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ABSTRACT: Biometric template protection is essential for finger-based authentication systems, as template tampering
and adversarial attacks threaten the security. This paper proposes a DCT-based fragile watermarking scheme incor-
porating AI-based tamper detection to improve the integrity and robustness of finger authentication. The system was
tested against NIST SD4 and Anguli fingerprint datasets, wherein 10,000 watermarked fingerprints were employed
for training. The designed approach recorded a tamper detection rate of 98.3%, performing 3–6% better than current
DCT, SVD, and DWT-based watermarking approaches. The false positive rate (≤1.2%) and false negative rate (≤1.5%)
were much lower compared to previous research, which maintained high reliability for template change detection. The
system showed real-time performance, averaging 12–18 ms processing time per template, and is thus suitable for real-
world biometric authentication scenarios. Quality analysis of fingerprints indicated that NFIQ scores were enhanced
from 2.07 to 1.81, reflecting improved minutiae clarity and ridge structure preservation. The approach also exhibited
strong resistance to compression and noise distortions, with the improvements in PSNR being 2 dB (JPEG compression
Q = 80) and the SSIM values rising by 3%–5% under noise attacks. Comparative assessment demonstrated that training
with NIST SD4 data greatly improved the ridge continuity and quality of fingerprints, resulting in better match scores
(260–295) when tested against Bozorth3. Smaller batch sizes (batch = 2) also resulted in improved ridge clarity,
whereas larger batch sizes (batch = 8) resulted in distortions. The DCNN-based tamper detection model supported
real-time classification, which greatly minimized template exposure to adversarial attacks and synthetic fingerprint
forgeries. Results demonstrate that fragile watermarking with AI indeed greatly enhances fingerprint security, providing
privacy-preserving biometric authentication with high robustness, accuracy, and computational efficiency.

KEYWORDS: Biometric template security; fragile watermarking; deep learning; tamper detection; discrete cosine
transform (DCT); fingerprint authentication; NFIQ score optimization; AI-driven watermarking; structural similarity
index (SSIM)

1 Introduction
Biometric authentication has found itself as an effective security protocol to provide access control

in physical and digital infrastructure. In comparison to password authentication, biometric authentication
is dependent on physiological and behavioral features in the form of fingerprints, faces, iris, and voice
and uses them as identifiers as in [1]. Of these, multimodal biometric authentication gained popularity
because multimodal biometrics can enhance identification accuracy by offering multiple biometric fea-
tures. Nevertheless, though its security has been increased, biometric template tampering still poses a
substantial threat as cited in [2]. Even though DCT-based fragile watermarking is a conventional method,
the introduced framework presents a new application by combining it tightly with a deep convolutional
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neural network (DCNN) for smart tamper verification in multimodal biometric systems. In contrast to
previous studies focusing on watermark embedding or independent verification, this method simultaneously
optimizes watermark robustness, real-time detection, and biometric recognition accuracy. It also presents a
dynamic feature embedding approach and watermark correlation scoring to mitigate false positives under
compression and adversarial noise—abilities not jointly addressed in current DCT, SVD, or DWT-based
systems. Nevertheless, one of the main issues with current fragile watermarking methods is their vulnerability
to compression and transmission-induced distortions, resulting in false tamper detection or inability to
detect unauthorized changes as stated in [3]. Here, we outline a new framework for tamper detection
using the combination of fragile watermarking along with artificial intelligence (AI) driven verification
of multimodal biometric authentication. The concept hinges on inserting obtained iris feature descriptors
as a fragile watermark into DCT coefficients in a compressed face template biometric such that an equal
bandwidth dedicated to face template transmission is consumed by both the biometrics described in [4].
On reception, a deep learning-based deep convolutional neural network (DCNN) classifier is utilized to
identify any tampering attempt by examining extracted watermark patterns. To assess the performance
of the proposed method, we performed extensive experiments on the IIT Delhi Iris and Indian Faces
Datasets. The results show that our method achieves 100% tamper detection and also sustains very high
biometric recognition accuracy, with a mere 0.05% drop in iris recognition performance as discussed in [5].
Indicates the various uses of watermarking in digital forensics, military, broadcast monitoring, and privacy
protection. Watermarking finds extensive applications in chip and hardware security, securing e-Governance
documents, and IoT device authentication. Although the framework hereunder is being proposed for use in
multimodal biometric systems, experimental testing at present will only consider the fingerprint templates
given the composition of the NIST SD4 and Anguli databases. The expression “multimodal” speaks to the
adaptability of system design and not to the actual composition of present datasets. As future research
further develops this work, cross-modal biometric input in the forms of iris and facial templates will
be added. In addition, to simulate more realistic “trolling” scenarios, the Anguli dataset was augmented
with template substitution “trolls” and GAN-generated synthetic fingerprints to simulate more advanced
attacks. More recent progresses in multimodal biometric template security—e.g., the adversarial-aware CNN
model and hybrid watermarking solutions surveyed by [5]—have investigated strong AI-based watermarking
techniques. Nonetheless, these models tend to prioritize content authentication or localization at additional
computational costs. By contrast, this designed framework prioritizes real-time tamper detection with≤18 ms
latency, with 98.3% accuracy, and offering multimodal template fusion capabilities. In addition, in contrast
to approach being designed for image security in general, the present work is directed towards biometric
template integrity in particular through fragile watermarking, providing early indication of slight tampering
that robust techniques might miss.

1.1 Aim of the Study
The main objective of this work is to design an efficient, AI-based fragile watermarking scheme for

multimodal biometric verification to provide tamper detection, security, and good recognition accuracy.
This work centers on incorporating iris feature descriptors as a fragile watermark into the Discrete Cosine
Transform (DCT) coefficients of a compressed facial biometric template to achieve template integrity while
reducing bandwidth overhead. In contrast to traditional methods with great sensitivity towards compression
artifacts and adversarial transformations, the introduced scheme incorporates intelligent tamper verification
based on deep convolutional neural networks (DCNNs). The study further intends to find an equilibrium
point between security and computational complexity in such a manner that the system can be both scalable
and applicable in real-time authentication. Through large-scale experimentation on test biometric samples
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(IIT Delhi Iris and Indian Faces data sets), the present work endeavors to validate the effectiveness, efficiency,
and stability of the put-forward approach towards real-world adoption.
• AI-Enhanced Fragile Watermarking Mechanism: proposes an intelligent fragile watermarking mech-

anism inserting iris features in compressed facial biometric templates towards safe authentication as well
as identification of tamper.

• Tamper Detection through Compression-Resilient Watermarking: introduces a JPEG-compatible
watermarking method that reduces false detections and enhances transmission distortion resistance in
practical scenarios.

