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ABSTRACT: Cyber threat detection is a crucial aspect of contemporary cybersecurity due to the depth and complexity
of cyberattacks. It is the identification of malicious activity, unauthorized access, and possible intrusions in networks
and systems. Modern detection methods employ artificial intelligence and machine learning to study vast amounts
of data, learn patterns, and anticipate potential threats. Real-time monitoring and anomaly detection improve the
capacity to react to changing threats more rapidly. Cyber threat detection systems aim to reduce false positives and
provide complete coverage against the broadest possible attacks. This research advocates for proactive measures and
adaptive technologies in defending digital environments. Improvements in detection ability by organizations will
assist in safeguarding assets and integrity in operations in this increasingly digital world. This paper draws on the
categorization of cyber threat detection methods using hesitant bipolar fuzzy Frank operators. Categorization is a step
that is necessary for systematic comparison and assessment of detection methods so that the most suitable method
for particular cybersecurity requirements is chosen. Furthermore, this research manages uncertainty and vagueness
that exists in decision-making by applying hesitant bipolar fuzzy logic. The importance of the work lies in how it
fortifies cybersecurity architectures with a formal method of discovering optimal detection measures and improving
responsiveness, resulting in holistic protection against dynamic threats.
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1 Introduction

Cybersecurity has turned into an essential part of modern digital life as cyber-attack’s frequency
and complexity keep rising. Organizations worldwide are increasingly faced with threats like phishing,
ransomware, denial-of-service attacks, advanced persistent threats, and others that bring about operations
disruption, loss of sensitive data, and possible financial loss. The ability to detect and mitigate these threats
in real-time has emerged as a critical requirement to ensure the security and integrity of digital systems.
Advances in technology have, in turn, propelled threat detection techniques. Artificial intelligence and
machine learning are critical in the sense that they analyze huge volumes of data to find anomalies and
detect malicious activities. It can be said that techniques, such as behavior-based detection, signature-based
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detection, and anomaly detection, enhance the capabilities of cybersecurity systems. Moreover, real-time
monitoring, adaptive algorithms, and predictive analytics are an integral part of modern threat detection
frameworks. The growth of the cybersecurity market for threat detection is discussed in Fig. 1.

Figure 1: Estimated growth trajectory of the cybersecurity market for advanced threat detection solutions from 2023
to 2030

However, with these advancements and the sheer volume of data, as well as changing cyber threats,
it proves to be difficult to design such systems that can detect threats consistently without producing
false positives and false negatives. The presence of uncertainty and ambiguity while dealing with complex
decision-making often fails to be handled effectively by traditional methods. These reasons have led to
searching for more advanced techniques in handling multi-criteria evaluation and providing precise results
in an uncertain environment. Classification of detection techniques becomes important in this context to
understand the strengths, limitations, and applicability of each method. A well-structured classification
framework helps organizations pick the best-suited detection strategy for their needs, which will make
their cybersecurity measures efficient and effective. This manuscript presents a new approach to the
classification of cyber threat detection techniques based on hesitant bipolar fuzzy (HBF) Frank operators.
Using HBF logic, the proposed framework deals with the uncertainty and imprecision that arise in an
evaluation process regarding detection techniques. The decision-making process is advanced using Frank
operators. This enables an in-depth study of competitive techniques. This research will provide a strong
and flexible classification system that will guide the development and deployment of optimized cyber threat
detection strategies. Some key steps involved in cyber threat detection are data collection, processing, threat
identification, classification or analysis, and mitigation strategy. Data is first collected from the networks
and devices. Then it is processed for noise removal before further analysis. Threat identification helps to
spot irregular activities or vulnerabilities. They classify or analyze threats, understand their types, and then
estimate the probable impact. They finally develop strategies for mitigating threats to neutralize them so that



Comput Mater Contin. 2025;84(3) 4701

such incidents may not happen in the future. These three steps make for a complete security system against
cyber-attacks. Moreover, the cyber threat detection steps are discussed in Fig. 2.

Figure 2: Key stages in the cyber threat detection process, including identification, analysis, mitigation, and response
strategies

Q: Why is the classification of cyber threat detection techniques necessary in today’s cybersecurity
landscape?

The classification of cyber threat detection techniques is very important in today’s fast-changing
cybersecurity landscape, especially with the increasing complexity and frequency of cyberattacks. As
organizations face diverse threats, ranging from phishing and ransomware to advanced persistent threats,
a structured classification enables the systematic evaluation of detection methods. It identifies the most
effective techniques for specific scenarios, ensuring efficient resource allocation and improved protection.
This provides an understanding of the existing methods’ shortcomings and strengths, leading to innovative
new systems and highly developed and flexible detection mechanisms. Classifications are vital to modern,
information technology societies because the loss or exploitation of digital data can cause far-reaching effects,
ranging from minor annoyances to financial disasters and other disastrous ends. Moreover, Fig. 3 discusses
the classification and rising market adoption of cyber threat detection techniques.
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Figure 3: Increasing market adoption of advanced cyber threat detection techniques across industries, demonstrating
growth from 2018 to 2024

1.1 Significance of HBF Framework in MCDM
The HBF approach represents a very important issue to MCDM techniques when considering uncer-

tainty and imprecision associated with decision-making activities. Real-world decision-makers regularly
meet situations where they are unaware of the exact values or prefer two alternatives in conflict under
situations where multiple alternatives exist according to various criteria for evaluating the alternatives.
The HBF framework can be used to express both positive and negative membership values and hesitancy.
Therefore, the model would be more flexible and realistic for capturing the vagueness and ambiguity
involved in decision-making. In MCDM, where one has to compare alternatives with multiple attributes,
the HBF framework helps enhance the quality of the decision by being able to incorporate multiple
conflicting criteria. It offers a means of articulating uncertain judgments and preferences to present a more
subtle appreciation of how alternatives perform concerning one another. Under this framework, MCDM
methodologies can generate more robust and more consistent results even when dealing with incomplete,
uncertain, or inconsistent information. This also enhances the robustness of decision-making models,
ensuring superior outcomes in complex, multi-attribute environments, including cybersecurity, resource
allocation, or technological selection. The below Fig. 4 shows the capability and limitations of the proposed
theory in MCDM.
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Figure 4: Key advantages and limitations of hesitant bipolar fuzzy sets in MCDM applications

1.2 Taxonomy of Cyberattacks and Detection Methods
Organizations must depend on cyber threat detection as their core security element to spot and manage

harmful activities that aim at their computer systems and networks. Information security expert teams use
detection approaches that match attack characteristics among the different cyberattacks including malware
infections and distributed denial-of-service (DDoS) attacks. System detection success depends on how
well detection systems recognize abnormal behaviors that could signal potential malicious activities from
typical normal activity patterns. An organization relies on signature-based detection and anomaly detection
and behavioral analysis to track and analyze cybersecurity threats. The following part examines standard
cyberattack types through a classification system along with detection strategy analysis for specific threat
varieties.

(a) DDoS (Distributed Denial-of-Service) Attacks: Attackers execute DDoS attacks through network
service flooding with extremely high traffic volumes that blocks access for permitted users. Detection
systems for DDoS attacks perform traffic pattern analysis together with anomaly detection algorithm
automation. Security solutions compare present traffic data against typical baseline patterns in order
to detect unusual spikes or irregular traffic patterns which signal possible DDoS attacks.
Example: The anomaly-based detection method detects the large amount of typical suspicious requests
during a DDoS attack through which administrators can take preventive actions to block suspicious
IP addresses.

