
echT PressScience

Doi:10.32604/cmc.2025.065162

ARTICLE

RBZZER: A Directed Fuzzing Technique for Efficient Detection of Memory
Leaks via Risk Area Analysis

Xi Peng, Peng Jia*, Ximing Fan and Jiayong Liu*

School of Cyber Science and Engineering, Sichuan University, Chengdu, 610065, China
*Corresponding Authors: Peng Jia. Email: pengjia@scu.edu.cn; Jiayong Liu. Email: ljy@scu.edu.cn
Received: 05 March 2025; Accepted: 27 May 2025; Published: 30 July 2025

ABSTRACT: Memory leak is a common software vulnerability that can decrease the reliability of an application and, in
severe cases, even cause program crashes. If there are intentionally triggerable memory leak vulnerabilities in a program,
attackers can exploit these bugs to launch denial-of-service attacks or induce the program to exhibit unexpected
behaviors due to low memory conditions. Existing fuzzing techniques primarily focus on improving code coverage,
and specialized fuzzing techniques for individual memory-related defects like uncontrolled memory allocation do
not address memory leak vulnerabilities. MemLock is the first fuzzing technique to address memory consumption
vulnerabilities including memory leakage. However, the coverage-centric guidance mechanism of MemLock introduces
a degree of aimlessness in the testing process, that results in low seed quality and slow bug exposure speed. To address
this issue, we propose a risk areas guidance-based fuzzing technique called RBZZER. First, RBZZER retains MemLock’s
memory consumption-guided mechanism and introduces a novel distance-guided approach to expedite the arrival of
fuzzing at the potential memory areas. Second, we introduce a new seed scheduling strategy called risk areas-based seed
scheduling, which classifies seeds based on potential memory leak areas in the program and further schedules them,
thereby effectively improving the efficiency of discovering memory leak vulnerabilities. Experiments demonstrate that
RBZZER outperforms the state-of-the-art fuzzing techniques by finding 52% more program unique crashes than the
second-best counterpart. In particular, RBZZER can discover the amount of memory leakage at least 112% more than the
other baseline fuzzers. Besides, RBZZER detects memory leaks at an average speed that is 9.10x faster than MemLock.

KEYWORDS: System security; software testing; directed fuzzing; memory leak vulnerability

1 Introduction
Fuzz testing, often referred to as fuzzing, is a widely adopted security testing technique. Due to

its high degree of automation and minimal requirement for expert knowledge, fuzzing has been applied
across various domains, such as software program testing [1], interface testing [2,3], firmware testing [4,5],
vulnerability detection in vehicular networks [6], and vulnerability reproduction [7]. Based on differences
in technical characteristics, fuzzing can be categorized into three types: grey-box fuzzing [1], white-box
fuzzing [8,9], and black-box fuzzing [10–12]. Among these methods, coverage-based grey-box fuzzing (CGF)
achieves the optimal balance between precision and overhead. Unlike black-box fuzzing, which tends to
have poor effectiveness, and white-box fuzzing, which is often less efficient, CGF leverages static analysis and
lightweight program instrumentation to collect program information. This information is then used to guide
the generation of test cases. Owing to its efficiency and scalability, CGF has emerged as the most popular
fuzzing technique.

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.065162
https://www.techscience.com/doi/10.32604/cmc.2025.065162
mailto:pengjia@scu.edu.cn
mailto:ljy@scu.edu.cn

4602 Comput Mater Contin. 2025;84(3)

One of the key directions in optimizing CGF tools has been improving program coverage [13–17]. Intu-
itively, testing more program paths increases the likelihood of discovering unique crashes or vulnerabilities.
However, certain vulnerabilities, such as memory leaks, cannot be triggered solely by increasing coverage.
Memory leak vulnerabilities are commonly found in programs developed using C/C++. These vulnerabilities
cause a gradual depletion of available system memory, negatively impacting overall system performance.
In certain application scenarios, such as always-on hosts, memory leaks can lead to memory exhaustion,
causing the system to become unresponsive and eventually crash. If such a vulnerability can be exploited by
an attacker through carefully crafted scripts, the system becomes exposed to risks such as Denial-of-Service
(DoS) attacks or unintended behaviors due to insufficient memory.

Researchers have increasingly recognized the potential risks of memory leak vulnerabilities being
exploited to launch DoS attacks [18–20]. However, most tools aimed at detecting memory issues primarily
focus on memory corruption vulnerabilities [21–25]. MemLock [26], as the first fuzzing tool specifically
designed to detect memory leak vulnerabilities, is capable of automatically identifying such issues without
requiring any expert knowledge. MemLock begins by performing static analysis on the target program to
identify memory-related statements. These statements are instrumented to monitor memory consumption
during program execution. In the fuzzing process, not only are inputs that cover new branches added to the
seed queue but inputs that result in increased memory consumption are also retained as “interesting inputs.”
This mechanism enables MemLock to generate inputs that can make the program’s memory consumption
exceed the available system memory, thereby triggering memory leak vulnerabilities within an acceptable
time frame.

Although the memory monitoring and guidance mechanisms proposed by MemLock are highly effec-
tive in detecting memory leak vulnerabilities, the tool still has notable limitations. The guidance mechanism
employed by MemLock exhibits a degree of aimlessness in practice. MemLock integrates an AFL-style
coverage-guided mechanism with a memory consumption-guided mechanism. While this approach enables
the fuzzer to mutate seeds that can trigger program paths with higher memory consumption, the process
is entirely random. Specifically, the fuzzer lacks explicit information about which unexplored code regions
are more likely to contain memory leak vulnerabilities. As previously mentioned, memory leaks occur when
programs fail to properly track allocated memory due to negligence or errors after invoking risk functions
e.g., malloc, realloc, and other heap memory operations. Memory leaks can only arise after the invocation of
these risk functions. However, prior to identifying memory allocation operations, MemLock treats all code
regions as equally important. This means that in the early stages of fuzzing, MemLock is effectively blind
to potential memory leak points, leading to significant computational overhead due to a large number of
ineffective operations.

We observe that there are three problems that need to be tackled. First, how can we provide a fuzzer
with information that enables it to guide the testing towards specific code areas even in the early stages of
fuzz testing? Second, when multiple risky functions exist in different code areas of a program, how can we
design a reasonable seed scheduling strategy to ensure that the fuzzer does not get stuck in a situation where
a large number of seeds in the queue are related to memory leak points that are easier to reach, thus delaying
the mutation of seeds related to one or more memory leak points that are associated with other code areas.
In other words, how can we address the starvation issue faced by certain memory leak points in a scenario
with multiple memory leak points? Third, how can we evaluate the quality of seeds in the queue, measure
the potential of seeds to trigger memory leaks, and allocate appropriate resources to them based on their
memory leak-triggering potential?

To address the aforementioned three challenges, this paper introduces a solution called RBZZER. Firstly,
RBZZER utilizes lightweight static analysis to identify the locations of risky functions in the program,

Comput Mater Contin. 2025;84(3) 4603

marking them as potential memory leak points. It then divides and merges code regions based on the
similarities of all potential memory leak points in the code areas to create Risk Areas (RA). Secondly,
RBZZER borrows the concept from directed fuzz testing techniques [7] to calculate the distance from
each basic block in the program to the memory leak points it reaches before execution, inserting these
calculations into the basic blocks. Subsequently, seeds are clustered based on RA, and seed selection is
performed according to the clustering results. Lastly, RBZZER employs an energy allocation algorithm that
measures seed potential based on factors such as seed-based memory consumption and seed distance, to
allocate appropriate energy to the seeds. Experimental results indicate that RBZZER outperforms six state-
of-the-art tools (i.e., AFL [1], AFLGo [7], AFLfast [27], PerfFuzz [28], QSYM [29] and MemLock [26]), in
discovering the memory leak vulnerabilities. RBZZER finds 52% more program unique crashes than the
second-best counterpart. In particular, RBZZER can discover the amount of memory leakage at least 112%
more than the other baseline fuzzers. Besides, RBZZER detects memory leaks at an average speed that is
9.10× faster than MemLock. Our main contributions are summarized as follows:

• We introduce RBZZER, a fuzzer that effectively identifies memory leak vulnerabilities in programs.
The fuzz testing efficiency of this fuzzer is significantly higher than that of the baseline tool MemLock
presented in this paper.

• We present a risk areas-based seed scheduling mechanism that effectively enhances the fuzz testing
efficiency in multi-target directed fuzz testing scenarios.

• The efficiency of RBZZER was evaluated in multiple popular real-world programs in this study.
Experimental results demonstrate that RBZZER outperforms similar fuzz testing techniques in terms of
efficiency across various metrics.

The rest of this paper is structured as follows. Section 2 introduces the background and motiva-
tion. Section 3 gives the overview and elaborates on the details of RBZZER. Section 4 evaluates our
approach. Section 5 introduces the related work before. Section 7 concludes.

2 Motivation

2.1 Problem Description
A memory leak vulnerability means that the software does not sufficiently track and release allocated

memory after it has been used, making the memory unavailable for reallocation and reuse [30]. From the
description of memory leak vulnerability, it can be observed that the occurrence of memory leak vulnerability
is related to memory allocation and release. Fuzzing is an automated software testing technique that detects
security vulnerabilities by feeding the target program a large number of unexpected, random, or malformed
inputs [31]. Therefore, when fuzzing aims to detect memory leak vulnerabilities, a key challenge lies in
generating test cases capable of exercising memory allocation and deallocation-related code paths.