• Deep Learning-Based Integrity Verification: suggests a DCNN-classifier for verifying watermark
integrity with precise detection of template tampering and adversarial attacks.

• Optimized for Multimodal Biometrics: facilitates multimodal biometric security with assured fusion
of iris and face features, maintaining authentication accuracy in addition to tamper resistance.

• Low Computational Overhead for Real-Time Applications: ensures that the proposed watermarking
and verification system possesses low computational overhead, which is viable for real-time biomet-
ric authentication.

• Improved Security with Cancelable Templates: offers a non-reversible cancelable transformation,
ensuring that even in the event of compromised templates, they cannot be used for unauthorized
authentication.
This work addresses existing loopholes in fragile watermarking, Artificial Intelligence-based verifica-

tion, and multimodal biometric security and offers a scalable and pragmatic solution for next-generation
biometric authentication systems.

1.2 Problem Statement
With the increasing reliance on biometric authentication for secure access control, the vulnerability of

biometric templates to tampering and adversarial attacks has become a major concern. Multimodal biometric
systems, which integrate multiple biometric traits such as face and iris, improve recognition accuracy and
robustness but remain susceptible to template modifications during transmission and storage as mentioned
in [6]. Conventional encryption and strong watermarking techniques address the protection of templates
against illicit extraction but leave the authentication procedure vulnerable to the subtle tampering that can
threaten its integrity. Current fragile watermarking schemes have the ability to detect tamper but are severely
sensitive to noise and compression artifacts, resulting in false alarms or inability to perceive subtle changes.
Additionally, existing schemes lack verification through AI, rendering them less resilient to actual-world
attacks. Hence, there exists a pressing need for an efficient, AI-based fragile watermarking scheme that
preserves tamper detection without degrading biometric recognition performance.
• Vulnerability to Template Tampering: existing biometric authentication systems lack good mecha-

nisms to detect and counter template tampering and are thus vulnerable to adversarial attacks.
• Compression-Induced Distortions: current fragile watermarking techniques are unsuccessful against

JPEG compression and transmission distortion, resulting in false alarms or failure to detect tamper-
ing events.

• Absence of AI-Based Verification: the current watermarking techniques lack deep learning-based
verification, which makes them less responsive to changing patterns of attacks.

• Security vs. Recognition Accuracy Trade-Off: most current solutions enhance security by compromis-
ing recognition accuracy, rendering them unsuitable for practical biometric systems.

• High Computational Overhead: traditional methods consume high computational power, which
makes them inappropriate for real-time biometric verification.
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• Limited Robustness in Multimodal Systems: existing fragile watermarking methods are not specifically
designed for multimodal biometric systems, and hence there are inefficiencies in feature fusion and
template protection.

• Absence of Adaptive and Cancelable Templates: there are no methods that support both tamper
detection and non-reversible cancelable biometrics, providing greater security with revocability.

This work attempts to fill these gaps by presenting an AI-driven fragile watermarking scheme that
supports strong tamper detection, compression artifact resilience, and high biometric recognition accuracy,
making it appropriate for practical applications.

2 Literature Review
Fragile watermarking has emerged as a critical method for ensuring integrity in biometric authen-

tication, particularly for tamper-evident applications [7]. Unlike robust watermarking, which emphasizes
resilience to alterations, fragile watermarking is designed to detect even the slightest unauthorized changes,
making it vital for template verification [8]. Recent fragile watermarking approaches, such as histogram
shifting, block-wise authentication, and transform-domain embedding (e.g., DCT, DWT, and SVD), have
shown promise in biometric scenarios but still struggle with compression artifacts and lack adaptability.
For instance, histogram-based schemes suffer from limited localization precision, while LSB-based fragile
watermarks are easily destroyed under JPEG compression or noise interference [9]. Moreover, few studies
have integrated AI-driven analysis into fragile watermarking workflows, which hinders their applicability
in real-time systems. Therefore, this paper focuses on an AI-integrated fragile watermarking framework,
emphasizing tamper detection, watermark integrity, and resilience to practical distortions, advancing beyond
conventional techniques in both depth and application scope as given in [10].

2.1 Security Vulnerabilities in Multimodal Biometric Systems
Multimodal biometric authentication has been used extensively to enhance recognition accuracy,

robustness, and security through the fusion of multiple biometric features, for example, face and iris, finger-
print and palm vein, or voice and signature. Notwithstanding these benefits, biometric template security is
still a key challenge since unauthorized manipulation or attacks on biometric information can result in false
acceptances, identity spoofing, or denial-of-service (DoS) attacks as discussed in [11]. The biometric template
transmission and storage present potential attack points in which attackers can manipulate, substitute, or
spoof biometric information to acquire unauthorized access. In contrast to passwords, biometric credentials
are irrevocable, which makes them extremely susceptible to data compromise. As such, protecting biometric
templates against modifications, adversary manipulations, and template reconstruction attacks is vital within
contemporary authentication systems as stipulated in [12]. Later research using GANs (e.g., fingerprint
synthesis and adversarial tamper detection) and transformer models (e.g., attention-based biometric fusion)
has reported promising performance but often come with significant computational cost and are not real-
time friendly. By contrast, the new method, while non-generative, strikes a usable tradeoff between detection
performance (98.3%) and low latency (12–18 ms per template), which would be more amenable to real-
time or embedded biometric applications. A comparative overview of these trade-offs has been provided to
position our approach within the current state of research as give in [13]. Moreover, cross-matching attacks
are a serious threat whereby a compromised template from one biometric modality can be employed in
creating a synthetic identity in multi-systems as discussed in [14]. Cancelable biometrics were proposed
as a countermeasure, but most known techniques trade-off recognition accuracy with increased security,
rendering them useless for practical uses as stated in [15].
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• Template Tampering and Modification: attackers modify stored or transmitted biometric templates to
bypass authentication or trigger false rejections.

• Compression and Transmission Vulnerabilities: fragile watermarking techniques are highly sensitive
to JPEG compression, noise distortions, and transmission artifacts, reducing their effectiveness in real-
world applications.

• Template Inversion Attacks: machine learning-based reconstruction techniques allow adversaries to
recreate biometric templates from stored feature sets, posing a significant security risk.

• Cross-Matching and Identity Spoofing: compromised biometric data from one system can be used to
generate synthetic identities across multiple authentication frameworks.

• Adversarial Machine Learning Attacks: deepfake-based synthetic biometric data generation tech-
niques can deceive traditional authentication models, necessitating AI-driven verification mechanisms.

• Feature Fusion Manipulation: in multimodal systems, compromising one biometric trait (e.g., face)
can affect the entire authentication process, making tamper detection crucial.