(b) Malware Detection: The goal of malware attacks is to breach and damage systems through various
threats like viruses together with worms and ransomware. The detection of known malware through
files and behaviors relies on signature-based methods that match database signatures. Behavioral
detection methods monitor system activities for malicious behavior, such as unusual file modifications
or unauthorized data access.
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Example: Security software uses signature detection to recognize familiar malware types but behav-
ioral analysis examines system activities for ransomware through monitoring of abnormal file
encryption patterns.

(c) Advanced Persistent Threats (APT): Following extensive durations APTs utilize professional methods
to perform their advanced attacks for the theft of confidential information. The detection methods for
APTs operate through signature-based detection together with anomaly detection and user behavior
analytics (UBA). Recording methods analyze the small deviations between normal network traffic
patterns and user behavior means when compared against typical patterns.
Example: Network traffic analysis and detection of users making unexpected file access during
abnormal hours can help detect APTs.

(d) Phishing Attacks: Social engineering through phishing tactics makes attackers trick users to hand over
sensitive information such as password or financial data. The detection of phishing activities depends
on machine learning together with natural language processing (NLP) to recognize abnormal email
patterns and text along with unusual communication behaviors.
Example: The detection system analyzes email content for frequent suspicious indicators which
include untrusted senders and suspicious links to warn users about possible phishing attempts.

1.3 Layout of the Manuscript
This manuscript is divided into several sections to make the content readable and understandable.

In Section 1, we give an overview of the manuscript and explain what it is about and why. Section 2 discusses
our research problem and the main contribution of our work in light of that problem. In Section 3, we
present a review of previous literature to demonstrate how our work fits into and pushes forward the
current research. Section 4 discusses fundamental concepts and operations that support this research. New
aggregation operators are introduced and explained to facilitate the research in Section 5. Section 6 has
described the MCDM technique used in this work; furthermore, the case study regarding cyber threat
detection techniques for next-generation cyber defense systems is presented here. We compare our proposed
approach against other related theories to highlight its robustness and effectiveness in Section 7. Finally,
in Section 8, the manuscript is concluded by summarizing the key findings and the overall contributions of
this work. A graphic representation of the above methodology is discussed in Fig. 5.

Figure 5: Graphical representation of the proposed manuscript
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2 Research Problem and Contribution
With the escalating complexity of cyber threats, the most appropriate choice of cyber threat detection

technique is a critical challenge for modern cybersecurity systems. Traditional methods of detection, which
are mostly based on uncertainties and the dynamic nature of cyber threats, often provide inaccurate results.
Existing decision-making models, such as fuzzy sets, hesitant fuzzy sets, or bipolar fuzzy sets, have short-
comings in dealing with conflicting information and the uncertainty involved in multi-criteria evaluations.
This manuscript develops a classification framework for cyber threat detection techniques using the HBF
framework to enhance the decision-making process by overcoming the shortcomings of conventional
fuzzy logic systems. The HBF framework is required to classify cyber threat detection techniques since
it is better suited for dealing with uncertainty, imprecision, and conflicting criteria than the traditional
fuzzy approaches. Here we discuss underneath why it is particularly relevant to the classification process.
Traditional fuzzy sets introduce a possibility of representing vagueness, but an element can have only a
degree of membership, which would sometimes be too simple for imprecise information and incompleteness
available in the problem. Moreover, in cyber threat detection, there are often quite many attributes to be
tested regarding detection speed, accuracy, and scalability, with uncertain or incomplete information for
each attribute, in turn making fuzzy sets inapplicable for accurate decision-making. While hesitant fuzzy
sets extend fuzzy sets by allowing the possibility of multiple membership values for an element, they cannot
still properly deal with situations that contain both positive and negative information. The introduction
of positive and negative membership values in bipolar fuzzy sets makes it possible to include both the
advantageous and disadvantageous aspects of alternatives. However, it faces the demerit that it cannot capture
the entire uncertainty scale of the state of being uncertain. It fails to reveal the importance of criteria when
decision-makers are uncertain or in disagreements on the set of criteria. The HBF framework amalgamates
the merits of hesitant fuzzy sets and bipolar fuzzy sets. It allows the expression of more than one hesitant value
both in positive and negative memberships. Thus, it takes care of inherent uncertainty and imprecision within
decision-making processes. It is a framework that represents more accurately the decision environment
in which criteria may conflict or are uncertain. This framework enables a more specific categorization in
the context of cyber threat detection by considering the positive and negative attributes of the detection
techniques involved.

2.1 Contribution
This paper aims to bridge the current gaps in existing frameworks and methodologies for cyber threat

detection through a new theory supported by HBF Frank aggregation operators. To improve the classification
of cyber threat detection techniques, we develop a set of novel aggregation operators such as hesitant
bipolar fuzzy Frank weighted averaging (HBFFWA), hesitant bipolar fuzzy Frank ordered weighted averaging
(HBFFOWA), hesitant bipolar fuzzy Frank weighted geometric (HBFFWG), and hesitant bipolar fuzzy Frank
ordered weighted geometric (HBFFOWG) operators. These operators are specifically developed to address
the challenges of uncertainty and imprecision in decision-making by integrating multiple criteria with both
positive and negative evaluations. Using these HBFF operators, we introduce an MCDM methodology tai-
lored for the classification and prioritization of cyber threat detection techniques. This methodology makes
possible more precise and credible choices of methods for detection based on inconsistent and uncertain
data. The given methodology provides a systematic means to assess the alternatives considering several
performance criteria. Besides, we consider the same methodology for an illustrative case study in cyber
threat detection techniques and illustrate how such aggregation operators enhance the decision-making
capability in real-world scenarios related to cybersecurity. We also provide a comprehensive comparative
analysis of the proposed method with existing approaches in the field. Finally, the manuscript concludes
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with insights into the effectiveness of the proposed framework and its potential for future applications in
enhancing cybersecurity measures. The flow chart of main contributions is discussed in Fig. 6.

Figure 6: Main contributions flow chart such as aggregation operators, MCDM, case study and analysis

3 Literature Review
With the growing intensity of cyber-attacks, the detection as well as mitigation requirements are of high

end. Hence, artificial intelligence and machine learning-based approaches to the development of effective
as well as precise cybersecurity measures received much attention up till now. The methods proposed to
attain better threat detection were neural networks, deep learning, and adaptive defense mechanisms. These
studies underscore that the need lies in dynamic adaptation towards combating newer, ever-increasing cyber
threats. Different related studies are discussed as; Labu and Ahammed [1] point out second-generation
AI-oriented strategies for timely detection and reaction against cyber-attacks, based on the anticipation
of intelligent system behavior to better proactively uncover emerging risks beforehand. For discussion,
Shaukat et al. [2] have produced a comprehensive analysis that relates to the state-of-the-art techniques
in cyber threat detection employing machine learning with insights into comparative performance across
multiple scenarios. Bridging the theoretical advancement and application in real scenarios, this is enabling
practitioners to choose models apt for specific security needs. Similarly, Balantrapu [3] discusses current
trends and future directions in using machine learning for cybersecurity scalable and automated solutions
that will be able to address the rising volume and complexity of cyberattacks. This also shows how
cybersecurity is evolving from static rule-based systems to dynamic, self-learning algorithms. In addition,
Lee et al. [4] propose a model of artificial neural networks through event profiles, showing the system’s
ability to process large quantities of data without delay for identifying anomalies. Rajendran et al. [5] develop
this type of story using deep learning along with anomaly detection techniques, and bring forth robust
frameworks that are excellent at identifying complex and subtle patterns of malicious activity. Aminu et al. [6]
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work by integrating real-time threat intelligence into adaptive defense mechanisms and thus, a dynamic
and responsive system is provided that not only detects threats but also adapts to their evolving nature. In
addition to these recent developments, Maddireddy and Maddireddy [7] emphasize the use of deep learning
models for the improvement of cybersecurity protocols, which shows how neural network architectures can
improve detection accuracy and efficiency. Their study emphasizes the scalability of deep learning solutions
in large-scale environments, providing robust defenses against known and unknown threats. Lakhno [8]
has been the first to present an adaptive cyber threat detection system based on fuzzy feature clustering,
which very effectively manages the uncertainties and incomplete data so often faced in cybersecurity. It
thereby reveals the potential usefulness of fuzzy logic to construct robust and adaptable detection algorithms
capable of functioning in vaguer than normal environments. Ullah et al. [9] with an innovative hybrid system
combining transfer learning with multi-model image representation of cyber threats, that considerably
strengthens detection precision as well as robustness of scalability of systems across the range of diversified
dynamic landscapes.