Existing solutions exhibit a degree of aimlessness. MemLock, prior to detecting memory allocation
operations by the target program, operates according to the logic of AFL, leading to the fuzzer expending
considerable time exploring code regions unrelated to memory leak vulnerabilities. For example, the
simplified control flow graph of CVE-2019-20023 [32] is shown in Fig. 1a, with BB_4 and BB_15 being the
points of memory leakage, where BB means basic block. For brevity in the example, numerous sub-branches
between BB_1 and BB_2 have been omitted. From the figure, it can be observed that only 3 basic block paths
are capable of triggering the memory leak vulnerability, specifically path (1, 2, 6, 7, 8, 10, 11, 12, 15), (1, 2, 6, 7,
9, 10, 11, 12, 15) and (1, 2, 3, 4). However, existing directing methods explore all possible paths in the program,
causing the fuzzer to waste computational resources and slowing down the vulnerability discovery process.

4604 Comput Mater Contin. 2025;84(3)

Figure 1: A simplified CFG of CVE-2019-20023, where each node represents a basic block

To validate this defect, we performed a 24-h fuzz testing on three widely-used open-source library
components xmllint [33], imginfo [34], and pdftotext [35] using MemLock. Following the testing, we
extracted the seed queues generated during the execution of each program and analyzed the seed execution
traces using DynamoRIO [36] and Lighthouse [37]. Based on the analysis, we calculated the proportion of
seeds in the seed queue that failed to reach the memory operation function area, which we refer to as unrelated
seeds. The results of this analysis are presented in Fig. 2. As illustrated in the figure, MemLock revealed that
25.52% to 53.86% of the seeds in the queue were unrelated during the exploration of different programs.

Figure 2: The number of seeds unrelated to PML

Comput Mater Contin. 2025;84(3) 4605

2.2 Solution
Intuitively, if the fuzzer could be introduced to produce seeds more likely to reach the Potential Memory

Leak Point (PML) in the early stages of fuzz testing, the issue of aimlessness in existing solutions could
be effectively addressed. Consequently, RBZZER incorporates the concept of directed fuzz testing. Prior to
initiating the fuzz testing process, static analysis is first employed to identify PMLs within the program.
Subsequently, the distance from each basic block of the PUT to the PML is calculated. Finally, these
calculation results are embedded into the basic blocks, enabling the fuzzer to obtain distance information of
the current seed during the fuzz testing process and thereby guide the mutation algorithm. Through these
operations, the fuzzer can anticipate the location of the PML. In order to ensure clarity in the description,
the following definition is provided in this paper:
Definition 1. Potential Memory Leak Point (PML) is a special basic block that calls a function which may
cause a memory leak, namely a Risk Function. Given the target program PUT, the set of basic blocks constituting
the functions bbSet, and the list of risk functions rfList, a Potential Memory Leak Point can be defined as: PML =
{bb ∈ bbSet(PUT)∣invoke(bb, r f List)}. Specifically, invoke(bb, r f List) represents a basic block that calls
a function from the list of risk functions r f List, where r f List = [mal loc, cal loc, real loc, new].

However, simply optimizing MemLock’s memory consumption guidance mechanism using directed
fuzz testing techniques presents some issues. As shown in Fig. 1a, assuming that after a period of directed
fuzz testing, the fuzzer generates a seed that can execute to BB_2 (as mentioned earlier, a large number of
irrelevant branches in Fig. 1 have been omitted), and this seed has an execution path of (1, 2, 3, 4). Since BB_4
causes a memory leak, the fuzzer will allocate more energy to this seed and its derived seeds, meaning that
more time will be spent exploring code areas related to BB_4, thereby causing starvation of BB_15.

Therefore, RBZZER adopts a seed scheduling strategy based on RA, ingeniously avoiding the starvation
problem faced by some PMLs when there are multiple PMLs in the PUT. Specifically, based on the program’s
Control Flow Graph (CFG), the algorithm traces back from each PML to its predecessor nodes in reverse. The
program is then divided into different areas according to the sequence of predecessor nodes for each PML.
As shown in Fig. 1b, the yellow area is where BB_4 is located, the green area is where BB_15 is located, and
the blue area is the common area for both. After obtaining the basic area information, RBZZER merges areas
based on their similarity and then schedules seeds according to the merged results, avoiding the starvation
problem faced by leakage points located in different areas.

3 Approach of RBZZER

3.1 Overview
As shown in Fig. 3, the framework of RBZZER consists of two main components: the static analysis

component and the fuzz testing component. The static analysis component is responsible for two tasks: 1)
generating the control flow graph and the function call graph of the target program, and then calculating the
distance from each basic block of the target program to the PML based on these two graphs; 2) identifying
the code areas where PMLs are located in the program, and dividing and merging these areas according to
the similarity of the code areas to construct Risk Areas. Ultimately, the static analysis component outputs
two sets of data: 1) the clustering results of Risk Areas; and 2) the distance calculation results at the basic
block level.

4606 Comput Mater Contin. 2025;84(3)

Figure 3: The overall framework of RBZZER

3.1.1 Distance-Guided Mechanism
Code areas in the target program that are unrelated to PML may exist. When the program executes in

these areas, memory leakage cannot be triggered no matter what. Allocating excessive energy to explore such
irrelevant areas will lead to a waste of performance. Introducing a directed guidance mechanism based on the
MemLock memory consumption guidance mechanism can effectively identify the PML-related areas in the
program and allocate more energy to seeds that can execute these regions. In the following parts of this paper,
such seeds are referred to as PML-related seeds, while the opposite is called PML-unrelated seeds. Note that
PML-unrelated seeds are not completely abandoned, but are allocated with lower energy, because mutation
of these seeds may still change their execution trajectories, transforming them into PML-related seeds.

Specifically, RBZZER builds upon the classical directed guidance mechanism by considering the context
in a probabilistic form. It combines the utilization methods of control flow and data flow information,
enabling a more refined assessment of the likelihood of a test case execution path reaching the target point.
To effectively leverage data flow and control flow information for more accurate basic block distances, this
scheme defines the basic block distance based on deviation probability, optimizing the classical distance algo-
rithm. Subsequently, it dynamically updates the basic block distance by utilizing the data flow characteristics
of deviant basic blocks, ultimately obtaining the basic block distance based on deviation probability.

3.1.2 Risk Areas Analysis
To analyze risk areas, it is first necessary to determine the locations of all PMLs in the target program.

During the process of traversing the instructions within the basic blocks of the target program for distance
calculation, if a function call instruction is encountered, the operands of the instruction are checked. If the
current instruction matches the pattern of calling a risky function, its location information (including the
name of the basic block where the instruction is located and the function name) is saved locally. In this way,
RBZZER obtains the location information of all PMLs in the target program.

Next, it is necessary to construct the risk areas of the target program based on the call graph (CG).
First, the scope of the code areas where each PML in the target program is located (PML areas) needs to
be determined, that is, the division of code areas. When there are multiple PMLs in the program, a large
number of seeds that can execute to the PML areas that are easier to trigger may be generated during the
fuzzing process, causing the other PML areas to remain unexecuted for a long time, that is, starvation occurs.
However, these code areas may also contain memory leakage vulnerabilities. Therefore, RBZZER needs to
determine the scope of each PML region, and then schedule the seeds according to the scope of the areas, so
that all PML areas have the opportunity to be executed, thereby avoiding the problem of starvation.

Comput Mater Contin. 2025;84(3) 4607

After the division of code regions is completed, the division results need to be merged. The reason
for merging code regions is that if there are too many PMLs, the program will be divided into too many
PML areas, leading to the degradation and failure of the seed scheduling strategy based on risk regions. To
complete the merging of areas, the similarity of each PML region is first calculated. If the similarity between
two PML areas is higher than the threshold, they are merged. Finally, a set of PML region clusters identified
by unique numbers is obtained. Each cluster is identified by a unique number and contains one or more
PML regions. Note that the control flow paths of the PML regions in the same cluster have a higher degree
of similarity. If a seed can execute a PML region in the cluster generated during the fuzzing process, there is
a higher probability that the seed can execute other PML areas in the same cluster after further mutation. In
the following parts of this paper, the PML region cluster is referred to as the Risk Area.

3.1.3 Seed Scheduling Based on Risk Areas
At the beginning of fuzz testing, the fuzzing component adds all seeds to the original queue. During the

fuzzing process, if the execution path of a seed enters a risk area, the seed is then added to another queue.
This queue has the same identifier as the risk region and contains seeds that can reach the corresponding
risk area. This paper refers to this queue as the Area Queue as shown in the figure. After each round of fuzz
testing, the fuzzer adaptively selects the seed queue for the next round based on the number of seeds in each
risk queue and the number of times the risk queue is selected.

3.2 Distance-Guided Mechanism
In order to guide the fuzzer to mutate seeds that can cover risky areas in the early stages of fuzz testing,

RBZZER introduces a directed guidance mechanism. Classic distance algorithms represented by AFLGo
can only measure the distance of test cases from the perspective of control flow, neglecting the significant
impact of data flow on the program’s execution trajectory. WindRanger [38] identified this issue and first
proposed the concept of Deviation Basic Block, which refers to the basic blocks in the control flow graph
that have unreachable child nodes. Based on this characteristic, the fuzzer would have the capability to use
the program’s data flow information to guide the fuzz testing process. Although this method incorporates
information from the data flow aspect, experiments have shown that the method using deviation basic blocks
has limited effectiveness, achieving only about a 40% improvement in efficiency compared to AFLGo. After
analysis, we found that WindRanger focused excessively on the deviation basic blocks, ignoring the influence
of the program’s control flow context on the distance.