Current security measures like encryption, hashing, feature transformation, and AI-based detection
offer limited protection but cannot identify real-time tampering or inhibit synthetic biometric fraud
as stated in [16]. The limitations of the existing approaches stress the requirement of a solid AI-based
fragile watermarking strategy for guaranteeing the detection of tampering as well as biometric recognition
performance [17,18].

2.2 Fragile Watermarking Techniques for Biometric Template Integrity
Fragile watermarking is a template protection technique that can identify unauthorized tampering in

biometric data by inserting fragile, tamper-evident information into biometric templates. In contrast to
robust watermarking, which guarantees watermark resilience against transformations, fragile watermarking
is deliberately made sensitive to even minor changes as stated in [19]. Any change in the watermarked
biometric template causes watermark degradation or loss, which may signal tampering. This renders
fragile watermarking a crucial tool for verifying biometric template integrity so that biometric data is
neither modified nor tampered with while stored and transmitted. The majority of conventional fragile
watermarking techniques rely on spatial-domain embedding, where watermark bits are inserted into Least
Significant Bits (LSB) of pixel values in biometric images as stated in [20]. But spatial-based watermarking
is very sensitive to lossy compression (JPEG, DCT transformations) and noise and hence not appropriate
for practical biometric security applications. To enhance robustness, frequency-domain watermarking
methods have been proposed, where the watermark is inserted into transform coefficients (e.g., Discrete
Cosine Transform—DCT, Discrete Wavelet Transform—DWT, Singular Value Decomposition—SVD) as
discussed in [21]. These methods enhance robustness to compression but remain non-adaptive to various
biometric modalities and are usually incapable of distinguishing between natural distortions and malicious
tampering [22]. A major drawback of current fragile watermarking techniques is their susceptibility to
ordinary biometric data operations like image compression, noise, rotation, and scaling. This would cause
false-positive tamper detection where a genuine yet slightly modified template is reported as tampered as
discussed in [23]. Also, traditional fragile watermarking does not incorporate smart verification and hence
are susceptible to adversarial attacks where attackers manipulate the biometric template while ensuring
watermark authenticity. To overcome these challenges, recent methods combine artificial intelligence (AI)
and deep learning-based verification models, where neural networks scan extracted watermark patterns to
distinguish between authentic modifications and malicious tampering as discussed in [24].

Table 1 emphasizes the weaknesses and strengths of different fragile watermarking algorithms applied
to biometric template security. LSB watermarking is efficient computationally but very susceptible to
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compression artifacts and attacks. DWT- and DCT-based methods are more secure with increased resistance
and are hence optimally usable in biometrics. SVD watermarking offers maximum security and robustness
but with a higher computational cost. The limitations indicate the need for an optimal solution meeting
security, robustness, and efficiency for the protection of biometric templates as presented in [25].

Table 1: Comparative analysis of fragile watermarking techniques based on domain type, tamper detection capability,
compression robustness, false positive rate, computation time, and security level

Watermarking technique Domain Tamper
detection

Compression
robustness

False positive
rate

Computation
time

Security
level

LSB-based watermarking [26] Spatial Moderate Low High Very low Low
DWT-based watermarking [27] Frequency High Moderate Moderate Moderate Medium
DCT-based watermarking [28] Frequency High High Low Moderate High
SVD-based watermarking [29] Frequency Very high Very high Very low High Very high

3 Methodology
The proposed research develops an AI-enabled fragile watermarking framework for the authentication

of the integrity of biometric templates using the combination of Discrete Cosine Transform (DCT)-based
watermarking and Deep Convolutional Neural Networks (DCNNs). The method ensures tamper detection,
compression stability, and high recognition accuracy, making it suitable for secure multimodal biometric
authentication. The framework consists of four primary stages: watermark embedding, watermark extrac-
tion, AI-enabled tamper detection, and computational optimization. Watermark embedding is prioritized in
the initial phase, where an iris biometric feature descriptor is extracted and embedded within the DCT coeffi-
cients of a compressed facial biometric template. The iris features are first transformed into a binary sequence
and then embedded within low-frequency DCT terms of the face template for robustness and impercepti-
bility. Secret key-based modulation is employed during the embedding process for preventing unauthorized
modification or extraction of the watermark. Unlike traditional fragile watermarking approaches that modify
spatial domain features, DCT-based embedding enhances the robustness of the framework with respect
to lossy compression and transmission distortions. The second phase involves watermark extraction and
compression robustness, aimed at preserving the integrity of biometric templates in JPEG compression
and noise distortion. Upon receipt, the face template undergoes inverse-DCT transformation, where the
embedded watermark is detected and rebuilt. An error correction algorithm is utilized to compensate for
any minute distortions caused by compression such that genuine biometric variations are not triggering false
tampering detection as shown in Fig. 1.

The extracted watermark is then checked for structural integrity with any illicit alterations to the
biometric template being identified. The third phase introduces AI-based tamper detection utilizing Deep
Convolutional Neural Networks (DCNNs). A DCNN classifier is learned to examine watermark pattern
extractions and determine if they are original or tampered templates. During training, the model is exposed
to various forms of tampering, including pixel manipulations, adversarial noise, and template substitution
attacks, making it more effective in detecting sophisticated manipulations.
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Figure 1: AI-Driven fragile watermarking and tamper detection process, illustrating the end-to-end biometric
authentication pipeline, from dataset acquisition to real-time watermark verification and decision-making
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Since fragile watermarking and AI verification incur computational cost, the fourth step is concerned
with performance enhancement and real-time efficiency. The embedding process based on DCT is optimized
to minimize its impact on biometric recognition performance. Parallel processing methods and GPU
acceleration are used to increase DCNN inference speed to facilitate low-latency watermark verification. The
system based on DCNN showed consistent performance for detection across these situations, retaining a
tamper detection accuracy of 96.7–98.3% even when faced with targeted attacks.

3.1 Experimental Setup and Dataset Selection
The suggested AI-based fragile watermarking framework is tested based on fingerprint datasets to

validate its use in biometric template integrity verification. The NIST SD4 dataset and Anguli synthetic finger-
print dataset are used to compare the tamper detection ability, compression robustness, and computational
cost of the DCT-based fragile watermarking and AI-based verification method.

• NIST SD4 (Fingerprint Dataset): 2000 publicly available inked fingerprints with varied ridge pat-
terns. High-quality images only (NFIQ2 ≥ 70) are chosen to promote precise feature extraction and
watermarking.

• Anguli (Synthetic Fingerprint Dataset): controlled noise and variance synthetic fingerprints produced
by AI used for adversarial tampering simulations like template substitution, lossy compression, and
simulated distortions.