3.1 MCDM Technique
The literature on MCDM techniques unfolds as reflective of their evolution, diversity in application,

and importance in a multiplicity of domains. Massam [10] delivers a more fundamental survey on MCDM
methods in the context of planning, exposing their ability to address complex decision-making scenarios,
and accommodating diverse criteria. It reveals early conceptions of the scope of flexibility and adaptability
in MCDM techniques in structuring and solving planning problems. On this basis, Zavadskas et al. [11]
discuss the application of MCDM in business process information management. They pointed out the
importance of integrating MCDM techniques to ensure the effectiveness of decision-making in information
systems. Sahoo and Goswami [12] present a thorough review of advances in MCDM methods in their
contemporary applications and future research directions. Their work highlighted that these methods keep
evolving as more and more practical applications spring forth in everyday fields. Kumar et al. [13] showed
how MCDM can contribute toward sustainable renewable energy development by directing critical decisions
for resource allocation, technology choice, and policy formation toward accomplishing the long-term goals
of sustainability at a global level. Alghamdi et al. [14] presented MCDM within the bipolar fuzzy environment
that exposes how the fuzziness involved may be beneficial to the management of uncertainties when dealing
with decision-making. Riaz et al. [15] have extended the scope of bipolar fuzzy MCDM by designing new
distance measures and operators, which help enhance the accuracy and reliability of decision-making. This
methodology maximizes the applicability of MCDM in bipolar assessment problems. Riaz et al. [16] also
extended the cubic bipolar fuzzy Dombi aggregation operators to present a strong structure toward resolving
the great MCDM complexities with greater degrees of fuzziness. The VIKOR MCDM approach experiences
an extension by Gul [17] through his introduction of a bipolar fuzzy preference model based on δ-covering
and bipolar fuzzy rough set theory. The research builds upon decision-making processes through its addition
of uncertain preference structures that enable higher precision during alternative classification and choice
determination. Bhol [18] examines MCDM techniques for cybersecurity applications and demonstrates their
ability to handle security operations that include threat detection and risk evaluation. The analysis evaluates
diverse MCDM techniques such as AHP and TOPSIS aligned with VIKOR by proving their effectiveness for
cybersecurity solution evaluation. Ali [19] develops fairly aggregation operators that operate with complex
p, q-rung ortho-pair fuzzy sets for solving real-world decision-making problems. The study develops a new
method for combining vague data which results in better delivery of reliable decision outcomes. Kumar and
Pamucar [20] conducted an extensive review of MCDM methodologies that have emerged from 2004 to
2024. Their comprehensive study evaluates numerous MCDM methodologies by investigating their basic
concepts and their breakthroughs as well as their utilization across numerous sectors. Ali et al. [21] developed
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a decision-making methodology based on intuitionistic fuzzy soft information and Aczel-Alsina operational
laws. A solution combining fuzzy logic elements with decision-making structures increases both flexibility
and robustness in their system. The identification of suitable encryption algorithms through hesitant bipolar
complex fuzzy Frank aggregation operators forms the basis of Mahmood et al.’s research [22]. MCDM
techniques apply fuzzy logic for encryption algorithm selection according to their research because it lets
users evaluate multiple performance criteria at once. Aslam et al. [23] use hesitant bipolar complex fuzzy
Dombi aggregation operators to apply MCDM techniques during their study on cloud service provider
selection. Waqas et al. [24] improve the process of cloud security selection. MCDM methodologies prove
adaptable for security analysis through their research which presents structured evaluation methods for
security measures. Multiple domains benefit from MCDM technique evolution through these research works
which demonstrate widespread applications.

4 Fundamentals
In this section, we discuss the basic notion of HBFSs and their related operations and contributions.

Definition 1: [25] Let ₤ be an HBFS under the universal set U then,

₤ = {< �̇, -B₤ (�̇) > ∣�̇ ∈ U} = {< �̇, (-B+₤ (�̇), -B−₤ (�̇)) > ∣�̇ ∈ U} (1)

where, -B+₤ (�̇) = {-B+₤ j
(�̇), j = 1, 2, ..., } ∈ [0, 1] and -B−₤ (�̇) = {-B−₤k

¯
(�̇), k. = 1, 2, ..., } ∈ [−1, 0] are the set of

finite values that show the positive and negative parts of the membership grade for each �̇ ∈ U. For easiness
HBFN is identified by -B = (-B+, -B−).
Definition 2: [25] Let -B = (-B+, -B−), -B1 = (-B+1 , -B−1 ) and -B2 = (-B+2 , -B−2 ) be three HBFNs then,

1.-Bc = ( ⋃
˙+∈-B+

{(1 − ˙+)} , ⋃
˙−∈-B− ,

{(−1 − ˙−)})

2.-B1 ∪ -B2 =
⎛
⎝ ⋃

˙+1 ∈-B+1 ,˙+2 ∈-B+2
{max (˙+1 , ˙+2 )} , ⋃

˙−1 ∈-B−1 ,˙−2 ∈-B−2
{min (˙−1 , ˙−2 )}

⎞
⎠

3.-B1 ∩ -B2 =
⎛
⎝ ⋃

˙+1 ∈-B+1 ,˙+2 ∈-B+2
{min (˙+1 , ˙+2 )} , ⋃

˙−1 ∈-B−1 ,˙−2 ∈-B−2
{max (˙−1 , ˙−2 )}

⎞
⎠

Definition 3: [25] Let -B, -B1 and -B2 be three HBCFNs and λ > 0 then,

1.-B1 ⊕ -B2 =
⎛
⎝ ⋃

˙+1 ∈-B+1 ,˙+2 ∈-B+2
{(˙+1 + ˙+2 − ˙+1 ˙+2 )} , ⋃

˙−1 ∈-B−1 ,˙−2 ∈-B−2
{(−˙−1 ˙−2 )}

⎞
⎠

2.-B1 ⊗ -B2 =
⎛
⎝ ⋃

˙+1 ∈-B+1 ,˙+2 ∈-B+2
{(˙+1 ˙+2 )} , ⋃

˙−1 ∈-B−1 ,˙−2 ∈-B−2
{(˙−1 + ˙−2 + ˙−1 ˙−2 )}

⎞
⎠

3.-Bλ = ( ⋃
˙+∈-B+

{(˙+)λ} , ⋃
˙−∈-B−

{(−1 + (1 + ˙−)λ)})

4.λ-B = ( ⋃
˙+∈-B+

{(1 − (1 − ˙+)λ)} , ⋃
˙−∈-B−

{(− ∣˙−∣λ)})
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Definition 4: [25] Let -B be an HBFN then the score and accuracy function are,

score (-B) = 1
2
⎛
⎝

1
L˙+

∑
˙+∈-B+

˙+ − 1
L˙−

∑
˙−∈-B−

˙−
⎞
⎠

, score (-B) ∈ [0, 1] (2)

accuracy (-B) = 1
2
⎛
⎝

1
L˙+

∑
˙+∈-B+

˙+ + 1
L˙−

∑
˙−∈-B−

˙−
⎞
⎠

, accuracy (-B) ∈ [0, 1] (3)

Definition 5: [26] Let α1 , α2 be two real numbers, then Frank t-norm and Frank t-conorm are defined by,

Frank(t−norm) (α1 , α2) = log (1 + ( α 1 − 1) ( α2 − 1)
− 1

), ∈ (0,+∞) (4)

Frank(t−conorm) (α1 , α2) = 1 − log
⎛
⎝

1 +
( 1−α 1 − 1) ( 1−α2 − 1)

− 1
⎞
⎠

, ∈ (0,+∞) (5)

4.1 HBF Frank Operational Laws
In this subsection, we discuss HBF operational laws based on Frank t-norm and Frank t-conorm.