To address this issue, we first refer to the definition of the probability of a basic block reaching the target
point, and define the basic block distance based on deviation probability, optimizing the classical distance
algorithm. Then, by utilizing the data flow characteristics of deviation basic blocks, we dynamically update
the basic block distance, ultimately obtaining the basic block distance based on deviation probability. The
specific definition is as follows:
Definition 2. Basic Block Distance Based on Deviation Probability (BDD) is a basic block distance that
integrates deviation probability. Given the basic block distance DB, the deviation probability P, and the
branch condition complexity C, the basic block distance based on deviaton probability BDD is defined as: BDD =
ln(1 + C ∗ DB

1−P).
In the calculation process of BDD, all target basic blocks contained in the program are first collected,

and the deviation probabilities of all target basic blocks are set to 0. Then, starting from the target point, the
control flow graph is traversed in reverse. For each basic block traversed, its deviation probability is updated
to the average of the deviation probabilities of all its successor nodes as the initial deviation probability. If
a basic block does not have a successor reachable to the target point, the deviation probability is set to 1.

4608 Comput Mater Contin. 2025;84(3)

Considering the impact of the program’s data flow, the branch condition complexity of each basic block needs
to be calculated. We employ the ratio of the number of executions of branches that cannot reach the target
point to the number of executions of branches that can reach the target point as a measure of the complexity
of the branch condition.

An example of the calculation process of BDD is shown in Fig. 4. In the control flow graph in the figure,
the notation of X:Y:Z means that X is the basic block distance DB , Y is the deviation probability P, and Z is
the branch condition complexity C. For example, node 1:0:1 means that the basic block is directly connected
to the target point because X equals 1. Due to the basic block being directly connected to the target point,
the deviation probability Y is 0. The branch complexity under this case is 1 because both branches can reach
the target point. Therefore, we can figure out the BDD of this basic block is ln(2) colored red as shown in
the figure. A smaller BDD means that the basic block is more likely to reach the target point and vice versa.
As shown in the Definition 2, the computational complexity for each variable is O(1), resulting in an overall
time complexity of a BDD’s computation is O(1). During the overall calculation process, since it is necessary
to perform a backward traversal of basic blocks for each PML and then compute BDD for these basic blocks,
O(n2) BDD computations are required. Consequently, the total computational time complexity is O(n2).

Figure 4: An example of calculation process of BDD: (a) Parameter initialization and computation for the target basic
block’s BDD; (b)–(d) Subsequent-layer BDD computation performed in reverse order of the CFG

Furthermore, compared to traditional distance metrics, the BDD distance provides more realistic
approximations by incorporating the deviation probability between the current basic block and the target
basic blocks. Taking basic blocks 1:0.5:5 and 1:0:1 in Fig. 4d as an example, both basic blocks have a uniform
distance value of 1 under traditional distance metrics. However, the former basic block contains unreachable
a basic block inf:1:1 in its successor branches, resulting in a significantly lower actual probability of reaching
the target block compared to the latter. Consequently, the former basic block should be assigned a larger
distance value rather than an equal one. The BDD design accounts for the deviation probability by assigning
the former a greater distance value of ln(11) vs. the latter’s ln(2) with red font in the figure.

Comput Mater Contin. 2025;84(3) 4609

3.3 Risk Areas Analysis
When there are multiple PMLs in a program, a suitable scheduling mechanism is required to ensure no

starvation issues mentioned occur. To mitigate the challenges posed by this problem, this paper introduces
the concept of a risk area and the definition is as follows:
Definition 3. Risk Area is a set composed of a group of basic blocks, where the basic blocks in this set
originate from one or more PML. Given a set of n PML, denoted as LP, the set of PML ancestor basic blocks
preBBset(LPi), and a threshold ε, the risk area can be defined as: RA = {set(bb)∣bb ∈ ∪n

i preBBset(LPi) ∧
bb ∉ ∩n

i preBBset(LPi),∀LPi ∈ LP, simil arity(LPi) > ε}, where bb denotes basic block, simil arity(LPi)
denotes the similarity of LPi with other leakage points in the set LP.

Definition 3 defines a set of function collections, where PML is necessarily located at some position
in the subsequent call chain of the functions in this set. That is, each function node in the risk area has at
least one path that can reach PML. To construct the risk areas during static analysis, three sequential steps
are required, each implemented by a dedicated algorithm. Firstly, RBZZER identifies all the basic (PMLs)
containing the calls to risky functions through static analysis. Secondly, starting from the function containing
the PML, the control flow graph and call graph are traversed in reverse to obtain the area corresponding
to each PML, which is called the PML area in this paper. Thirdly, the similarity between each PML area is
calculated, and they are merged to form the risk area.

Fig. 5 illustrates the step-by-step process of constructing risk areas, demonstrating control flow graph
transformations at each stage. Initially, the static analysis yields the program’s CFG (Fig. 5a). Algorithm 1 then
identifies PMLs within this CFG, producing the annotated graph shown in Fig. 5b, which highlights three
PML basic blocks in red. Subsequently, Algorithm 2 constructs vulnerable regions by marking predecessor
blocks for each PML basic block (Fig. 5c). Here, areas C1, C2, and C3 (colored in the figure) represent the
risk areas corresponding to the three PML basic blocks. Finally, Algorithm 3 merges areas based on area
similarity analysis. As visible in Fig. 5c, the risk areas of PML blocks 6 and 7 exhibit high similarity, leading
to their merger in the final result (Fig. 5d). The final output shows two risk areas (associated with blocks 1
and 2) indicated by different colors.

Figure 5: Schematic of the Risk Area construction process

4610 Comput Mater Contin. 2025;84(3)

Moreover, the figure illustrates that the risk area guidance mechanism (i.e., the colored areas) narrows
the search space for memory leak fuzzing (originally the entire grey area). This reduction enables the fuzzer
to discover memory leak vulnerabilities by exploring fewer basic blocks of the program. Here, we can
theoretically demonstrate that the set of basic blocks in risk areas of normal programs is smaller than the set
of all program basic blocks.
Proof. Let B denote the set of all basic blocks in the program, and A ⊆ B represent the set of basic blocks in
risk areas derived through reverse traversal of PML markers. By Definition 1,3, set A excludes all basic blocks
positioned after PML markers in the program’s forward execution sequence. This implies ∣A∣ < ∣B∣ unless
all leaf-node basic blocks are PML-marked. For normal programs, post-PML execution necessarily contains
business logic operations followed by eventual memory releases, thus completing the proof that A ⊂ B. ◻

To construct the risk area, it is first necessary to determine the location of PML. As shown in Algorithm 1
RBZZER generates the CFG for each function and records the information about internal function calls while
traversing the intermediate language functions, basic blocks, and instructions using PASS. It also detects
whether each instruction is a call to a memory operation function. If the condition is met, the location of
the basic block containing the instruction is recorded. Subsequently, the call graph of the entire program is
generated based on the recorded called functions. While the presence of three nested for-loops might indicate
O(n3) complexity, the algorithm’s actual behavior constitutes a linear traversal of assembly instructions,
resulting in O(n) time complexity for the instruction set.

Algorithm 1: Search PML
Input: The program under test P, the risk funciont list rfList.
Output: The center point list cpList.

1 IC = intermediateCodeGeneration(P, rfList)
2 cpList = []
3 for each function F in IC do
4 fileName← getFileName(F)
5 lineNum← getLineNum(F)
6 for each basic block BB in F do
7 for each instruction Ins in BB do
8 Ins ← fileName:lineNum
9 cpList.append(Ins)
10 end
11 end
12 end
13 return cpList

Algorithm 2: Construct Risk Area
Input: The call graph of PUT CG, the center point list cpList.
Output: The risk areas consists of basic blocks riskArea.

1 AWM ← initAWM(CG)
2 riskArea = [], Q = []
3 Q ← initWithEmptyQueue()

(Continued)

Comput Mater Contin. 2025;84(3) 4611

Algorithm 2 (continued)
4 for each center point CP in cpList do
5 AWM[CP].weight_nodes.insert(CP)
6 Q.push(CP)
7 while Q not empty do
8 curNode ← Q.front()
9 Visited.append(curNode)
10 for each previous node PN in curNode.prevNodes do
11 riskArea[CP].insert(CP)
12 if PN not in Visited then
13 Q.push(PN)
14 end
15 end
16 end
17 end
18 return riskArea

Upon obtaining the CFG, CG, and the list of center points, area division can be carried out. To proceed
with the subsequent tasks, we have designed a directed graph data structure, termed the Area Weighted
Map (AWM). Each node in this graph structure is capable of accessing all its parent and child nodes and
possesses a set of weight nodes. Unlike the conventional concept of weight, the weight node set is a collection
composed of function node names, with each element representing the name of a center point of a particular
area. Initially, the weight node set of each node is empty. After reading the CG file and initializing the AWM,
the weight of the center point node is set to its function name. Subsequently, starting from each center point
node, all its parent nodes are visited in a reverse manner. For each visited node, its weight node set is inserted
into the weight node set of each of its parent nodes, and its parent nodes are added to the visiting queue.
This operation is repeated until, in the end, each node in the AWM has 1 or more weight nodes. At this
juncture, the scope of each center point is initialized, which is a set identified by the center point name.
The AWM is traversed, and if a node is found to carry a center point name as a weight node, that node is
incorporated into the center point’s scope. It should be noted that this operation may result in some nodes
being included in multiple scopes. Lastly, Algorithm 2 returns a mapping that encompasses the basic block
information within the scope of each center point. The algorithm’s structure consists of two nested for-loops
along with a termination-checking while-loop. As its fundamental operation performs a basic-block-level
backward traversal for each PML, the algorithm exhibits O(n2) time complexity.

After determining the scope of each area center, it is necessary to continue merging the ranges of various
areas in order to achieve optimal efficiency. Intuitively, if two areas A and B have a large overlapping region,
there is a higher probability that a seed that can reach area A can also reach B through mutation.