Both sets of data undergo grayscale conversion, contrast adjustment, feature extraction, and DCT
transformation for watermark embedding and verification of authenticity. The fragile watermarking scheme
is implemented in Python and run on a high-performance computing platform to ensure effective watermark
embedding, extraction, and detection of tampering. The hardware setup includes an Intel i9-12900K
processor, NVIDIA RTX 3090 GPU, and 64 GB RAM, tailored for parallel processing and AI-powered ver-
ification. The software stack comprises TensorFlow for deep learning-based tampering detection, OpenCV
for image pre-processing and DCT-based watermarking, SciPy for mathematical computation, and NBIS
for fingerprint feature extraction. The accuracy of tamper detection is calculated by estimating the degree to
which the AI-based classifier correctly classifies tampered from untampered templates.

• Tamper Detection Accuracy → Computed as the correct classification of tampered and untampered
templates.

• Compression Resilience→Measures JPEG strength (100, 75, 50, 30, 10 quality factors).
• False Positive Rate→ Finds false tamper detections.
• Computational Efficiency→ Checks watermark embedding, extraction, and AI verification time.

Table 2 is a structured overview of the experimental setup and dataset selection used for evaluating
the proposed fragile watermarking scheme. The NIST SD4 and Anguli fingerprint datasets are used for
imparting real-world applicability and adversarial security. The evaluation considers tamper detection
accuracy, compression robustness, false positive rate, and computational complexity, rendering the proposed
scheme scalable, secure, and usable for real-time biometric verification as shown in Fig. 2.
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Table 2: Experimental setup and dataset selection, detailing the datasets, preprocessing techniques, watermarking
method, tamper detection approach, hardware/software configuration, and evaluation metrics for biometric template
integrity verification

Category Specification

Datasets used NIST SD4 (2000 inked fingerprints, NFIQ2 ≥ 70)
Anguli (Synthetic fingerprints with noise variation)

Preprocessing methods Grayscale conversion, contrast enhancement
Ridge feature extraction, DCT transformation

Watermarking
approach

DCT-based fragile watermark embedding

Tamper detection AI-powered deep convolutional neural networks (DCNNs)
Compression

simulation
JPEG quality factors (100, 75, 50, 30, 10)

Hardware setup

Processor: Intel i9-12900K (16 cores, 5.2 GHz)
GPU: NVIDIA RTX 3090 (24 GB VRAM)

RAM: 64 GB DDR5
Storage: 2 TB NVMe SSD

Software & libraries

TensorFlow (AI-based tamper detection)
OpenCV (Feature extraction, image processing)

SciPy (Mathematical computations, DCT operations)
NBIS (NIST fingerprint feature extraction)

Evaluation metrics

Tamper Detection Accuracy (%): Performance against attacks
Compression Resilience: JPEG robustness under varying quality levels

False Positive Rate (%): Incorrectly flagged authentic templates
Computational Efficiency: processing time for embedding, extraction, AI

verification

Figure 2: Sample fingerprint images from the NIST SD4 and Anguli datasets, demonstrating variations in noise,
background interference, and texture distortions used for evaluating watermark robustness and tamper detection
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To support reproducibility, the complete implementation—including model architecture, training
scripts, and configuration files—will be made publicly available on a GitHub repository following the
publication of this paper. The NIST SD4 and Anguli datasets used in this study are publicly accessible, and all
preprocessing and hyperparameter settings have been explicitly detailed to enable replication. The suggested
design utilizes low-frequency DCT coefficients in a strategic way for watermark embedding to achieve JPEG
compression robustness, as JPEG compression mainly targets high-frequency components. The selection
strikes a balance between imperceptibility and resilience. DCT supports efficient transformation with
minimal computational load. The fingerprint ridge feature-based binary watermark guarantees uniqueness
and security. DCNN is selected because it can learn intricate spatial patterns, which improves tamper
detection accuracy under adversarial or noise-induced transformations. The architecture facilitates real-time
authentication by minimizing verification latency and enables scalability across biometric modalities.

3.2 Watermark Embedding Using DCT-Based Fragile Watermarking
The watermark embedding relies on Discrete Cosine Transform (DCT)-fragile watermarking to ensure

biometric template integrity with recognition accuracy. In the approach, fingerprint features are embedded in
the frequency domain of the fingerprint image to enable secure and invisible watermark embedding without
loss of the original biometric information as given in Table 3.

Table 3: Quantitative analysis of watermark embedding and tamper detection, detailing key parameters, numerical
impacts, and expected outputs for DCT-based fragile watermarking in fingerprint authentication.

Process Key parameters Impact Output
Preprocessing &

feature extraction
Image size, frequency
coefficients, scaling

factors

Converts image from spatial domain to frequency
domain, retaining 95%+ feature energy in

low-frequency components

Extracted fingerprint
features ready for

embedding
Watermark

Generation &
embedding

Binary watermark size,
embedding strength

factor

Embeds watermark in low-frequency DCT
coefficients, ensuring imperceptibility with <2%

PSNR degradation

Watermarked
fingerprint template

Watermark
reconstruction

Inverse DCT, modified
coefficients

Reconstructs 99%+ accurate fingerprint template,
preserving biometric integrity

Watermarked
fingerprint image

Tamper detection &
security check

Extracted watermark,
correlation threshold

If correlation ≥0.98, fingerprint is authentic; If
correlation <0.90, template is tampered

Tamper detection and
authentication

decision

3.2.1 Preprocessing and Feature Extraction
Preprocessing of the fingerprint images is performed before watermark embedding to improve their

clarity and obtain useful features for watermark creation. The preprocessing techniques are:

• Conversion to grayscale for simplifying the image representation.
• Contrast stretching to enhance ridge structure visibility.
• Extraction of ridge features by Gabor filters to get high-frequency biometric patterns.
• Transformation using DCT to transform the spatial domain representation of the fingerprint into

frequency coefficients to facilitate secure watermark embedding with minimal perceptual effect.
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Fingerprint images are initially transformed into their frequency domain representation by Discrete
Cosine Transform (DCT):

DCT(F) = C(u)C(v)
M−1
∑
x=0

N−1
∑
y=0

f (x , y) cos [(2x + 1)uπ
2M

] cos [(2y + 1)uπ
2N

] (1)

where,

• f (x, y) is the grayscale fingerprint image,
• M and N are the image dimensions,
• C (u), C (v) are scaling factors ensuring energy compaction,
• DCT (F) represents the transformed frequency coefficients used for embedding.

3.2.2 Watermark Generation and Embedding
The watermark consists of a binary fingerprint feature descriptor, extracted from ridge patterns or

minutiae points of the fingerprint template. The embedding process follows these steps:

• The fingerprint image is transformed into its DCT frequency components.
• A low-frequency block of the DCT coefficients is selected for embedding to balance imperceptibility

and robustness.
• An inverse DCT (IDCT) transformation is applied to reconstruct the watermarked fingerprint template,

making the embedded watermark visually undetectable.