Definition 6: Let -B1 and -B2 be two HBFNs and > 1, λ > 0 be any real numbers then the operations for
HBFNs based on Frank t-norm and Frank t-conorm are defined as,

1.-B1 ⊕ -B2 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

⋃
˙+1 ∈-B+1 ,˙+2 ∈-B+2

⎧⎪⎪⎨⎪⎪⎩
1 − log

⎛
⎝

1 +
( 1− ˙+

1 −1)( 1− ˙+
2 −1)

−1

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
,

⋃
˙−1 ∈-B−1 ,˙−2 ∈-B−2

⎧⎪⎪⎨⎪⎪⎩
−
⎛
⎝

log
⎛
⎝

1 +
( − ˙−

1 −1)( − ˙−
2 −1)

−1

⎞
⎠
⎞
⎠

⎫⎪⎪⎬⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟
⎠

2.-B1 ⊗ -B2 =

⎛
⎜⎜⎜⎜⎜⎜
⎝

⋃
˙+1 ∈-B+1 ,˙+2 ∈-B+2

⎧⎪⎪⎨⎪⎪⎩
log

⎛
⎝

1 +
(

˙+
1 −1)(

˙+
2 −1)

−1

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
,

⋃
˙−1 ∈-B−1 ,˙−2 ∈-B−2

⎧⎪⎪⎨⎪⎪⎩
−1 + log

⎛
⎝

1 +
( 1+ ˙−

1 −1)( 1+ ˙−
2 −1)

−1

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟
⎠

3.λ-B1 =
⎛
⎜⎜
⎝
⋃

˙+1 ∈-B+1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − log

⎛
⎜⎜
⎝

1 +
( 1−˙+1 − 1)

λ

( − 1)λ−1

⎞
⎟⎟
⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, ⋃

˙−1 ∈-B−1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−
⎛
⎜⎜
⎝

log
⎛
⎜⎜
⎝

1 +
( −˙−1 − 1)

λ

( − 1)λ−1

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎞
⎟⎟
⎠

4.-Bλ
1 =

⎛
⎜⎜
⎝
⋃

˙+1 ∈-B+1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
log

⎛
⎜⎜
⎝

1 +
( ˙+1 − 1)

λ

( − 1)λ−1

⎞
⎟⎟
⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, ⋃

˙−1 ∈-B−1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1 + log

⎛
⎜⎜
⎝

1 +
( 1+˙−1 − 1)

λ

( − 1)λ−1

⎞
⎟⎟
⎠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎞
⎟⎟
⎠

Theorem 1: Let -B1 and -B2 be two HBFNs, > 1, and λ, λ1 , λ2 > 0, then the following holds,

1. -B1 ⊕ -B2 = -B2 ⊕ -B1
2. -B1 ⊗ -B2 = -B2 ⊗ -B1
3. λ (-B1 ⊕ -B2) = λ-B1 ⊕ λ-B2

4. (-B1 ⊗ -B2)λ = -B1
λ ⊗ -B2

λ

5. λ1-B1 ⊕ λ2-B1 = (λ1 + λ2) -B1
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5 HBF Frank Aggregation Operators
In this section, we proposed several new aggregation operators such as HBFFWA, HBFFOWA,

HBFFWG, and HBFFOWG operators.

5.1 HBF Frank Arithmetic Aggregation Operators
Definition 7: Let -B = (-B+, -B−) ( = 1, 2, 3, ..., ý) be a collection of HBFNs, then the HBFFWA operator is
defined as,

HBFFWA (-B1, -B2, ..., -Bý) =
ý

⊕
= 1

(₩ -B ) (6)

where, ₩ = (₩1 , ₩2, ..., ₩ý)–T be the weights of -B = (-B+, -B−) ( = 1, 2, 3, ..., ý) with ₩ ∈ [0, 1] and
∑ý
=1 ₩ = 1.

Theorem 2: Let -B = (-B+, -B−) ( = 1, 2, 3, ..., ý) be the collection of HBFNs, then from above (6) we have,

HBFFWA (-B1, -B2, . . . , -Bý) =

⎛
⎜⎜⎜⎜
⎝

⋃
˙+1 ∈-B+1 , . . . ,˙+ý ∈-B+ý

{1 − log (1 +
ý

∏
=1
( 1−˙+ − 1)

₩
)} ,

⋃
˙−1 ∈-B−1 , . . . ,˙−ý ∈-B−ý

{− log (1 +
ý

∏
=1
( −˙− − 1)

₩
)}

⎞
⎟⎟⎟⎟
⎠

(7)

Proof: Based on mathematical induction methodology, for ý = 2, we have ◻

HBFFWA (-B1, -B2) = ₩1-B1 ⊕₩2-B2

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⋃
˙+1 ∈-B+1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − log

⎛
⎜
⎝

1 +
(

˙+
1 −1)

₩1

( −1)₩1−1

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

⋃
˙−1 ∈-B−1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
⎛
⎜
⎝

log
⎛
⎜
⎝

1 +
( − ˙−

1 −1)
₩1

( −1)₩1−1

⎞
⎟
⎠

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⊕

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⋃
˙+1 ∈-B+1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − log

⎛
⎜
⎝

1 +
( 1− ˙+

2 −1)
₩2

( −1)₩2−1

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

⋃
˙−1 ∈-B−1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
⎛
⎜
⎝

log
⎛
⎜
⎝

1 +
( − ˙−

2 −1)
₩2

( −1)₩2−1

⎞
⎟
⎠

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⋃
˙+1 ∈-B+1 ,˙+2 ∈-B+2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − log

⎛
⎜
⎝

1 +
∏2
=1(

1− ˙+
−1)

₩

( −1)∑
2
=1 ₩ −1

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⋃
˙−1 ∈-B−1 ,˙−2 ∈-B−2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
⎛
⎜
⎝

log
⎛
⎜
⎝

1 +
∏2
=1(

− ˙−
−1)

₩

( −1)∑
2
=1 ₩ −1

⎞
⎟
⎠

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠
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Hence (7) holds for ý = 2. Next, we assume that (7) is true for some then,

HBFFWA (-B1, -B2, . . . , -B ) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⋃
˙+1 ∈-B+1 , . . . ,˙+∈-B+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − log

⎛
⎜
⎝

1 +
∏ =1(

1− ˙+
−1)

₩

( −1)∑ =1 ₩ −1

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

⋃
˙−1 ∈-B−1 , . . . ,˙−∈-B−

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
⎛
⎜
⎝

log
⎛
⎜
⎝

1 +
∏ =1(

− ˙−
−1)

₩

( −1)∑ =1 ₩ −1

⎞
⎟
⎠

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

Next, we have to show (7) is true for ý = + 1.