Trajectory similarity has a wide range of application scenarios, such as recommendation algorithms
based on similar travel routes, clustering of vehicle driving habits, and infectious disease prevention and
control based on human movement trajectories. Trajectory distance is a measure used in trajectory similarity
algorithms to gauge the similarity between trajectories; the greater the trajectory distance, the greater the
difference between the two trajectories, and vice versa. Since areas are divided based on the CFG, an area can
be regarded as a set of program execution trajectories. Therefore, trajectory similarity can be used to assess
the similarity between areas. The Longest Common Subsequence (LCSS) algorithm is used to calculate the

4612 Comput Mater Contin. 2025;84(3)

longest common subsequence between two sequences. Let sequence A be of length n and sequence B be of
length m, the method for calculating the length of their longest common subsequence is shown in Eq. (1),
where γ is a member similarity threshold and the default value is 0.8, t ∈ (0, n], i ∈ (0, m].

LCSS(A, B) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, i f A = ∅ or B = ∅
1 + LCSS(at−1 , bi−1), i f dist(at , bi) < γ
max(LCSS(at−1 , bi), LCSS(at , bi−1)), otherwise

(1)

Based on the length of the longest common subsequence, the distance between area A and area B
can be determined, with the specific calculation method shown in Eq. (2). The longer the longest common
subsequence, the higher the similarity between the two areas.

DLCSS = 1 − LCSS(A, B)
min(∣A∣, ∣B∣) (2)

For now, the task of merging similar areas can be accomplished. Specifically, as shown in Algorithm 3,
the similarity between each pair of areas is calculated using the LCSS algorithm, and the results are recorded
in a similarity matrix. Then, the values in the similarity matrix are examined, and areas with similarity values
above the threshold are merged to obtain the risk areas. The algorithm requires pairwise comparisons of risk
areas. Considering that the LCSS algorithm has a time complexity of O(m × n), where m and n represent
sequence lengths, the overall time complexity ranges between O(min(m, n)2) at best and O(max(m, n)2)
at worst.

Algorithm 3: Merging Risk Area
Input: The risk areas riskArea, the threshold of similarity θ.
Output: The merged area M.

1 Matrix = [][]
2 for each area A in riskArea do
3 for each area A′ in riskArea do
4 if A == A′ then
5 Matrix[A][A′] = 100
6 end
7 simil arity = DLCSS(A, A′)
8 Matrix[A][A′] = simil arity
9 end
10 end
11 M = merge(M , riskArea, θ)
12 return M

In the end, several risk areas will be obtained, each of which contains one or more center points, and
these center points represent the potential areas of memory leak vulnerabilities. RBZZER assigns a unique
ID to each area. During the instrumentation process, based on the results of area division and merging,
statements that write the ID of the area where the basic block is located to the shared memory are inserted
into the basic block. In this way, RBZZER can dynamically monitor the execution trajectory of the seed
during its execution, and further carry out seed scheduling.

Comput Mater Contin. 2025;84(3) 4613

3.4 Seed Scheduling Based on Risk Areas
After the completion of the area merging operation, if there are multiple areas, the areas located at

deeper levels of code logic may face the problem of starvation. This is because, if the fuzzer simply uses the
seed’s memory consumption and the distance of the seed as the guiding mechanism, it will preferentially
select seeds with smaller distances and shorter paths, thereby falling into a local optimal solution. To address
this issue, this paper proposes an area-based seed scheduling mechanism to avoid the problem of starvation.
The mechanism first acquires the area information covered during the execution of the seed and then carries
out seed scheduling based on this information.

3.5 Area Information Acquisition
During the execution of PUT, if a seed executes a basic block within a certain area, the instrumentation

code inserted into that basic block will write the area number where the basic block is located in the shared
memory. After execution, the fuzzer reads the number from the shared memory and adds this mark to the
seed. Note that a seed may carry multiple area marks, which occurs when two areas have a low similarity and
have not been merged. When executing in the intersection region of the two areas, the marks of both areas
are written into the shared memory. In practice, to distinguish the area marks carried by seeds with lower
memory overhead, RBZZER marks seeds by shifting 1 to the left of the area mark bit. This method allows
RBZZER to distinguish up to 8 areas with a single byte (in practice, there will not be many areas).

3.6 Speed Scheduling
The seed scheduling mechanism aims to prevent seed starvation issues. During the scheduling process,

seeds reaching different risk areas are first organized into respective seed queues based on their areas.
Subsequently, each queue is scored and the highest-scoring queue is selected for fuzzing. Specifically, after
the fuzzer acquires the area mark of a seed, it parses the mark and adds the seed to the corresponding queue.
For instance, if a seed carries the mark 40, the fuzzer will parse it as 5 and 3 ((40)10 = (10100)2), and then
add the seed to the queues numbered 5 and 3. At the end of each fuzzing loop, the fuzzer increments the
execution count of the current queue by 1, and then selects a new seed queue for fuzz testing. After each
round of fuzz testing, the fuzzer calculates the scores of all queues using Eq. (3), and then selects the queue
with the highest score for use in the next round of fuzz testing. In the following equation:

P = c[j] ∗w[j] ∗
�
���2 ∗ V[j] ∗ log(N)

N[j] (3)

In the equation, P is the score of the current queue j. c[j] is the validity coefficient of queue j. When it
equals 1, it signifies the presence of a seed within the queue, whereas a value of 0 indicates the contrary. w[j]
is the value decay coefficient of queue j, which is used to evaluate the efficiency of discovering new execution
paths within the area after all PMLs corresponding to the queue have been hit. When it equals 1, it means
the center is not covered, whereas a value of G[j]

R[j] on the contrary. G[j] is the number of seeds found new
paths and R[j] is the number of PMLs in the area. If the efficiency is low, the queue will be selected with a
lower probability. V[j] is the execution speed of queue j. N is the number of times for queue is selected. N[j]
indicates the number of times queue j has been selected. In short, the fuzzer will prioritize selecting the queue
with at least one seed that has never been selected before. If all queues have been selected, it will prioritize
the queue with high path discovery efficiency, fast execution speed, and fewer selections. During the seed
scheduling process, each seed queue requires score computation for selection. As shown in the Eq. (3), the

4614 Comput Mater Contin. 2025;84(3)

computational complexity for each variable is O(1), resulting in an overall equation complexity of O(1).
Consequently, the total time complexity for seed scheduling is O(n).

4 Evaluation
In this section, with the implemented prototype of RBZZER, we conducted experiments on different

applications to answer the following research questions:

• RQ1 How effective is the proposed directed guidance mechanism based on deviation probability?
• RQ2 Does the proposed memory leak guidance mechanism address the issue of aimlessness and area

starvation?
• RQ3 How capable is RBZZER in memory consumption crash detection?
• RQ4 How effective is the proposed method in detecting memory leak vulnerabilities?

4.1 Experimental Setup
To evaluate the efficacy of RBZZER, we conducted a comparative study with six cutting-edge fuzzers:

AFL [1], AFLGo [7], AFLfast [27], PerfFuzz [28], QSYM [29], and MemLock [26]. The selection of these
baseline fuzzers was guided by several factors. AFL and AFLGo are well-established as coverage-based
and directed grey-box fuzzers, respectively, and are commonly used as baselines in most research. AFLfast
represents an enhanced version of AFL, featuring an improved power schedule. PerfFuzz focuses on stressing
time complexity issues within programs, whereas RBZZER is designed to identify space complexity issues.
QSYM is a widely recognized symbolic execution-assisted fuzzer. Lastly, MemLock is the best fuzzer that
detects memory leak vulnerabilities. In summary, we chose a diverse range of representative state-of-the-art
fuzzers as our baselines, which are extensively employed in real-world vulnerability detection efforts.

We select evaluation benchmarks considering several factors, e.g., popularity, frequency of being tested,
development activeness, and functional diversity. We reference the fuzzing testing guidance standard of
Unifuzz [39]. Finally, 6 commonly used real-world programs from popular open-source libraries were
selected as the target programs for testing, which all have disclosed memory leak vulnerabilities as shown
in Table 1. Among them, xmllint, pdftotext, and readelf are popular document processing tools, imginfo
is a popular image processing tool, swftophp is a popular Flash processing tool, and mp42hls is a popular
audio processing tool. These programs have also been widely tested by existing state-of-the-art grey-box
fuzzers [40–42].

Table 1: The basic information of 6 programs under test

No. Library Version Program Format Lines
1 libxml2 [33] 2.11.7 xmllint XML 71,448
2 jasper [34] 2.0 imginfo JPEG 82,745
3 Xpdf4 [35] 4.00 pdftotext PDF 147,115
4 binutils [43] 2.29 readelf ELF 183,927
5 libming [44] 0.4.8 swftophp FLASH 300,985
6 bento4 [45] 1.5.1 mp42hls MP4 173,468

To evaluate the optimization efficiency brought about by the directed guidance mechanism based on
deviation probability, this experiment referred to the Time To Exposure (TTE) as the primary assessment
indicator, which is widely adopted in the field of directed fuzz testing [7]. TTE represents the time elapsed

Comput Mater Contin. 2025;84(3) 4615

from the commencement of fuzz testing to the generation of a test case by the fuzzer that can trigger the
target point. The smaller this value is, the less time it takes to trigger the target point, indicating a better
effect of the directed guidance mechanism. Each program was fuzzed 5 times, with each run lasting 24 h.
To evaluate the fuzzers, we conducted experiments on a machine equipped with an Intel(R) Xeon(R) CPU
E5-2680 v4 @ 2.40 GHz, running Ubuntu 20.04.6 LTS.

4.2 RQ1: Effect of Directed Guidance
To verify the optimization efficiency of the directed guidance mechanism based on deviation probability,

this experiment referenced the experimental setup of UniFuzz and selected 8 locations from 6 target
programs as shown in Table 2 as target points. Directed fuzz testing was conducted on these target points
using RBZZER and other 6 baseline tools.