The watermark W is a binary fingerprint descriptor extracted from ridge features and embedded into
the low-frequency DCT coefficients using a key-based modulation approach:

DCT ′(F) = DCT(F) + α ⋅W (2)

where,

• DCT (F) represents the original frequency domain coefficients,
• W is the binary watermark (feature descriptor),
• α is a scaling factor controlling the embedding strength,
• DCT′ (F) represents the watermarked fingerprint template in the frequency domain.

The inverse DCT (IDCT) is then applied to reconstruct the watermarked fingerprint:

F′ = IDCT(DCT ′(F)) (3)

3.2.3 Security and Robustness Considerations
The DCT-based fragile watermarking approach ensures that even the slightest tampering with the

fingerprint template results in noticeable distortions in the extracted watermark. The major benefits of this
embedding method are:

• Imperceptibility: low-frequency coefficients embedding prevents noticeable distortions.
• Compression Resilience: guarantees strength against JPEG compression artifacts.
• Security: the watermark embedded is specific to each fingerprint and can’t be extracted without the secret

key employed during embedding.

Through the use of DCT-based fragile watermarking, this method guarantees secure and verifiable
biometric templates for effective tamper detection and authentication validation. For tamper detection and
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security assurance, the watermark W′ extracted is cross-checked against the original embedded watermark
W using a correlation-based integrity test:

δ = ∑(W ⋅W
′)

∑(W2) (4)

where,

• δ represents the correlation coefficient,
• A value of δ = 1 indicates no tampering,
• If δ < τ (threshold), it signifies tampering or compression distortions.

3.3 AI-Driven Tamper Detection Using DCNN
The tamper detection system based on AI uses Deep Convolutional Neural Networks (DCNNs) to check

watermarked fingerprint templates for unauthorized changes. The mechanism offers real-time accurate and
automated watermark verification to reduce the threat of tampering of templates, adversarial attacks, and
synthetic fingerprint spoofing. The DCNN model is trained to differentiate between authentic and tampered
fingerprint templates by learning deep spatial patterns from the watermark extraction as shown in Fig. 3.

Figure 3: Deep learning-based tamper detection architecture, illustrating feature extraction, transformation, and
classification of fingerprint templates to detect tampering

3.3.1 Biometric Feature Extraction and Input Processing
The input to the DCNN model consists of watermarked fingerprint templates, which undergo prepro-

cessing and feature extraction before being analyzed for tampering. The process includes:

• Extraction of the embedded watermark from the DCT-transformed fingerprint template.
• Conversion of extracted watermark data into a structured feature map for DCNN processing.
• Normalization of input data to ensure consistency and prevent bias in classification.
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The extracted watermark features serve as a unique identifier, allowing the model to compare them
against expected patterns and identify anomalies caused by tampering.

Table 4 provides the quantitative features of fingerprint tamper detection feature extraction, with
emphasis on image size, filter dimensions, and computation time. These are the parameters that guarantee
efficient and accurate representation of the ridge structure towards increased biometric security and
reliability of tamper detection. The NIST Fingerprint Image Quality (NFIQ) score is calculated using ridge
clarity, local contrast, and minutiae reliability so that more quality fingerprints have lower NFIQ scores (best
quality). The clarity of the fingerprint ridges is measured in terms of the Local Orientation Certainty Level
(OCL), which calculates the coherence of the ridge flow:

OCL = 1
N

N
∑
i=1
[1 − σθ i

π
] (5)

where,

• N = Number of local blocks in the fingerprint image.
• σθ i = Standard deviation of ridge orientation in the ith block.
• Higher OCL values indicate clear and well-defined ridge structures.

Table 4: Numerical analysis of feature extraction and input processing, detailing key parameters influencing fingerprint
template preprocessing and feature representation

Parameter Value Significance in processing
Input image
dimensions

256 × 256 pixels Ensures uniform processing and compatibility with the deep
learning model

Feature
extraction layers

5–7 Layers Captures hierarchical patterns in fingerprint ridge structures

Filter size 3 × 3 or 7 × 7 Detects fine details in the fingerprint texture
Stride value 1–2 Balances feature resolution and computational efficiency
Feature map

depth
64–512 Represents different levels of extracted fingerprint features

The contrast level of fingerprint regions is measured using Normalized Blockwise Variance (NBV):

NBV = 1
N

N
∑
i=1
[ σi

μi
] (6)

where,

• σi and μi are the standard deviation and mean intensity of the ith fingerprint block.
• Higher contrast values improve minutiae detection, leading to better NFIQ scores.

The overall NFIQ score integrates ridge clarity, contrast, and minutiae reliability:

NFIQ = w1 ⋅OCL +w2 ⋅NBV +w3 ⋅MRS
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where,

• MRS =Minutiae Reliability Score (based on detected ridge endpoints and bifurcations).
• w1 , w2, w3 =Weighting factors determined through empirical calibration.
• Lower NFIQ values indicate higher-quality fingerprints, ideal for biometric authentication.

3.3.2 Deep Learning-Based Tamper Classification
The DCNN architecture consists of multiple convolutional layers that progressively learn hierarchical

watermark patterns. The model includes:

• Convolutional Layers for feature extraction, capturing variations in the embedded watermark structure.
• Residual Learning (ResNet blocks) to enhance robustness against distortions.
• Activation Functions (ReLU, LeakyReLU) to introduce non-linearity for better pattern recognition.
• Fully Connected Layers for final classification, predicting whether the template is authentic or tampered.

The Structural Similarity Index Metric (SSIM) is used in Deep Learning-Based Tamper Classification to
measure the similarity between the original and watermarked fingerprint templates, ensuring that tampering
distortions are accurately detected. The SSIM equation is given as:

SSIM (x , y) =
(2μx μy + C1)(2σx y + C2)
(μ2

x + μ2
y + C1)(σ 2

x + σ 2
y + C2)

(7)

where,

• x and y are the original and tampered fingerprint templates.
• μx , μy are the mean intensities of images x and y.
• σ 2

x , σ 2
y are the variance values of images x and y.

• σx y is the covariance between the two images
• C1 and C2 are small constants to stabilize division.

SSIM scores range from −1 to 1, with 1 representing ideal similarity (no tampering) and scores close to
0 or negative signifying distortions or tampering.

Table 5 shows the deep learning architecture for tamper detection in fingerprint watermarking. The
model uses convolutional layers to extract features, ResNet blocks for resilient learning, and deconvolutional
layers to reconstruct.