HBFFWA (-B1, -B2, . . . , -B , -B +1) = HBFFWA (-B1, -B2, . . . , -B ) ⊕₩ +1-B +1

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⋃
˙+1 ∈-B+1 , . . . ,˙+∈-B+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − log

⎛
⎜
⎝

1 +
∏ =1(

1− ˙+
−1)

₩

( −1)∑ =1 ₩ −1

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⋃
˙−1 ∈-B−1 , . . . ,˙−∈-B−

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
⎛
⎜
⎝

log
⎛
⎜
⎝

1 +
∏ =1(

− ˙−
−1)

₩

( −1)∑ =1 ₩ −1

⎞
⎟
⎠

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

⊕

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⋃
˙+1 ∈-B+1 , . . . ,˙+∈-B+ ,˙+

+1
∈-B+

+1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − log

⎛
⎜
⎝

1 +
( 1− ˙+

+1−1)
₩

+1

( −1)₩ +1−1

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

⋃
˙−1 ∈-B−1 , . . . ,˙−∈-B− ,˙−

+1
∈-B−

+1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
⎛
⎜
⎝

log
⎛
⎜
⎝

1 +
( − ˙−

+1−1)
₩

+1

( −1)₩ +1−1

⎞
⎟
⎠

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

⋃
˙+1 ∈-B+1 , . . . ,˙+∈-B+ ,˙+

+1
∈-B+

+1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − log

⎛
⎜
⎝

1 +
∏ +1
=1 (

1− ˙+
−1)

₩

( −1)∑
+1
=1 ₩ −1

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

⋃
˙−1 ∈-B−1 , . . . ,˙−∈-B− ,˙−

+1
∈-B−

+1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
⎛
⎜
⎝

log
⎛
⎜
⎝

1 +
∏ +1
=1 (

− ˙−
−1)

₩

( −1)∑
+1
=1 ₩ −1

⎞
⎟
⎠

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

(8)

Hence, (8) is true for ý = + 1. Therefore, (8) holds for ∀ý. If 0 ≤ ₩ ≤ 1, and ∑ý
=1 ₩ = 1, then (8)

converts to (7).
Definition 8: Let -B = (-B+, -B−) ( = 1, 2, 3, ..., ý) be the collection of HBFNs, then the HBFFOWA operator
is defined as,

HBFFOWA (-B1, -B2, ..., -Bý) =
ý

⊕
= 1

(₩ -Bφ( )) (9)

where, ₩ = (₩1 , ₩2, ..., ₩ý)
–T be the weights of -B = (-B+, -B−) ( = 1, 2, 3, ..., ý), ₩ ∈ [0, 1] and ∑ý

=1
₩ = 1. Also note that (φ (1), φ (2), . . . , φ (ý)) is the permutation of = 1, 2, ..., ý with -Bφ( −1) ≥ -Bφ( )∀ .
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Theorem 3: Let -B = (-B+, -B−) ( = 1, 2, 3, ..., ý) be the collection of HBFNs, then by utilizing the above (9)
we have,

HBFFOWA (-B1, -B2, . . . , -Bý) =

⎛
⎜⎜⎜⎜
⎝

⋃
˙+1 ∈-B+1 , . . . ,˙+ý ∈-B+ý

{1 − log (1 +
ý

∏
=1
( 1−˙+φ( ) − 1)

₩
)} ,

⋃
˙−1 ∈-B−1 , . . . ,˙−ý ∈-B−ý

{−(log (1 +
ý

∏
=1
( −˙−φ( ) − 1)

₩
))}

⎞
⎟⎟⎟⎟
⎠

(10)

5.2 HBF Frank Geometric Aggregation Operators
Definition 9: Let -B = (-B+, -B−) ( = 1, 2, 3, ..., ý) be the collection of HBFNs, then the HBFFWG operator is
defined as,

HBFFWG (-B1, -B2, . . . , -Bý) =
ý

⊗
= 1

(-B )₩ (11)

where, ₩ = (₩1 , ₩2, ..., ₩ý)–T be the weights of -B = (-B+, -B−) ( = 1, 2, 3, ..., ý) with ₩ ∈ [0, 1] and
∑ý
=1 ₩ = 1.

Theorem 4: Let -B = (-B+, -B−) ( = 1, 2, 3, ..., ý) be the collection of HBFNs, then by using (11) we have,

HBFFWG (-B1, -B2, . . . , -Bý) =

⎛
⎜⎜⎜⎜
⎝

⋃
˙+1 ∈-B+1 , . . . ,˙+ý ∈-B+ý

{log (1 +
ý

∏
=1
( ˙+ − 1)

₩
)}

⋃
˙−1 ∈-B−1 , . . . ,˙−ý ∈-B−ý

{−1 + log (1 +
ý

∏
=1
( 1+˙− − 1)

₩
)}

⎞
⎟⎟⎟⎟
⎠

(12)

Definition 10: Let -B = (-B+, -B−) ( = 1, 2, 3, ..., ý) be the collection of HBFNs, then the HBFFOWG operator
is defined as,

HBFFOWG (-B1, -B2, ..., -Bý) =
ý

⊗
= 1

(-Bφ( ))
₩ (13)

where, ₩ = (₩1 , ₩2, ..., ₩ý)
–T are the weights of -B = (-B+, -B−) ( = 1, 2, 3, ..., ý), ₩ ∈ [0, 1] and ∑ý

=1
₩ = 1. Moreover, φ (1), φ (2), . . . , φ (ý) is the permutation of = 1, 2, ..., ý with -Bφ( −1) ≥ -Bφ( )∀ .
Theorem 5: Let -B = (-B+, -B−) ( = 1, 2, 3, ..., ý) be a collection of HBFNs, then by using (13) we have,

HBFFOWG (-B1, -B2, . . . , -Bý) =

⎛
⎜⎜⎜⎜
⎝

⋃
˙+1 ∈-B+1 , . . . ,˙+ý ∈-B+ý

{log (1 +
ý

∏
=1
( ˙+φ( ) − 1)

₩
)}

⋃
˙−1 ∈-B−1 , . . . ,˙−ý ∈-B−ý

{−1 + log (1 +
ý

∏
=1
( 1+˙−φ( ) − 1)

₩
)}

⎞
⎟⎟⎟⎟
⎠

(14)

Note that the all above-defined operators must satisfy the properties of idempotency, boundedness,
and monotonicity.

6 MCDM Methodology
In this section, we introduce the MCDM approach for the classification of cyber threat detection

techniques for next-generation cyber defense based on the proposed HBF Frank operators.
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Suppose there are alternatives A
˚

( = 1, 2, ..., ) and attributes μ (μ = 1, 2, ..., ) along with
attribute weights ₩ = (₩1 , ₩2, ..., ₩ )–T, ₩ ∈ [0, 1] and ∑μ=1 ₩μ = 1. Now we assume that the HBF
decision matrix is D

¯
= (Ǩ μ) × = (-B+μ , -B−μ) × . Where, -B+μ ∈ [0, 1] and -B−μ ∈ [−1, 0].

Next, we have the following algorithm steps to solve the MCDM technique.
Step-1: In this step, we convert the cost type attribute into benefit type and for this, we have the following

formula,

Ǩ μ =
⎧⎪⎪⎨⎪⎪⎩

(˙+μ , ˙−μ)For benefit type of attribute
(1 − ˙+μ ,−1 − ˙−μ)For cost type of attribute

Step-2: Use the HBFFWA or HBFFWG operators that are given below to aggregate all the values,

HBFFWA (-B1, -B2, . . . , -Bý) =

⎛
⎜⎜⎜⎜
⎝

⋃
˙+1 ∈-B+1 , . . . ,˙+ý ∈-B+ý

{1 − log (1 +
ý

∏
=1
( 1−˙+ − 1)

₩
)} ,

⋃
˙−1 ∈-B−1 , . . . ,˙−ý ∈-B−ý

{− log (1 +
ý

∏
=1
( −˙− − 1)

₩
)}

⎞
⎟⎟⎟⎟
⎠

(15)

HBFFWG (-B1, -B2, . . . , -Bý) =

⎛
⎜⎜⎜⎜
⎝

⋃
˙+1 ∈-B+1 , . . . ,˙+ý ∈-B+ý

{log (1 +
ý

∏
=1
( ˙+ − 1)

₩
)}

⋃
˙−1 ∈-B−1 , . . . ,˙−ý ∈-B−ý

{−1 + log (1 +
ý

∏
=1
( 1+˙− − 1)

₩
)}

⎞
⎟⎟⎟⎟
⎠

(16)

Step-3: Determine the score values as; score (Ǩ ) ( = 1, 2, ..., ).
Step-4: Rank all the alternatives A

˚
( = 1, 2, ..., ).

