proposed architecture primarily
relies on standard datasets, which may not accurately represent the varied and dynamic nature of actual LR-
DoS attacks. Incorporating real-world traffic patterns and regularly updating the model with the latest attack
signatures can increase robustness and adaptability to new threats. Although the RRA-FFA-ADRNN model
outperforms current methods in terms of accuracy and error rates, the computational requirements of deep
learning models provide a significant obstacle to their implementation on IoT devices with limited resources.
This difficulty may be mitigated by exploring lightweight model architectures or incorporating model
compression strategies, such as pruning or quantization. Additionally, investigating different optimization
algorithms that reduce computational overhead without compromising accuracy might enhance the model’s
suitability for real-time situations. Integrating the suggested framework with edge computing platforms will
enable quicker reaction times and lower latency, while real-time detection remains essential for preventing
major damage from LR-DoS attacks. Furthermore, performance may be improved and the computational
load on centralized cloud servers reduced by modifying the model to operate in a distributed manner across
edge nodes. The RRA-FFA-ADRNN model can be integrated with other security strategies, such as anomaly
detection systems and signature-based approaches, to enhance the system’s overall defense. Meanwhile,
hybrid models that combine deep learning and conventional techniques can address the limitations of
false positives and ensure robust detection in various environments. Because cyberattacks are constantly
evolving, its performance may deteriorate over time if the suggested model is not updated regularly. Adaptive
learning methods that dynamically retrain the model as new attack patterns emerge should be implemented
to preserve the model’s effectiveness in identifying new threats. Rapid adaptability to different datasets
and contexts may also be achieved by incorporating transfer learning approaches without the need for
comprehensive model retraining.

Future research could focus on implementing pipeline parallelism to accelerate data processing, design-
ing efficient data buffering mechanisms to handle continuous inputs without compromising accuracy, and
optimizing a model for real-time deployment by reducing inference latency through model simplification
or lightweight architectures. This approach aims to expand the current work and enhance its practical
applicability. By adjusting the model to operate effectively on edge devices with constrained computational
power, utilizing distributed model training and inference across multiple edge nodes, and distributing the
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computational load between edge and centralized servers, integrating the model with edge computing can
significantly reduce latency and increase responsiveness. Additionally, the model could update dynamically
and adjust to new attack patterns without requiring total retraining by integrating adaptive and self-
learning capabilities, such as online and federated learning, ensuring robustness even in various dynamic
situations. Accuracy can be increased while reducing the chance of overfitting by utilizing a variety of
datasets from different IoT scenarios and investigating multimodal learning with contextual data to enhance
the model’s generalizability. Comprehensive multi-layered protection against LR-DoS assaults could be
achieved by combining the model with additional security strategies, such as anomaly detection and
signature-based systems.

Furthermore, extending the application of the proposed model to blockchain ecosystem security
for malicious attacks detection could offer decentralized and tamper-resistant protection, especially in
smart contract environments and distributed ledgers. Leveraging blockchain’s inherent transparency and
immutability and real-time attack detection mechanisms could enhance trust and integrity within decentral-
ized applications. Additionally, if the model’s performance for devices with limited resources were improved
by techniques like knowledge distillation, quantization, and model pruning, it would be more appropriate
for deployment in actual IoT scenarios.
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