Table 5: Structure of AI-based tamper detection model, listing the convolutional and deconvolutional layers for feature
extraction and classification

Block Layers Kernels Size Stride Padding
Conv1 Convolutional Layer + Batch

Normalization + ReLU
64 7 1 3

Conv2 Convolutional Layer + Batch
Normalization + ReLU

128 3 2 1

Conv3 Convolutional Layer + Batch
Normalization + ReLU

256 3 2 1

ResNet
Block

Residual Block with Convolutional
Layers + Batch Normalization + ReLU

256 3 2 1

(Continued)
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Table 5 (continued)

Block Layers Kernels Size Stride Padding
Deconv1 Deconvolutional Layer + Batch

Normalization + ReLU
128 3 2 1

Deconv2 Deconvolutional Layer + Batch
Normalization + ReLU

64 3 2 1

Conv4 Convolutional Layer + Tanh Activation 1 7 1 3
Conv5 Convolutional Layer + Leaky ReLU 64 4 2 1
Conv6 Convolutional Layer + Batch

Normalization + Leaky ReLU
128 4 2 1

Conv7 Convolutional Layer + Batch
Normalization + Leaky ReLU

256 4 2 1

Conv8 Convolutional Layer + Batch
Normalization + Leaky ReLU

512 4 1 1

Conv9 Convolutional Layer 1 4 1 1

3.3.3 Real-Time Tamper Verification
Upon deployment, the trained DCNN model processes input watermarked fingerprint templates and

performs real-time verification. It should be noted that the DCNN in the new framework is employed solely
for tamper classification, but not for reconstructing or improving fingerprint images. The noticed NFIQ score
improvement—from 2.07 to 1.81—is due to the low-distortion DCT-based watermark embedding, which
retains ridge flow and clarity of minutiae during template creation. By resisting high-frequency interference
and reducing perceptual artifacts, the watermarking process automatically sustains fingerprint quality.

Table 6 outlines the key performance measures of the real-time tamper verification system with a
focus on processing efficiency and accuracy. The system facilitates effective watermark extraction (5–8 ms)
and total verification (12–18 ms per template) and low false positives (≤1.2%), which is effective for secure
biometric verification.

Table 6: Performance measures for real-time tamper verification, with important parameters influencing processing
speed, feature extraction, and tamper detection accuracy

Parameter Value Impact on verification
Input image size 256 × 256 pixels Ensures uniform fingerprint processing

Processing time per template 12–18 ms Enables real-time authentication
Feature extraction time 5–8 ms Efficient extraction of watermark data
False positive rate (%) ≤1.2% Reduces incorrect tamper flagging

Threshold (τ) 0.90 Correlation score for tamper decision

Fig. 4 depicts a Curvelet-based DCT fragile watermarking algorithm for recovery from tampered
fingerprint images and recovery. The tempering host fingerprint image is subjected to frequency transforms
like Curvelet decomposition, DCT process, and mid-band frequency coefficient selection. Embedding is
achieved using noise sequence and rules of watermarks to realize secure embedding. Inversion-based recov-
ery is realized through recovery of the watermarked fingerprint image from its integrity-compromised state.
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Figure 4: Frequency domain watermark embedding and recovery process, showing the steps of embedding and
extracting fragile watermarks for biometric template integrity verification

3.4 Training and Testing the DCNN Model
The Deep Convolutional Neural Network (DCNN) for tamper detection in fingerprint watermarking

is trained and tested employing a supervised learning method. The model is created to distinguish between
genuine and tampered fingerprint templates with high accuracy while ensuring real-time performance. The
NIST SD4 dataset contains 2000 inked fingerprint images collected from 500 individuals, featuring multiple
impressions per finger and a wide range of ridge patterns and qualities as shown in Fig. 5.

It is widely used in forensic research and NIST evaluations, making it suitable for testing under real-
world biometric conditions. The Anguli fingerprint dataset consists of synthetically generated fingerprints
with tunable parameters such as Gaussian noise, JPEG compression (Q = 10–100), and geometric distortions,
which simulate adversarial tampering and sensor degradation. These datasets collectively enable compre-
hensive testing of tamper detection, quality resilience, and real-time applicability in both authentic and
attack-driven scenarios.

3.4.1 Training Phase
The training set includes NIST SD4 and Anguli synthetic fingerprint datasets, which are 10,000

watermarked fingerprint images, 50% genuine and 50% forged templates. Simulations of tampering include
JPEG compression (quality factors: 100, 75, 50, 30, 10), synthetic distortions, noise injection, and pixel
changes as given in Table 7.

The DCNN model is trained on batch sizes of 32, and the Adam optimizer is used to minimize cross-
entropy loss with a learning rate of 0.0001. Data augmentation processes of random cropping, rotation
(+/−10○), and adding Gaussian noise are used for better generalization and robustness. The model is trained
for 50 epochs for convergence purposes, preventing overfitting using early stopping (patience = 5 epochs).
The DCNN model was trained on 10,000 fingerprint templates (50% tampered, 50% legitimate) for 50 epochs
with the Adam optimizer and learning rate of 0.0001 and batch size of 32. Early stopping (patience = 5) and
data augmentation (random cropping, ±10○ rotation, Gaussian noise σ = 0.01–0.03) were utilized for better
generalization. The model had 9 ResNet block convolutional layers with ReLU/LeakyReLU activations. Input
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images were down-scaled to 256 × 256 pixels, and training was carried out using TensorFlow 2.10 on RTX
3090 GPU with 64 GB RAM.

Figure 5: Training and evaluation metrics of DCNN model for tamper detection, showing accuracy, loss, precision,
and recall trends over training epochs

Table 7: Training phase parameters, detailing dataset size, hyperparameters, and augmentation techniques used to
enhance DCNN model learning for tamper detection

Parameter Value Impact on training
Training dataset

size
10,000 images Ensures diverse learning for tamper detection

Batch size 32 Balances memory usage and training stability
Learning rate 0.0001 Prevents overshooting while optimizing convergence

Optimizer Adam Enhances learning speed and accuracy
Epochs 50 Allows sufficient learning while avoiding overfitting

Early stopping
patience

5 epochs Stops training when validation loss stagnates

Augmentation
methods

Cropping, rotation
(±10○), Gaussian noise

Improves robustness against distortions
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3.4.2 Testing and Evaluation
The model is tested on a separate validation set of 2000 fingerprint images, ensuring unbiased

performance evaluation. The following metrics are used to assess its effectiveness:

• Tamper Detection Accuracy: 98.3%, demonstrating high reliability in detecting modified templates.
• False Positive Rate (FPR): ≤1.2%, reducing incorrect tampering flags.
• False Negative Rate (FNR): ≤1.5%, ensuring minimal undetected tampering attempts.
• Processing Time per Template: 12–18 ms, enabling real-time verification.

The trained model achieves a balanced trade-off between accuracy and computational efficiency,
ensuring robust and secure fingerprint watermark verification for biometric authentication systems as shown
in Table 8.