As shown in Table 2, in the fuzz testing targeting each of the target points, RBZZER was on average
3.07x, 1.77x, 3.12x, 3.52x, 3.72x, and 2.79x respectively faster than the state-of-the-art fuzzers AFL, AFLGo,
AFLfast, PerfFuzz, QSYM and Memlock. This is because the proposed approach corrected the errors in the
distance definition within the baseline tool by employing deviation probability and dynamically adjusted the
distance of test cases in conjunction with data flow information, enabling the fuzzer to more accurately assess
the distance between test cases and target points. With the assistance of directed fuzzing techniques, AFLGo
and RBZZER demonstrate a significant acceleration effect compared to the other 5 fuzzers. This indicates
that the approach presented in this paper can stably and effectively enhance the efficiency of directed fuzz
testing and is capable of triggering the target points at a faster rate.

Table 2: The time of 7 fuzzers consumed to expose vulnerabilities on 8 target sites of programs for directed fuzzing test.
TO denotes that a tool reaches the time limit (timeout) before triggering a vulnerability

No. Fuzzer

xmllint imginfo pdftotext readelf swftophp m42hls

Avg. factorvalid.c:
2637

xmlint.c:
3108

jpc_tsfb.c:
97

gmem.cc:
140

gmem.cc:
187

readelf.c:
21524

parse.c:
101

Mp42Hls.cc:
1217

1 AFL Time 523 4933 985 TO 24338 2875 1488 10846 3.07x
Factor 6.79 2.88 2.13 – 2.32 3.39 2.35 1.61

2 AFLGo Time 188 2947 553 33977 19115 1830 958 11856 1.77x
Factor 2.44 1.72 1.20 1.54 1.82 2.16 1.52 1.76

3 AFLfast Time 575 4689 907 TO 28747 2539 1573 9855 3.12x
Factor 7.47 2.73 1.96 – 2.74 3.00 2.49 1.46

4 PerfFuzz Time 673 5277 1327 TO 29643 3438 1627 12837 3.52x
Factor 8.74 3.08 2.87 – 2.83 4.05 2.57 1.90

5 QSYM Time 680 5762 1010 TO 24870 3166 1403 13285 3.72x
Factor 8.83 3.36 2.19 – 2.37 3.73 2.22 1.97

6 MemLock Time 403 5032 923 69486 27824 2245 1310 10921 2.79x
Factor 5.23 2.93 2.00 3.16 2.65 2.65 2.07 1.62

7 RBZZER Time 77 1715 462 22019 10482 848 632 6749 1.00x

4.3 RQ2: Evaluation of Aimlessness and Starvation in RA
To verify the effectiveness of the proposed approach in addressing the issue of aimlessness, the

experiment utilized RBZZER to conduct tests on 6 target programs and extracted the seed files generated
by the fuzzer. Subsequently, DynamoRIO [36] and Lighthouse [37] were employed for seed execution trace
analysis, to statistically determine the proportion of seeds in the queue whose execution traces deviated from
the code regions leading to the target points.

4616 Comput Mater Contin. 2025;84(3)

The experimental results are shown in Table 3. During the vulnerability mining process for each target
program using RBZZER, 4653, 305, 2894, 1761, 732, and 3496 test cases were generated, respectively, and all
test cases were relevant seeds, with a relevance rate of 100%. This indicates that the approach presented in
this chapter can effectively filter out test cases related to memory leak vulnerabilities during the fuzz testing
process and discard other redundant test cases.

Table 3: The number of seeds and PML related seeds after fuzzing campaign of RBZZER on 6 programs

No. Program Total seeds Related seeds Proportion
1 xmllint 4653 4653 100%
2 imginfo 305 305 100%
3 pdftotext 2894 2894 100%
4 readelf 1761 1761 100%
5 swftophp 732 732 100%
6 mp42hls 3496 3496 100%

To verify whether RBZZER can alleviate the starvation problem in risk areas and ensure that all risk
areas of the programs are explored, we constructed risk areas for six target programs and conducted tests.
The results of the risk area construction are shown in Table 4. For the six target programs, we constructed 22
risk areas, specifically 2, 4, 5, 3, 4, and 4 risk areas for each program, respectively.

Table 4: The number of risk areas of 6 programs

No. Library Version Program Risk area
1 libxml2 2.11.7 xmllint 2
2 jasper 2.0 imginfo 4
3 Xpdf4 4.00 pdftotext 5
4 binutils 2.29 readelf 3
5 libming 0.4.8 swftophp 4
6 bento4 1.5.1 mp42hls 4

Subsequently, fuzz testing was conducted on the 6 programs under test, and the seed queues corre-
sponding to each risk area were obtained, with the number of seeds in each queue being tallied. Concurrently,
DynamoRIO and Lighthouse were utilized to perform execution trace analysis on the seeds in each
risk queue, calculating the proportion of seeds whose execution traces deviated from the risk areas. The
experimental results are depicted in Fig. 6. During the fuzz testing of the 6 programs under test using
RBZZER, no empty risk area seed queues were identified. The risk area queue with the fewest seeds was
Queue 0 of the risk area for pdftotext, which contained only 30 seeds. The execution traces of the seeds within
each risk area queue were all located within the respective risk areas, meaning that the proportion of relevant
seeds in each risk area queue was 100%.

Comput Mater Contin. 2025;84(3) 4617

Figure 6: The number of seeds and risk area related seeds after fuzzing campaign of RBZZER on 6 test programs

In summary, RBZZER is capable of effectively constructing risk areas and clustering the seeds generated
by the fuzzer based on these risk areas. Moreover, all risk areas were explored, with no risk areas suffering
from starvation. This outcome indicates that RBZZER can effectively address the problem of starvation.

4.4 RQ3: Evaluation of Unique Crashes
To assess the effectiveness of fuzzers, one effective metric is the count of unique crashes identified by

various fuzzers. Generally, a higher number of unique crashes suggests a greater likelihood of uncovering
additional unique vulnerabilities.

As shown in Table 5, the number of crashes found by 7 different fuzzers within 24 h in the 6 target
programs. It is worth noting that the crashes are all related to memory leak bugs. It can be observed
from the table that RBZZER discovered more crashes in all 6 target programs, with an improvement of
127%, 109%, 111%, 154%, 102%, and 52%, respectively, compared to state-of-the-art fuzzers AFL, AFLGo,
AFLfast, PerfFuzz, QSYM and MemLock. Among them, AFLGo performed surprisingly well, primarily
because we specified the locations of memory leak risk areas in this experiment. This demonstrates that
targeted guidance can effectively enable the fuzzer to trigger specific bugs. Moreover, we also conduct a
statistical test for the results. We apply the Mann-Whitney U-test [46] with a significance level of 0.05
to check the statistical significance differences of experimental results. The p-val statistic measures the
probability that RBZZER outperforms another fuzzer. A smaller statistical significance difference indicates
a more significant difference between MemLock and the competitor. Thus, we can conclude that RBZZER
significantly outperforms the other 6 state-of-the-art fuzzers in benchmark programs.

4618 Comput Mater Contin. 2025;84(3)

Table 5: The number of unique crashes related to memory leakage after 24 h run of 7 fuzzers on 6 test programs

No. Fuzzer xmllint imginfo pdftotext readelf swftophp mp42hls Total (Improve.)

1 AFL Crashes 58 25 14 5 22 25 149 (+127%)
p-val <0.01 <0.01 <0.01 0.04 <0.01 <0.01

2 AFLGo Crashes 62 28 19 5 23 25 162 (+109%)
p-val 0.01 0.02 <0.01 <0.01 <0.01 <0.01

3 AFLfast Crashes 66 26 16 5 24 23 160 (+111%)
p-val <0.01 <0.01 <0.01 0.01 <0.01 <0.01

4 PerfFuzz Crashes 64 5 18 3 23 20 133 (+154%)
p-val <0.01 0.01 <0.01 <0.01 <0.01 <0.01

5 QSYM Crashes 74 21 16 6 24 26 167 (+102%)
p-val <0.01 <0.01 0.01 0.02 <0.01 <0.01

6 MemLock Crashes 96 22 21 13 17 53 222 (+52%)
p-val 0.01 <0.01 <0.01 <0.01 0.01 <0.01

7 RBZZER Crashes 135 25 37 49 23 69 338 (+0%)

4.5 RQ4: Evaluation of Memory Leakage
To verify the advantages of RBZZER in detecting memory leaks, this experiment employed the approach

presented in this paper and other 6 fuzzers as the baseline tool to conduct fuzz testing on 6 target programs
for 24 h repeated 5 times, recording the maximum memory leakage detected by both tools.

Table 6 presents the specific number of memory leaks detected in the experiments. It can be observed
from the table that the maximum number of memory leaks detected by RBZZER in each program under
test with an improvement of 2067%, 1083%, 1391%, 1794%, 1994% and 112%, respectively, compared to state-
of-the-art fuzzers AFL, AFLGo, AFLfast, PerfFuzz, QSYM and MemLock. The p-val indicates that RBZZER
significantly outperforms the other 6 fuzzers. MemLock detected more memory leakage on mp42hls, the
primary reason for this phenomenon is that the target program under test contains a relatively small number
of memory operation function calls, and the fuzzer has designated only a few target points, thus no starvation
issue has arisen. Since the stub code volume of RBZZER is larger than that of the baseline tool MemLock, in
the absence of a starvation problem, this scheme requires more time to execute the stub code. Consequently,
within the same time frame, the number of memory leaks detected by this tool is fewer.

Table 6: The amount of memory leakage after 24 h run of RBZZER and MemLock on 6 test programs

No. Fuzzer xmllint imginfo pdftotext readelf swftophp mp42hls Total (Improve.)