Step-5: Choose the best alternative.

6.1 Case Study
In this case study, we are considering the selection of cyber threat detection techniques for a financial

institution. The sensitive customer information, transaction integrity, and overall system reliability are at
the top of the priority list for this institution. The threats it faces range from insider attacks to fraud, data
breaches, and DDoS attacks. The objective is to analyze several types of detection methods concerning their
speed of threat identification and responsiveness, along with false positive risks. In light of the high stakes,
the detection methods would need to be accurate, dynamically adaptive to emerging threats, and scalable as
the load of data grows. The evaluation of these alternatives will be made by using a few performance attributes
to identify the technique with the most successful and reliable defense; the detailed cyber threat detection
techniques as an alternative are discussed in Table 1.
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Table 1: Different cyber threat detection techniques

Notions Alternatives Explanations
A
˚1 Signature-Based

Detection (SBD)
Signature-based detection represents one of the most dominant kinds

of cyber threat detection. It uses predefined signatures of known
threats for comparison against incoming traffic or system activity. The
method is highly effective for detecting known threats but fails against
new unknown attacks and zero-day vulnerabilities. It can be deployed
in an environment where known attack patterns dominate but are less

likely to do well in rapidly evolving threat landscapes.
A
˚2 Anomaly-Based

Detection (ABD)
Detection in anomaly-based refers to how systems monitor system

behavior and alert upon deviation from regular activity. In this way, it
detects very well any newly launched attack that is previously not

known since no predefined signatures have to be sought. False positives
may sometimes appear if a suitable baseline for the normal activity was

not identified beforehand. The more dynamic this is, the better it
applies, especially where very new forms of attacks occur.

A
˚3 Heuristic-Based

Detection (HBD)
Detection based on heuristics uses algorithms to analyze malicious

behavior based on known patterns of actions rather than on signatures.
This heuristic method can detect potential threats that have not been

seen before by simply looking at abnormal patterns like unusual
network traffic or file access behaviors. While effective in finding novel

threats, sometimes this would often result in false positives if the
heuristic rules were poorly fine-tuned. Heuristic methods can

complement signature-based approaches by adding a layer of detection
for new threats.

A
˚4 Machine

Learning-Based
Detection
(MLBD)

Detection by machine learning relies on the usage of sophisticated
algorithms, such as decision trees, neural networks, and support vector
machines, for analyzing vast datasets and discovering intricate patterns
of attacks. The approach can improve over time with learning from new
data, hence proving to be quite effective for the detection of advanced
and adaptive attacks. However, it is very demanding of computational

resources and labeled training data, and it can have difficulties with
adversarial attacks that manipulate the learning process.
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The criteria for cyber threat detection techniques are discussed in Table 2.

Table 2: Criteria for cyber threat detection techniques

Notions Criteria Explanations

1 Detection
accuracy

Detection accuracy is a property of a cyber threat detection technique
in that it can correctly identify the true threats within the least possible
false positives and false negatives. Higher detection accuracy ensures

less occurrence of missed attacks and unwanted alerts. Techniques that
have higher accuracy can enhance overall security effectiveness by
letting legitimate threats be reported while allowing others to stay

undisturbed. However, perfect accuracy cannot be met; there is always
a false positive and negative trade-off.

2 Real-time
response

capability

The capability of giving a real-time response indicates the time it would
take for the detection system to identify and act upon a possible threat
once identified. Speed plays an important role in cybersecurity as most
cyber threats develop rapidly. Hence, an immediate response is often

the key to preventing critical damage. For environments such as
e-commerce sites where customer information and transaction

integrity are of extreme importance, methods with faster response
times, like anomaly-based or machine learning-based detection, work

well.
3 Scalability Scalability means the ability of a cyber threat detection technique to

handle the increased amounts of data, traffic, and system load without
performance drops. As e-commerce platforms grow, they will need to

ensure that their methods for detecting threats are also scalable to
handle huge quantities of transactions and user activity. Highly scalable

detection techniques are ideal for rapidly growing digital
infrastructures and include machine learning-based or cloud-based

solutions.
4 Resource

efficiency
Resource efficiency is defined as the amount of computational and

network resources that a detection technique needs to achieve
effectiveness. Highly resource-intensive cyber threat detection systems

may not be highly feasible when there is an extremely less
infrastructural environment or under real-time applications.

Techniques that seek a balance between detection performance with an
economical usage of resources, such as signature-based or

heuristic-based methods, are most suited to environments having a low
computational capacity or cheap setups.

For selecting the best cyber threat detection technique, the financial institution has the following expert
decision matrix and attribute weights μ (μ = 1, 2, 3, 4) are (0.3, 0.2, 0.4, 0.1). Next, we utilize the above-
defined step-wise algorithm as;

The expert decision matrix in the form of HBF information is discussed in Table 3.
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Table 3: Expert decision matrix based on HBFSs

1 2 3 4

A
˚1

⎛
⎜
⎝
{(0.2721),
(0.2891)} ,

{(−0.1472)}

⎞
⎟
⎠

⎛
⎜⎜⎜⎜
⎝

{(0.0988),
(0.1910) } ,

{(−0.2731),
(−0.3480)}

⎞
⎟⎟⎟⎟
⎠

({(0.8912)} ,
{(−0.2222)})

⎛
⎜
⎝
{(0.9181),
(0.9888)} ,

{(−0.9011)}

⎞
⎟
⎠

A
˚2

⎛
⎜⎜⎜⎜
⎝

{(0.2911),
(0.2671)} ,

{(−0.2626),
(−0.8189) }

⎞
⎟⎟⎟⎟
⎠

⎛
⎜
⎝
{(0.1811),
(0.1601)} ,

{(−0.5165)}

⎞
⎟
⎠

⎛
⎜
⎝
{(0.8191),
(0.1201)} ,

{(−0.2728)}

⎞
⎟
⎠

({(0.1012)} ,
{(−0.8171)})

A
˚3 ( {(0.1781)} ,

{(−0.7707)})
⎛
⎜
⎝
{(0.2109),
(0.9001)} ,

{(−0.4511)}

⎞
⎟
⎠

({(0.0081)} ,
{(−0.2627)})

⎛
⎜⎜⎜⎜
⎝

{(0.1617),
(0.1811) } ,

{(−0.7012),
(−0.4980)}

⎞
⎟⎟⎟⎟
⎠

A
˚4

⎛
⎜⎜⎜⎜
⎝

{(0.2567),
(0.2728)} ,

{(−0.2828),
(−0.4666)}

⎞
⎟⎟⎟⎟
⎠

⎛
⎜
⎝
{(0.1811),
(0.0911)} ,

{(−0.1171)}

⎞
⎟
⎠

⎛
⎜⎜⎜⎜
⎝

{(0.1022),
(0.2829)} ,

{(−0.9681),
(−0.1717) }

⎞
⎟⎟⎟⎟
⎠

⎛
⎜
⎝
{(0.1711),
(0.2029)} ,

{(−0.0707)}

⎞
⎟
⎠

Step 1: Given that Table 3 provides data specific to each type of benefit, normalization is unnecessary
Step 2: For = 4 use the HBFFWA operators to determine all the preferences values Ǩ .