Table 8: Testing and evaluation metrics, summarizing the DCNN model’s accuracy, error rates, and real-time
performance in fingerprint watermark verification

Metric Value Significance in verification
Validation dataset size 2000 images Ensures unbiased evaluation of model performance

Tamper detection accuracy 98.3% High reliability in distinguishing tampered templates
False Positive Rate (FPR) ≤1.2% Reduces incorrect tamper flags

False Negative Rate (FNR) ≤1.5% Minimizes undetected tampered fingerprints
Processing time per template 12–18 ms Enables real-time authentication

4 Results
The proposed AI-driven fragile watermarking system was experimented with on the NIST SD4

and Anguli synthetic fingerprint databases, and exhaustive testing was conducted to quantify fingerprint
improvement quality, tamper detection efficacy, and computation cost. The model was trained on 200+
epochs, yielding a steady NFIQ value of 1.81–1.83, indicating a marked enhancement in fingerprint readability
and ridge structure visibility. The structural similarity index (SSIM) between the improved and ground-truth
binarized fingerprints ranged from 0.9245 to 0.9405, which reflects high reconstruction fidelity. In addition,
match scores obtained using Bozorth3 showed robust biometric verification performance, which further
verifies the effectiveness of the improved fingerprints. The DCNN-based tamper detection system achieved a
global accuracy of 98.3%, effectively distinguishing between genuine and tampered fingerprint templates. The
false positive rate (FPR) was below 1.2%, while the false negative rate (FNR) was limited to 1.5%, maintaining
instances of incorrect tamper classification at an extremely low level. The model processed a mean time of
12–18 ms per template, making it highly suited for real-time biometric verification applications. Performance
testing under various training scenarios revealed that inclusion of NIST SD4 images as part of the training
data significantly improved the model’s reconstructive ability for ridge patterns, as reconstructed images
contained more defined and continuous ridge patterns than were present in models lacking SD4 training
data as shown in Fig. 6.

Fingerprint quality improvement assessment showed similar quality improvements at various quality
levels. The developed model decreased the number of low-quality fingerprints (NFIQ score 3–5) and
increased the number of high-quality fingerprints (NFIQ score 1–2). The effects of batch size changes were
also investigated, with clearer ridge structures obtained using smaller batch sizes (batch size = 2) and
incomplete or corrupted fingerprints obtained using larger batch sizes (batch size = 8) as shown in Fig. 7.
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Figure 6: Performance evaluation of the proposed fingerprint enhancement model, showing synthetic latent finger-
prints, enhanced outputs, and their comparison with ground-truth binarized images using SSIM values and match
scores

Figure 7: Sample enhanced fingerprint images without latent fingerprint reconstruction loss, showing the impact of
missing reconstruction constraints on fingerprint clarity and structural consistency

In Fig. 8 shown the results confirm that AI-based tamper detection DCT-based fragile watermarking
drastically improves fingerprint integrity, security, and biometric authentication accuracy. The combination
of SSIM-based similarity verification, low rates of false alarms, and high processing speed makes the approach
a robust and practical solution for real-world biometric systems.
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Figure 8: Failure cases of NFIQ scoring, illustrating how batch size variations affect fingerprint quality assessment,
with higher batch sizes leading to lower NFIQ scores and degraded fingerprint structure

Table 9 illustrates the improvement in fingerprint quality gradually as the model is trained. The NFIQ
score improves from 2.07 to 1.81, signifying greater visibility of ridge structure and enhanced biometric
clarity. Results indicate that beyond 200+ epochs, the quality of the fingerprint remains stabilized, providing
consistent authentication performance. To provide a better assessment of the tamper detection system,
confusion matrices and ROC curves were introduced to measure the model’s sensitivity and specificity. The
Area Under the Curve (AUC) was always over 0.98, signifying an effective trade-off between FPR and FNR
over different tampering intensities. In addition, the NFIQ score gains (2.07 to 1.81) are credited to the DCT-
based watermarking, which maintains ridge flow and structure throughout embedding. The DCNN does not
improve image quality but is utilized solely for template authenticity classification as shown in Fig. 9.

Table 9: NFIQ score variation across training epochs, showing the improvement in fingerprint quality over progressive
training cycles

Epoch NFIQ score Fingerprint quality trend
30 2.07 Initial stage, moderate quality
60 2.03 Gradual improvement
90 2.00 Quality stabilization begins
120 1.86 Noticeable enhancement in fingerprint clarity
150 1.82 Improved ridge structure visibility
180 1.84 Minor fluctuations in quality
200 1.83 Stable fingerprint quality
210 1.83 Consistent performance
240 1.81 Optimal fingerprint quality achieved
270 1.83 Slight variation but stable
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Figure 9: Impact of Training with NIST SD4 Images, comparing the fingerprint enhancement results when the model is
trained with and without SD4 images, highlighting improved ridge structure reconstruction when SD4 data is included

Aside from the fundamental hyperparameters, training consisted of shuffle-seeded mini-batch genera-
tion for preventing memorization over epochs. A fixed learning rate (0.0001) was opted for after grid testing
for stability, and there was no application of decay schedules to maintain consistency in convergence. Early
stopping in terms of plateauing validation loss was used, with a max patience of 5 epochs. The model was
trained on 3 random splits of training-validation, and each fold contained varied augmentations (rotation,
cropping, noise) applied dynamically at runtime to enhance generalization across tampered and authentic
samples. The mean processing time per template was 12–18 ms, which was ensured to be in real-time for
biometric authentication systems. Compression robustness analysis showed that watermark integrity was
preserved for JPEG quality factors ≥50, with slight distortions noted at quality factor 30 and lower. This
indicates that the proposed DCT-based fragile watermarking scheme is immune to moderate compression
distortions, and thus it is suitable for real-world implementation in cloud-based biometric authentication
systems as shown in Figs. 10 and 11.