1 AFL Leakage 97.29 KB 38.72 KB 3.88 MB 4.48 MB 47.39 KB 15.13 KB 8.76 MB (+2067%)
p-val <0.01 0.01 <0.01 <0.01 0.04 <0.01

2 AFLGo Leakage 205.73 KB 33.94 KB 3.02 MB 9.98 MB 1.24 MB 1.19 MB 16.04 MB (+1083%)
p-val <0.01 <0.01 <0.01 <0.01 <0.01 0.01

3 AFLfast Leakage 329.48 KB 35.80 KB 4.47 MB 7.48 MB 31.58 KB 90.23 KB 12.72 MB (+1391%)
p-val 0.02 <0.01 <0.01 0.01 <0.01 <0.01

4 PerfFuzz Leakage 142.42 KB 15.92 KB 5.82 MB 3.28 MB 530.35 KB 9.84 KB 10.01 MB (+1794%)
p-val <0.01 0.01 0.02 <0.01 <0.01 <0.01

5 QSYM Leakage 193.26 KB 28.44 KB 3.29 MB 4.15 MB 832.93 KB 1.38 MB 9.06 MB (+1994%)
p-val <0.01 0.02 <0.01 <0.01 <0.01 <0.01

6 MemLock Leakage 4.19 MB 477.23 KB 33.16 MB 45.49 MB 1.62 MB 2.64 MB 89.67 MB (+112%)
p-val <0.01 <0.01 0.03 <0.01 <0.01 <0.01

7 RBZZER Leakage 10.73 MB 46.90 MB 34.55 MB 72.83 MB 18.10 MB 2.18 MB 189.74 MB (+0%)

Moreover, given that RBZZER and MemLock detected significantly more memory leaks compared to
other fuzzers, we proceeded to compare the memory leak detection speeds of MemLock and RBZZER,
and we recorded the time taken by both to detect the same amount of memory leakage. The experimental

Comput Mater Contin. 2025;84(3) 4619

results are shown in Fig. 7. Compared with MemLock, RBZZER achieved a maximum speedup of 38.7x and
a minimum speedup of 1.12x in detecting memory leaks during the fuzz testing of each program under test,
with an average speedup of 9.10x. This is because, with the assistance of the directed guidance mechanism,
the fuzzer can filter out a large number of irrelevant seeds in the early stage of fuzz testing, and use the saved
time to discover potential memory leak vulnerabilities in the program.

Figure 7: The time consumed to detect the same amount of memory leaks of RBZZER and MemLock

4.6 Case Study
Taking the memory leak in xmlPatternCompile function discovered during our experiments with

xmllint as an example, we analyze the test process outputs of different fuzzers to better understand how
RBZZER differs from other approaches. We also utilized DynamoRIO and Lighthouse to examine seeds’
traces, counting the number of seeds that reached the risk area and the memory lekage triggered within the
24-h testing period at each time checkpoint, with the results illustrated in Fig. 8.

From the results, we observe that RBZZER was the fastest to generate seeds reaching the risk area,
followed by AFLGo. In contrast, MemLock and other fuzzers lacking directed guidance mechanisms
generally underperformed, taking approximately 9 h longer than RBZZER to produce seeds covering the
target regions. This demonstrates the effectiveness of directed guidance mechanisms. Furthermore, since
RBZZER also retains a memory consumption guidance mechanism, it consistently triggered larger memory
leaks compared to AFL, AFLGo, AFLfast and other approaches lacking this capability. Overall, the testing
process data presented in the figure validates the effectiveness of RBZZER’s design.

4620 Comput Mater Contin. 2025;84(3)

Figure 8: The number of seeds generated from and amount of memory leakage detected by 7 fuzzers in 24 h on an risk
area in xmllint

5 Related Work

5.1 Memory Vulnerability Detection Technology
Static memory vulnerability detection techniques conduct static analysis on the source code, compi-

lation of intermediate data, and executable files of the target program. Smoke [47] proposed a method for
detecting memory leak vulnerabilities in large-scale code projects, enhancing the scalability and detection
accuracy of memory leak vulnerability detection techniques. PCA [48] proposed a solution for detecting
memory leak vulnerabilities using static analysis techniques based on data flow to capture abnormal data
flows with lower overhead, thereby identifying memory vulnerabilities in programs. MVD+ [49] is a memory
vulnerability detection method based on deep learning. This method adopts a hierarchical representation
learning strategy to learn the syntactic and semantic features of vulnerable code, which has improved the
accuracy of detecting memory-related vulnerabilities and reduced the probabilities of false positives and
false negatives.

Dynamic memory vulnerability detection techniques monitor the memory allocation, deallocation, and
access behaviors during the execution of a program. Valgrind [50] simulates the execution of a program,
monitoring dynamic memory allocation and deallocation in real-time, as well as detecting potential memory
errors during runtime. Fuzz testing is a popular dynamic vulnerability mining technique currently in use.
Scholars have recognized the efficiency of fuzz testing in memory vulnerability mining and have proposed
research plans [21,24,25]. However, the aforementioned studies have focused on discovering memory
corruption vulnerabilities and have not paid attention to memory leak vulnerabilities. Unlike memory
corruption vulnerabilities, memory leak vulnerabilities do not immediately cause errors or trigger other
abnormal conditions when triggered; only when the program repeatedly triggers such vulnerabilities will
abnormal situations truly occur. Therefore, detecting memory leak vulnerabilities is more time-consuming
than detecting memory corruption vulnerabilities. MemLock [26], as a popular fuzz testing tool specifically
designed for detecting memory leak vulnerabilities in programs, can automatically discover memory leak
vulnerabilities. This tool first performs static analysis on the program to identify statements related to
memory consumption and instruments these statements to monitor the memory consumption during the
program’s execution. Although the memory monitoring and guidance mechanism proposed by MemLock is

Comput Mater Contin. 2025;84(3) 4621

very effective in detecting memory leak vulnerabilities, it still has issues: The guidance mechanism used by
MemLock is blind in practice.

5.2 Directed Fuzzing Techniques
Directed fuzz testing techniques guide the fuzzer to generate test cases that can reach specific target

locations in the program more efficiently by calculating the distance between test cases and the program’s
target points. Table 7 presents a summary and comparison of strategies employed by relevant directed
fuzzers. These approaches address the performance waste issues faced by grey-box fuzz testing techniques
in scenarios such as vulnerability reproduction and patch verification, as exemplified by AFLGo [7].
Hawkeye [51] has conducted a comprehensive optimization of AFLGo, redefining the distance metric and
considering and analyzing issues such as function reachability, pointer indirect calls, and seed energy
allocation. WindRanger [38] pointed out that the distance values calculated in Hawkeye and AFLGo do
not truly represent the difficulty of test cases reaching the target points, as they lack the utilization of the
difficulty in satisfying the constraints in the program execution paths. Based on this, WindRanger proposed
a solution based on deviation basic blocks. In response to the path explosion problem in directed fuzz testing,
BEACON [52] proposed a lightweight infeasible path pruning method based on static analysis, which to
some extent alleviates the troubles brought by path explosion to directed fuzz testing. VDFuzz [53] proposes
a vulnerability-oriented directed strategy that integrates static analysis to pinpoint high-risk code regions
and dynamic fuzzing to guide test cases toward these vulnerable paths. This hybrid approach enhances bug
detection precision and speed in binary programs, outperforming traditional fuzzing methods. SFDS [54]
proposes a directional seed generation framework to accelerate fuzzing that enables Human-In-The-Loop
(HITL) directed fuzzing where the human assumes a more active role in the creation of seeds that can
penetrate and assess desired locations of the program under test.

Table 7: The strategy of relevant directed fuzzers

Strategy AFLGo
[7]

Beacon
[52]

Hawkeye
[51]

SFDS
[54]

VDFuzz
[53]

WindRanger
[38]

Distance ✓ ✓ ✓ × × ✓
Path prune × ✓ × × × ×

Weighted coverage × × ✓ x ✓ x
Human-In-The-Loop × × × ✓ × ×

6 Limitations and Future Work

6.1 Risk Assessment Metric for PML/Risk Areas
The directed fuzzing mechanism proposed in this work incorporates automated identification of PML

by scanning memory operation function calls and designating them as target locations, significantly reducing
manual effort. However, when target programs contain numerous memory operations, effectively evaluating
the risk level of each target site remains challenging. By establishing an assessment metric to quantify
the probability of memory leaks at PML/Risk Areas, the efficiency of our approach could be substantially
improved. Furthermore, the assessment mtric will facilitate more informed seed selection. This enhancement
is particularly valuable because our current scheduling scheme primarily addresses seed starvation but lacks
comprehensive seed quality assessment.

4622 Comput Mater Contin. 2025;84(3)

6.2 Technical Generalizability
While the primary focus of our approach is memory leak detection, the proposed solution is theoret-

ically applicable to most multi-target directed fuzzing scenarios. In future work, reducing system coupling
is expected to enhance generalization capability, thereby extending the framework’s applicability to broader
vulnerability discovery tasks, particularly Use-After-Free (UAF) detection. However, it is crucial to develop
vulnerability-specific guidance strategies - for instance, enforcing strict temporal ordering between use and
free operations when detecting UAF vulnerabilities.

6.3 Ready for Deployment
Although we do not illustrate how RBZZER might be deployed in a real software development lifecycle,

we consider that RBZZER is not only effective on open-source programs but also can be deployed in a real
software development lifecycle. RBZZER is a standard grey-box fuzzer designed to enhance software security
through fuzzing like any other grey-box fuzzer. It specializes in dynamic testing of software functional
modules, interfaces, and referenced libraries to detect vulnerabilities, particularly memory leaks. As a
CI/CD-compatible solution, RBZZER operates in two critical phases: (1) During continuous integration
(CI), it automatically triggers fuzzing upon code commits or merges to the main branch, complementing
static code analysis and unit testing; (2) In continuous deployment (CD), it performs fuzzing on generated
instrumented binaries or APIs post-build.