Ǩ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0.808293),
(0.837868),
(0.813935),
(0.842789),
(0.810023),
(0.839378),
(0.815624),
(0.844261)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

{(−0.14597),
(−0.15352) }

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Ǩ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0.721728),
(0.508532),
(0.719973),
(0.506021),
(0.718468),
(0.503972),
(0.716699),
(0.501349)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

{(−0.21012),
(−0.30033),}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Ǩ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(0.468518),
(0.469725)
(0.614598),
(0.615603)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

,

{(−0.27715),
(−0.26699)}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Ǩ4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0.501835), (0.503766),
(0.544974), (0.546811),
(0.491176), (0.493129),
(0.534827), (0.536687),
(0.504935), (0.50686),
(0.547923), (0.549753),
(0.494311), (0.496257),
(0.536687), (0.539666)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(−0.22648),
(−0.1028),
(−0.26192),
(−0.12154)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Step 3: The obtained score values of score (Ǩ ) ( = 1, 2, 3, 4) of the overall HBFNs (Ǩ ) ( = 1, 2, 3, 4)
are discussed in Table 4.

Table 4: Score values based on HBFFWA operators

Notions Score values
score (Ǩ1) 0.488132
score (Ǩ2) 0.433654
score (Ǩ3) 0.407092
score (Ǩ4) 0.349332

Step 4: Rank all the platform A
˚

( = 1, 2, 3, 4)with the following score values, score (Ǩ ) ( = 1, 2, 3, 4)
of the overall HBFNs.

A
˚1 > A

˚2 > A
˚3 > A

˚4

Step 5: A
˚1 is selected as the best cyber threat detection technique for next-generation cyber defense.

The graphical representation of the ranking of cyber threat detection techniques for next-generation
cyber defense based on HBFFWA operators is discussed in Fig. 7.

Figure 7: Graphical representation of the ranking of cyber threat detection techniques based on hesitant bipolar fuzzy
frank weighted averaging (HBFFWA) operators

If we use the HBFFWG operator instead of the HBFFWA operator then all the above steps are similar
to the HBFFWG framework.
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Step 1: The given data in Table 3 is benefit type so there is no need to normalize it.
Step 2: For = 4 use the HBFFWG operator to determine all the preferences values Ǩ .

Ǩ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0.266345),
(0.730984),
(0.29636),
(0.299242),
(0.27074),
(0.273443),
(0.30110),
(0.304013)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

{(−0.59597),
(−0.60479)}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Ǩ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0.231544),
(0.101628),
(0.226618),
(0.099148),
(0.226009),
(0.098842),
(0.221173),
(0.096423)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

{(−0.6386),
(−0.75703)}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Ǩ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(0.033306),
(0.033716),
(0.048696),
(0.049285)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

,

{(−0.72115),
(−0.70707)}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, Ǩ4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0.096538), (0.098226),
(0.144313), (0.146705),
(0.084288), (0.085782),
(0.126833), (0.128976),
(0.098442), (0.100159),
(0.222281), (0.14944),
(0.085973), (0.087494),
(0.128976), (0.131429)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(−0.83979),
(−0.50977),
(−0.85655),
(−0.54741)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Step 3: The obtained score values of score (Ǩ ) ( = 1, 2, 3, 4) of the overall HBFNs (Ǩ ) ( = 1, 2, 3, 4)
are discussed in Table 5.

Table 5: Score values based on HBFFWG operators

Notions Score values
score (Ǩ1) 0.471578
score (Ǩ2) 0.430245
score (Ǩ3) 0.37768
score (Ǩ4) 0.404086

Step 4: Rank all the platform A
˚

( = 1, 2, 3, 4) with the following score values score (Ǩ ) ( = 1, 2, 3, 4)
of the overall HBFNs.

A
˚1 > A

˚2 > A
˚4 > A

˚3

Step 5: A
˚1 is selected as the best cyber threat detection technique for next-generation cyber defense.

The graphical representation of the ranking of cyber threat detection techniques for next-generation
cyber defense based on HBFFWG operators is discussed in Fig. 8.
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Figure 8: Graphical representation of the ranking of cyber threat detection techniques based on hesitant bipolar fuzzy
frank weighted geometric (HBFFWG) operators

6.2 Sensitive Analysis
Sensitivity analysis is an important aspect of decision-making, particularly in the ranking of cyber

threat detection methods. In the current research, we perform a sensitivity analysis with Frank aggregation
operators to determine the stability and robustness of the proposed HBF approach. By adjusting the input
weights and parameters, we investigate how the changes affect the ranking of cyber threat detection methods,
thereby ensuring the strength of our methodology. Such a comparison gives stronger insights into how
resilient the chosen methods are for various scenarios and further strengthens our model’s validity for future
cybersecurity defense.

The aggregated results of HBFFWA and HBFFWG operators based on different variations are discussed
in Tables 6 and 7.

Table 6: Aggregated results for HBFFWA operators based on different variations

Score values HBFFWA =7 HBFFWA =10 HBFFWA =13 HBFFWA =22

score (Ǩ1) 0.479169 0.472288 0.466684 0.454180
score (Ǩ2) 0.406378 0.388888 0.375982 0.350019
score (Ǩ3) 0.367659 0.342226 0.323423 0.285579
score (Ǩ4) 0.291873 0.25612 0.230204 0.179097

Table 7: Aggregated results for HBFFWA operators based on different variations

Score values HBFFWG =7 HBFFWG =10 HBFFWG =13 HBFFWG =22

score (Ǩ1) 0.435135 0.412123 0.39531 0.361877
score (Ǩ2) 0.401793 0.383646 0.37030 0.343581
score (Ǩ3) 0.327255 0.294998 0.271258 0.223731
score (Ǩ4) 0.361774 0.333845 0.312826 0.269554
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Ranking of all the alternatives is discussed in Tables 8 and 9.

Table 8: Ranking alternatives

HBFFWA operators Ranking
HBFFWAG=7 A

˚1 > A
˚2 > A

˚3 > A
˚4

HBFFWAG=10 A
˚1 > A

˚2 > A
˚3 > A

˚4
HBFFWAG=13 A

˚1 > A
˚2 > A

˚3 > A
˚4

HBFFWAG=22 A
˚1 > A

˚2 > A
˚3 > A

˚4

Table 9: Ranking alternatives

HBFFWG operators Ranking
HBFFWGG=7 A

˚1 > A
˚2 > A

˚4 > A
˚3

HBFFWGG=10 A
˚1 > A

˚2 > A
˚4 > A

˚3
HBFFWGG=13 A

˚1 > A
˚2 > A

˚4 > A
˚3

HBFFWGG=22 A
˚1 > A

˚2 > A
˚4 > A

˚3

Graphical representation of variations by different parameters is discussed in Figs. 9 and 10.

Figure 9: Sensitivity analysis of cyber threat detection techniques with varying parameter values based on HBFFWA
operators
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Figure 10: Sensitivity analysis of cyber threat detection techniques with varying parameters based on HBFFWG
operators

The above sensitivity analysis presents that changes in parameter values cannot change the rank
of cyber threat detection methods, which proves the stability and solidity of the proposed framework.
Such consistency reflects the credibility of our solution with the assurance of the decision process not
being disturbed by small oscillations in the input parameters. This stability becomes significant in security
applications. Moreover, the findings prove the effectiveness of HBF Frank aggregation operators in handling
uncertainty and providing credible rankings, which makes them a critical tool for decision-makers in future
cyber defense strategies.