5 Discussion
The AI-based fragile watermarking paradigm for biometric template protection was quantitatively

assessed using in-depth quantitative testing. The blend of DCT-based fragile watermarking and tamper
detection utilizing deep learning provided higher robustness and efficiency against fingerprint authentication
systems. The network was trained up to 200+ epochs and yielded a robust NFIQ score ranging between
1.81 and 1.83, reflecting considerably improved fingerprint clearness and preservation of minutiae features.
The structural similarity index (SSIM) was between 0.9245 and 0.9405, affirming the high accuracy of the
improved fingerprints compared to ground-truth binarized images. In addition, match scores calculated
using Bozorth3 varied between 260 and 295, affirming the enhanced biometric recognition performance.
The tamper detection module, with the aid of a Deep Convolutional Neural Network (DCNN), realized a
98.3% classification accuracy and differentiated between original and tampered fingerprint templates at a
low rate of false positives (≤1.2%) and false negatives (≤1.5%).
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Figure 10: Successful enhancement of latent fingerprints, showcasing the proposed model’s ability to reconstruct and
enhance ridge structures from low-quality latent fingerprints
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Figure 11: Challenging cases for the proposed model, illustrating instances where the model struggles with low-
contrast, smudged, or highly degraded latent fingerprints during enhancement

A comparative analysis of batch size effect on fingerprint enhancement proved that smaller batches
(batch size = 2) developed more detailed ridge structures whose NFIQ scores ranged at 2.00, whereas bigger
batches (batch size = 8) led to deteriorated minutiae retention, whose NFIQ scores fell to 1.83. Training with
the NIST SD4 dataset hugely enhanced ridge continuity and structural coherence since models that were
trained without SD4 images had greater ridge discontinuities and lower match scores (~260) than models
trained with SD4 (~295). Although attaining high accuracy in fingerprint enhancement, the suggested
model struggled to perform well when dealing with extremely noisy, partially occluded, and smudged latent
fingerprints. Ridge discontinuity rate was seen at 4.8% for highly degraded fingerprints, which shows that
there should be further optimization of deep feature reconstruction. Furthermore, SSIM scores fell below
0.90 for fingerprints with extreme background interference, which can further enhance fingerprint integrity
in convoluted forensic cases using adaptive contrast enhancement methods.

Table 10 shows a complete quantitative comparison of three previous studies and the proposed solution.
The proposed solution has much improved performance, including higher tamper detection accuracy
(98.3%), reduced false negative and false positive rates, and increased processing speed (~40% improvement
upon previous works). Moreover, PSNR and SSIM values for various image distortions (JPEG compression,
Gaussian noise, etc.) show that the proposed method offers improved watermark robustness and fingerprint
enhancement. It is recognized that methods [30,31] are robust watermarking schemes, but Ref. [32] is a fragile
watermarking scheme. The fact that both are listed in Table 10 is to serve both the illustration of advances
within fragile watermarking as well as benchmarking the proposed method against robust alternatives to
highlight its competitiveness in terms of both tamper sensitivity and real-time capability. The reduction in
NFIQ score also confirms that the model generates higher-quality fingerprint images with better minutiae
clarity. The proposed method combines AI-based DCNN-based tamper detection, and hence it is more attack
and distortion resistant than existing DCT, SVD, and DWT-based techniques. This integration of AI provides
enhanced biometric security and forensic resilience, making the suggested method a cutting-edge solution
for biometric watermarking. New developments after 2022 have seen the introduction of deep learning-
based watermarking methods with enhanced robustness for biometric security. Sharma et al. (2024), for
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instance, presented an adversarial-aware CNN-based watermarking model, whereas Boujerfaoui et al. (2023)
surveyed hybrid learning-integrated watermarking methods with a focus on content authentication and
tamper localization. In contrast to these, the new approach has better tamper detection accuracy (98.3%)
and lower false positives (≤1.2%) with much quicker real-time processing (12–18 ms), as evidenced by
comparative results.

Table 10: Comparative analysis of the proposed method with existing research, highlighting improvements in tamper
detection accuracy, processing efficiency, and robustness against distortions in biometric watermarking techniques

Criteria Nguyen-Thanh
et al., 2018 [30]

Chaudhry et al.,
2020 [31]

Singh et al.,
2021 [32]

Proposed method Improvement (%)

Watermarking technique DCT-based robust
watermarking

SVD-based
watermarking

DWT-based fragile
watermarking

DCT-based fragile
watermarking with

AI

–

Tamper detection
accuracy

92.5% 94.2% 95.5% 98.3% +3–6%

False Positive Rate (FPR) 3.5% 2.9% 2.1% ≤1.2% Lower by 1–2%
False Negative Rate (FNR) 4.8% 3.7% 2.9% ≤1.5% Lower by 1–3%

Processing time
(ms/template)

22–30 ms 18–25 ms 15–22 ms 12–18 ms ~40% Faster

PSNR (JPEG compression
Q = 80)

34 dB 35 dB 34.8 dB 36 dB +2 dB

PSNR (Gaussian noise σ =
0.003)

30 dB 30.5 dB 31 dB 32 dB +2 dB

SSIM (JPEG compression
Q = 80)

0.85 0.86 0.87 0.89 +3–4%

SSIM (Gaussian noise σ =
0.003)

0.80 0.82 0.83 0.85 +3–5%

NFIQ score reduction 2.07→ 1.91 2.05→ 1.88 2.03→ 1.86 2.07→ 1.81 Better minutiae clarity
Compression resilience Moderate High High Very high Improved against

JPEG artifacts
Robustness against noise Moderate High High Very high Enhanced feature

retention
Deep learning integration Not used CNN for feature

extraction
DCNN for

classification
DCNN-based

tamper detection
AI-driven

improvement

6 Conclusion
This work introduces a new AI-based fragile watermarking framework for biometric template pro-

tection that combines DCT-based fragile watermarking with deep learning-based tamper detection. The
suggested approach reported a tamper detection accuracy of 98.3%, surpassing the performance of current
watermarking methods by 3–6%. The false positive rate (≤1.2%) and false negative rate (≤1.5%) were
notably lower than in previous work and guaranteed high reliability in fingerprint integrity verification.
The model exhibited real-time practicality, with a mean processing time of 12–18 ms per template, and
was therefore well-suited for practical biometric authentication applications. Large-scale experimental
evaluation indicated that fingerprint quality was greatly enhanced, with NFIQ scores decreasing from
2.07 to 1.81, reflecting better ridge clarity and minutiae preservation. The suggested system also displayed
excellent resistance to compressions and noise distortions with PSNR being enhanced by 2 dB (JPEG
compression Q = 80) and SSIM by 3%–5% for various attack cases. The comparative study also proved that
the proposed approach outperforms current SVD, DCT, and DWT-based watermarking methods as far as
biometric security and resistance are concerned. In addition, incorporating DCNN-based tamper detection
allowed real-time fingerprint modification classification, greatly minimizing watermark susceptibility to
adversarial attacks. The results confirm that fragile watermarking with AI improves fingerprint template
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security, guaranteeing both authentication reliability and forensic integrity. Future research will extend
the framework to multimodal biometrics and watermark embedding strategies for improved resistance to
extreme distortions. In comparison with other current fragile watermarking techniques like SVD-based,
DWT-based, and conventional DCT-based techniques, the suggested system improves detection rates by
3–6%, decreases false positive rates by as much as 1–2%, and attains quicker inference times by about 40%
(processing every template in 12–18 ms compared to 22–30 ms in previous methods). This renders the
technique both very secure and realistically feasible for real-time biometric authentication systems.
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