7 Conclusion
This paper addresses the aimlessness issue in memory leak vulnerability fuzz testing by introducing

directed fuzz testing technology, presenting a memory leak-directed guidance mechanism based on devia-
tion probability; in response to the starvation problem of memory leak points, a seed scheduling strategy
based on risk areas is proposed. We implemented and named the above methods as RBZZER. Experimental
results show that RBZZER finds 52% more program unique crashes than the second-best counterpart. In
particular, RBZZER can discover the amount of memory leakage at least 112% more than the other baseline
fuzzers. Besides, RBZZER detects memory leaks at an average speed that is 9.10x faster than MemLock.

Acknowledgement: The authors are grateful for the highly constructive engagement by the reviewers and editors.

Funding Statement: This work is supported by the National Key R&D Program of China (No. 2021YFB3101803).

Author Contributions: The authors confirm contribution to the paper as follows: study conception and design: Xi
Peng, Peng Jia; data collection: Xi Peng; analysis and interpretation of results: Xi Peng, Ximing Fan, Jiayong Liu;
draft manuscript preparation: Xi Peng, Jiayong Liu. All authors reviewed the results and approved the final version of
the manuscript.

Availability of Data and Materials: The data that support the findings of this study are available from the corresponding
author, Peng Jia, upon reasonable request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

Comput Mater Contin. 2025;84(3) 4623

References
1. Michal Z. American fuzzy lop. 2013. [cited 2025 May 21]. Available from: https://lcamtuf.coredump.cx/afl/.
2. Hodován R, Vince D, Kiss K. Fuzzing javascript environment APIs with interdependent function calls. In: Ahrendt

W, Tapia Tarifa S, editors. Integrated formal methods. IFM 2019. Lecture notes in computer science. 2019. Vol.
11918. Cham, Switzerland: Springer. doi:10.1007/978-3-030-34968-4_12.

3. Zhou C, Zhang Q, Wang M, Guo L, Liang J, Liu Z, et al. Minerva: browser API fuzzing with dynamic mod-ref
analysis. In: Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering; Singapore; 2022. p. 1135–47. doi:10.1145/3540250.3549107.

4. Scharnowski T, Bars N, Schloegel M, Gustafson E, Muench M, Vigna G, et al. Fuzzware: using precise MMIO mod-
eling for effective firmware fuzzing. In: 31st USENIX Security Symposium (USENIX Security 22); 2022; Boston,
MA, USA [cited 2025 May 21]. p. 1239–56. Available from: https://www.usenix.org/conference/usenixsecurity22/
presentation/scharnowski.

5. Li W, Shi J, Li F, Lin J, Wang W, Guan L. μAFL: non-intrusive feedback-driven fuzzing for microcontroller firmware.
In: Proceedings of the 44th International Conference on Software Engineering; Pittsburgh, PA, USA; 2022. p. 1–12.
doi:10.1145/3510003.3510208.

6. Kim H, Jeong Y, Choi W, Lee DH, Jo HJ. Efficient ECU analysis technology through structure-aware CAN fuzzing.
IEEE Access. 2022;10(260):23259–71. doi:10.1109/ACCESS.2022.3151358.

7. Böhme M, Pham VT, Nguyen MD, Roychoudhury A. Directed greybox fuzzing. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security; Dallas, TX, USA; 2017. p. 2329–44. doi:10.1145/
3133956.3134020.

8. Godefroid P, Kiezun A, Levin MY. Grammar-based whitebox fuzzing. In: Proceedings of the 29th ACM SIGPLAN
Conference on Programming Language Design and Implementation; Tucson, AZ, USA; 2008. p. 206–15. doi:10.
1145/1375581.1375607.

9. Godefroid P, Levin MY, Molnar DA. Automated whitebox fuzz testing. NDSS. 2008 [cited 2025 May 21]; 8:151–66.
Available from: https://www.ndss-symposium.org/ndss2008/automated-whitebox-fuzz-testing/.

10. Liu Y, Li Y, Deng G, Liu Y, Wan R, Wu R, et al. Morest: model-based RESTful API testing with execution feedback.
In: Proceedings of the 44th International Conference on Software Engineering; Pittsburgh, PA, USA; 2022. p.
1406–17. doi:10.1145/3510003.3510133.

11. Tsai CH, Tsai SC, Huang SK. REST API fuzzing by coverage level guided blackbox testing. In: 2021 IEEE 21st
International Conference on Software Quality, Reliability and Security (QRS); 2021; Hainan, China: IEEE. p.
291–300. doi:10.1109/QRS54544.2021.00040.

12. Mansur MN, Christakis M, Wüstholz V, Zhang F. Detecting critical bugs in SMT solvers using blackbox mutational
fuzzing. In: Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering; 2020. p. 701–12. doi:10.1145/3368089.3409763.

13. Liang J, Wang M, Zhou C, Wu Z, Jiang Y, Liu J, et al. PATA: fuzzing with path aware taint analysis. In: 2022 IEEE
Symposium on Security and Privacy (SP); San Francisco, CA, USA: IEEE; 2022. p. 1–17. doi:10.1109/SP46214.2022.
9833594.

14. Wu M, Jiang L, Xiang J, Huang Y, Cui H, Zhang L, et al. One fuzzing strategy to rule them all. In: Proceedings of
the 44th International Conference on Software Engineering; Pittsburgh, PA, USA; 2022. p. 1634–45. doi:10.1145/
3510003.3510174.

15. Wang J, Chen B, Wei L, Liu Y. Skyfire: data-driven seed generation for fuzzing. In: 2017 IEEE Symposium on
Security and Privacy (SP); San Jose, CA, USA: IEEE; 2017. p. 579–94. doi:10.1109/SP.2017.23.

16. Wang Y, Jia X, Liu Y, Zeng K, Bao T, Wu D, et al. Not all coverage measurements are equal: fuzzing by coverage
accounting for input prioritization. In: Network and Distributed Systems Security (NDSS) Symposium; 2020 Feb;
San Diego, CA, USA. p. 23–6. doi:10.14722/ndss.2020.24422.

17. Chen Y, Zhong R, Hu H, Zhang H, Yang Y, Wu D, et al. One engine to fuzz’em all: generic language processor
testing with semantic validation. In: 2021 IEEE Symposium on Security and Privacy (SP); San Francisco, CA, USA:
IEEE; 2021. p. 642–58. doi:10.1109/SP40001.2021.00071.

https://lcamtuf.coredump.cx/afl/
https://doi.org/10.1007/978-3-030-34968-4_12
https://doi.org/10.1145/3540250.3549107
https://www.usenix.org/conference/usenixsecurity22/presentation/scharnowski
https://www.usenix.org/conference/usenixsecurity22/presentation/scharnowski
https://doi.org/10.1145/3510003.3510208
https://doi.org/10.1109/ACCESS.2022.3151358
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/1375581.1375607
https://doi.org/10.1145/1375581.1375607
https://www.ndss-symposium.org/ndss2008/automated-whitebox-fuzz-testing/
https://doi.org/10.1145/3510003.3510133
https://doi.org/10.1109/QRS54544.2021.00040
https://doi.org/10.1145/3368089.3409763
https://doi.org/10.1109/SP46214.2022.9833594
https://doi.org/10.1109/SP46214.2022.9833594
https://doi.org/10.1145/3510003.3510174
https://doi.org/10.1145/3510003.3510174
https://doi.org/10.1109/SP.2017.23
https://doi.org/10.14722/ndss.2020.24422
https://doi.org/10.1109/SP40001.2021.00071

4624 Comput Mater Contin. 2025;84(3)

18. MITRE. CVE-2018-17985; 2018 [cited 2025 May 21]. Available from: https://www.cve.org/CVERecord?id=CVE-
2018-17985.

19. MITRE. CVE-2019-6262; 2019 [cited 2025 May 21]. Available from: https://www.cve.org/CVERecord?id=CVE-
2019-6262.

20. Islam U, Muhammad A, Mansoor R, Hossain MS, Ahmad I, Eldin ET, et al. Detection of distributed denial
of service (DDoS) attacks in IOT based monitoring system of banking sector using machine learning models.
Sustainability. 2022;14(14):8374. doi:10.3390/su14148374.

21. Wu W, Chen Y, Xu J, Xing X, Gong X, Zou W. FUZE: towards facilitating exploit generation for kernel
Use-After-Free vulnerabilities. In: 27th USENIX Security Symposium (USENIX Security 18); 2018 [cited 2025
May 21]; Baltimore, MD, USA. p. 781–97. Available from: https://www.usenix.org/conference/usenixsecurity18/
presentation/wu-wei.

22. Zheng Y, Li Y, Zhang C, Zhu H, Liu Y, Sun L. Efficient greybox fuzzing of applications in Linux-based IoT devices
via enhanced user-mode emulation. In: Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis; 2022. p. 417–28. doi:10.1145/3533767.3534414.

23. Wang H, Xie X, Li Y, Wen C, Li Y, Liu Y, et al. Typestate-guided fuzzer for discovering use-after-free vulnerabilities.
In: Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering; Seoul, Republic of
Korea; 2020. p. 999–1010. doi:10.1145/3377811.3380386.

24. Yu Y, Jia X, Liu Y, Wang Y, Sang Q, Zhang C, et al. HTFuzz: heap operation sequence sensitive fuzzing. In:
Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering; Rochester, MI,
USA; 2022. p. 1–13. doi:10.1145/3551349.3560415.

25. Lee G, Shim W, Lee B. Constraint-guided directed greybox fuzzing. In: 30th USENIX Security Symposium
(USENIX Security 21); 2021 [cited 2025 May 21]. p. 3559–76. Available from: https://www.usenix.org/conference/
usenixsecurity21/presentation/lee-gwangmu.

26. Wen C, Wang H, Li Y, Qin S, Liu Y, Xu Z, et al. Memlock: memory usage guided fuzzing. In: Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering; Seoul, Republic of Korea; 2020. p. 765–77.
doi:10.1145/3377811.3380396.

27. Böhme M, Pham VT, Roychoudhury A. Coverage-based greybox fuzzing as markov chain. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security; Vienna, Austria; 2016. p. 1032–43.
doi:10.1145/2976749.2978428.

28. Lemieux C, Padhye R, Sen K, Song D. Perffuzz: automatically generating pathological inputs. In: Proceedings of
the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis; Amsterdam, Netherlands;
2018. p. 254–65. doi:10.1145/3213846.3213874.

29. Yun I, Lee S, Xu M, Jang Y, Kim T. QSYM: a practical concolic execution engine tailored for hybrid fuzzing. In: 27th
USENIX Security Symposium (USENIX Security 18); 2018 [cited 2025 May 21]; Baltimore, MD, USA. p. 745–61.
Available from: https://www.usenix.org/conference/usenixsecurity18/presentation/yun.

30. MITRE. CWE:401: missing release of memory after effective lifetime. [cited 2025 May 21]. Available from: https://
cwe.mitre.org/data/definitions/401.html.

31. Yu Z, Liu Z, Cong X, Li X, Yin L. Fuzzing: progress, challenges, and perspectives. Comput Mater Contin.
2024;78(1):1–29. doi:10.32604/cmc.2023.042361.

32. MITRE. CVE-2019-20023. 2019 [cited 2025 May 21]. Available from: https://www.cve.org/CVERecord?id=CVE-
2019-20023.

33. GNOME. libxml2. 2024 [cited 2025 May 21]. Available from: https://gitlab.gnome.org/GNOME/libxml2.
34. JasPer. jasper. 2024 [cited 2025 May 21]. Available from: https://github.com/jasper-software/jasper/tree/

release-2.0.
35. Patrice L, Sébastien LA. Xpdf-4.00; 2024 [cited 2025 May 21]. Available from: https://github.com/kermitt2/xpdf-

4.00.
36. DynamoRio. DynamoRio; 2024 [cited 2025 May 21]. Available from: https://github.com/DynamoRIO/dynamorio.
37. Gaasedelen M. Lighthouse; 2024 [cited 2025 May 21]. Available from: https://github.com/gaasedelen/lighthouse.

https://www.cve.org/CVERecord?id=CVE-2018-17985
https://www.cve.org/CVERecord?id=CVE-2018-17985
https://www.cve.org/CVERecord?id=CVE-2019-6262
https://www.cve.org/CVERecord?id=CVE-2019-6262
https://doi.org/10.3390/su14148374
https://www.usenix.org/conference/usenixsecurity18/presentation/wu-wei
https://www.usenix.org/conference/usenixsecurity18/presentation/wu-wei
https://doi.org/10.1145/3533767.3534414
https://doi.org/10.1145/3377811.3380386
https://doi.org/10.1145/3551349.3560415
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-gwangmu
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-gwangmu
https://doi.org/10.1145/3377811.3380396
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/3213846.3213874
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/401.html
https://doi.org/10.32604/cmc.2023.042361
https://www.cve.org/CVERecord?id=CVE-2019-20023
https://www.cve.org/CVERecord?id=CVE-2019-20023
https://gitlab.gnome.org/GNOME/libxml2
https://github.com/jasper-software/jasper/tree/release-2.0
https://github.com/jasper-software/jasper/tree/release-2.0
https://github.com/kermitt2/xpdf-4.00
https://github.com/kermitt2/xpdf-4.00
https://github.com/DynamoRIO/dynamorio
https://github.com/gaasedelen/lighthouse

Comput Mater Contin. 2025;84(3) 4625

38. Du Z, Li Y, Liu Y, Mao B. Windranger: a directed greybox fuzzer driven by deviation basic blocks. In: Proceedings
of the 44th International Conference on Software Engineering; Pittsburgh, PA, USA; 2022. p. 2440–51. doi:10.1145/
3510003.3510197.

39. Li Y, Ji S, Chen Y, Liang S, Lee WH, Chen Y, et al. UNIFUZZ: a holistic and pragmatic metrics-driven platform
for evaluating fuzzers. In: 30th USENIX Security Symposium (USENIX Security 21); 2021 [cited 2025 May 21]. p.
2777–94. Available from: https://www.usenix.org/conference/usenixsecurity21/presentation/li-yuwei.

40. Gan S, Zhang C, Qin X, Tu X, Li K, Pei Z, et al. Collafl: path sensitive fuzzing. In: 2018 IEEE Symposium on Security
and Privacy (SP); 2018; Francisco, CA, USA: IEEE. p. 679–96. doi:10.1109/SP.2018.00040.

41. Klees G, Ruef A, Cooper B, Wei S, Hicks M. Evaluating fuzz testing. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security; Toronto, ON, Canada; 2018. p. 2123–38. doi:10.1145/
3243734.3243804.

42. Lemieux C, Sen K. Fairfuzz: a targeted mutation strategy for increasing greybox fuzz testing coverage. In:
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering; Montpellier,
France; 2018. p. 475–85. doi:10.1145/3238147.3238176.

43. Foundation FS. GNU Binutils; 2024 [cited 2025 May 21]. Available from: https://github.com/bminor/binutils-gdb/
tree/users/hjl/linux/release/2.29.51.0.1.

44. libming. libming; 2024 [cited 2025 May 21]. Available from: https://github.com/libming/libming/tree/
ming-0_4_8.

45. Systems A. Bento4; 2024 [cited 2025 May 21]. Available from: https://github.com/axiomatic-systems/Bento4/tree/
v1.5.1-620.

46. Arcuri A, Briand L. A practical guide for using statistical tests to assess randomized algorithms in software
engineering. In: Proceedings of the 33rd International Conference on Software Engineering; Waikiki, HI, USA;
2011. p. 1–10. doi:10.1145/1985793.1985795.

47. Fan G, Wu R, Shi Q, Xiao X, Zhou J, Zhang C. Smoke: scalable path-sensitive memory leak detection for millions
of lines of code. In: 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE); Montreal, QC,
Canada: IEEE; 2019. p. 72–82. doi:10.1109/ICSE.2019.00025.

48. Li W, Cai H, Sui Y, Manz D. PCA: memory leak detection using partial call-path analysis. In: Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering; 2020. p. 1621–5. doi:10.1145/3368089.3417923.

49. Cao S, Sun X, Bo L, Wu R, Li B, Wu X, et al. Learning to detect memory-related vulnerabilities. ACM Transactions
on Software Engineering and Methodology. 2023;33(2):1–35. doi:10.1145/3624744.

50. Cerion AB, Christian B, Jeremy F, Paul F, Tom H, Petar J et al. Valgrind; 2024 [cited 2025 May 21]. Available from:
https://valgrind.org/.

51. Chen H, Xue Y, Li Y, Chen B, Xie X, Wu X, et al. Hawkeye: towards a desired directed grey-box fuzzer. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security; Toronto, ON,
Canada; 2018. p. 2095–108. doi:10.1145/3243734.3243849.

52. Huang H, Guo Y, Shi Q, Yao P, Wu R, Zhang C. Beacon: directed grey-box fuzzing with provable path pruning. In:
2022 IEEE Symposium on Security and Privacy (SP); San Francisco, CA, USA: IEEE; 2022. p. 36–50. doi:10.1109/
SP46214.2022.9833751.

53. Yu L, Lu Y, Shen Y, Li Y, Pan Z. Vulnerability-oriented directed fuzzing for binary programs. Sci Rep.
2022;12(1):4271. doi:10.1038/s41598-022-07355-5.

54. Koffi KA, Kampourakis V, Kolias C, Song J, Ivans RC. Speeding-up fuzzing through directional seeds. Int J Inf
Secur. 2025;24(2):77. doi:10.1007/s10207-024-00953-6.

https://doi.org/10.1145/3510003.3510197
https://doi.org/10.1145/3510003.3510197
https://www.usenix.org/conference/usenixsecurity21/presentation/li-yuwei
https://doi.org/10.1109/SP.2018.00040
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3238147.3238176
https://github.com/bminor/binutils-gdb/tree/users/hjl/linux/release/2.29.51.0.1
https://github.com/bminor/binutils-gdb/tree/users/hjl/linux/release/2.29.51.0.1
https://github.com/libming/libming/tree/ming-0_4_8
https://github.com/libming/libming/tree/ming-0_4_8
https://github.com/axiomatic-systems/Bento4/tree/v1.5.1-620
https://github.com/axiomatic-systems/Bento4/tree/v1.5.1-620
https://doi.org/10.1145/1985793.1985795
https://doi.org/10.1109/ICSE.2019.00025
https://doi.org/10.1145/3368089.3417923
https://doi.org/10.1145/3624744
https://valgrind.org/
https://doi.org/10.1145/3243734.3243849
https://doi.org/10.1109/SP46214.2022.9833751
https://doi.org/10.1109/SP46214.2022.9833751
https://doi.org/10.1038/s41598-022-07355-5
https://doi.org/10.1007/s10207-024-00953-6

	RBZZER: A Directed Fuzzing Technique for Efficient Detection of Memory Leaks via Risk Area Analysis
	1 Introduction
	2 Motivation
	3 Approach of RBZZER
	4 Evaluation
	5 Related Work
	6 Limitations and Future Work
	7 Conclusion
	References