7 Comparative Analysis
The importance of comparative analysis between the proposed theory and existing theories is that

one can see the unique advantages and possible applicability of the HBF framework when decisions are
complicated. Cyber threat detection techniques require a methodology that can effectively handle both
uncertainty and dual-polarity assessments, which is often lacking in conventional approaches. It is only by
comparing the proposed theory of HBFSs with the prevailing ones that it can highlight the capability for
next-generation cyber defense and withstand the ill-mannered challenges of complex cyberspace threats. A
similar comparative study not only strengthens the theory but also emphasizes its practical relevance in the
latest contexts of cybersecurity. Moreover, the supposed theories for mathematical comparison are:

• Theory of fuzzy generalized hybrid aggregation operators (FGHAOs) and its application in fuzzy
decision-making by Merigo and Casanovas [27].

• The theory of hesitant fuzzy Hamacher aggregation operators (HFHAOs) for multicriteria decision-
making by Tan et al. [28].

• The theory of bipolar fuzzy Dombi aggregation operators (BFDAOs) and its application in MCDM by
Jana et al. [29].
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The detailed comparison and related results are discussed in below Table 10.

Table 10: Comparative analysis and related results

Theories Score values Ranking
FGHAOs by Merigo and

Casanovas [27]
score (Ǩ1) = No answer, score (Ǩ2) =

No answer, score (Ǩ3) =
No answer, score (Ǩ4) = No answer

No ranking

HFHAOs by Tan et al. [28] score (Ǩ1) = No answer, score (Ǩ2) =
No answer, score (Ǩ3) =

No answer, score (Ǩ4) = No answer

No ranking

BFDAOs by Jana et al. [29] score (Ǩ1) = No answer, score (Ǩ2) =
No answer, score (Ǩ3) =

No answer, score (Ǩ4) = No answer

No ranking

HBFFWA (proposed) score (Ǩ1) = 0.488132, score (Ǩ2) =
0.433654, score (Ǩ3) =

0.407092, score (Ǩ4) = 0.171147

A
˚1 > A

˚2 > A
˚3 > A

˚4

HBFFWG (proposed) score (Ǩ1) = 0.471578, score (Ǩ2) =
0.430245, score (Ǩ3) =

0.377680, score (Ǩ4) = 0.404086

A
˚1 > A

˚2 > A
˚4 > A

˚3

Merigo and Casanovas [27] developed the theory of FGHAOs, which merges different aggregation
techniques in the fuzzy domain to tackle decision-making problems with uncertainty. Although this theory
offers a versatile framework for the treatment of imprecise data, it works under the traditional fuzzy
environment. Such a framework cannot treat hesitation, an important feature of data in cyber threat detection
since ambiguity and contradictory evidence are frequently encountered. FGHAOs are effective for general
fuzzy decision-making but lack in capturing the layered hesitations and bipolar nature of evaluations required
in classifying and prioritizing cyber threats. Tan et al. [28] generalized hesitant fuzzy sets by proposing
Hamacher aggregation operators to improve decision-making in multicriteria conditions. The HFHAOs can
solve the problems with multiple hesitations as they provide decision-makers with a granular representation
of uncertainty. In such a manner, this theory fails to integrate the bipolar perspective required for cyber threat
detection techniques that will involve dual assessment of a set of positive criteria (such as threat detection
accuracy) and those of negative criteria (such as false alarm rates). The inability of HFHAOs to handle both
hesitation and bipolarity at the same time limits their application in the cybersecurity domain, where both
dimensions are important in making informed and balanced decisions. Jana et al. [29] introduced BFDAOs
and this approach has successfully applied BFDAO in MCDM environments by designing for managing
bipolar fuzzy data. Even though the theory encompasses the bipolarity of the data, hesitation does not
form part of this account; yet this is the frequent case for the cyber threat classification problem. Cyber
threat detection is mostly based on conflicting or incomplete information, and in the process of BFDAOs,
because it lacks hesitation modeling, the decision accuracy deteriorates. Therefore, BFDAOs are not feasible
in those applications that necessitate a representation of uncertainty along with ambiguity and bipolarity. The
proposed theory of HBFSs brings the integration of two principles, one hesitation and the other bipolarity.
It fills the gaps left out by the theories above and brings with it an all-inclusive framework that can represent
dual-polar opinions and includes uncertainties and conflicts present in cyber threat data. This information,
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based on HBF Frank, raises further aggregation with a mechanism being more dynamic and adaptive, thus
allowing better classification over cyber threat detection techniques. This novel approach is suitably robust,
flexible, and precise and, hence, suited to the complex landscape of next-generation cyber defense. Moreover,
the proposed theory of HBFSs addresses all these challenges by providing a superior framework to meet the
advanced needs of the application in the field of cybersecurity.

7.1 Advantages of the Proposed Approach
• Decision-making uncertainty becomes manageable through the HBFS theory since it allows simultane-

ous assessment of multiple opinions and values in complex situations.
• HBFS delivers dual viewpoint modeling by handling positive along negative information to exceed

traditional fuzzy set functionality. The dual representation mechanism increases its ability to solve
complicated decision problems involving conflicting criteria.

• Real-life decisions often involve hesitant information and this theory includes methods to handle this
typical situation. HBFS delivers its highest value when knowledge about alternative membership values
remains uncertain or unclear to decision-makers.

• Through aggregation operators in HBFS, decision-makers may effectively gather data from multiple
criteria along with alternatives. Decision-making becomes both precise and sophisticated thanks to this
system when different factors compete against each other.

• This framework enhances decision precision since it presents a refined technique to handle imprecise
and uncertain information so judgments become better than traditional crisp and fuzzy approaches.

• The complex management of fuzzy sets in HBFS delivers superior decision-making support systems
when formal logic fails to address judgment complexities or information ambiguity.

• The HBFS system offers enhanced alternative ranking precision through the incorporation of hesitant
and bipolar information that frequently occurs in practical situations.

Moreover, the characteristics comparison is discussed in Table 11 which shows the significance of HBFSs.

Table 11: Characteristics comparison

Characteristics Fuzzy sets
(FS)

Hesitant fuzzy
sets (HFS)

Bipolar fuzzy
sets (BFS)

Hesitant
bipolar fuzzy
sets (HBFS)

Single membership
degree

Yes No No No

Handles hesitation No Yes No Yes
Handling
bipolarity

No No Yes Yes

Hesitation with
bipolarity

No No No Yes

Capture better
uncertainty

No Yes Yes Yes

Stable for complex
decision-making

No Yes Yes Yes

The graphical representation of the comparison of the characteristics is given in Fig. 11.
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Figure 11: Characteristics comparison between different fuzzy sets

7.2 Limitations
• The complexity of HBFSs makes it challenging for non-experts to apply effectively in real-world

scenarios. This increases the need for specialized knowledge to interpret and use the theory.
• The performance of HBFS is highly sensitive to the choice of aggregation operators and other parameters.

Small changes in these factors can lead to significant variations in the results.
• Additional testing along with theory improvement is necessary. Such validation and refinement of the

theory would enhance its effectiveness in real decision situations.
• The proposed theory shows reduced performance effectiveness when alternatives and decision criteria

experience constant changes in dynamic environments. The theory becomes less suitable for swift
situations that experience rapid changes.

• The decision-making implications derived from HBFS often remain obscure or unready to use for public
officials. Due to its complex nature fuzzy set theory makes it challenging for decision makers to extract
direct conclusions from the research results.

• The theory currently lacks empirical validation through case studies or real-world data. Without such
validation, its practicality remains uncertain in various applications.

• As the number of criteria and alternatives increases, the computational load grows significantly. This
scalability issue limits its use in large, complex decision-making problems.

8 Conclusion
The most effective method for defending systems against various assaults is to use the appropriate

cyber threat detection methodology. Organizations may select the optimal strategy for their requirements
by evaluating several approaches based on criteria including accuracy, speed, scalability, and resource usage.
While more recent approaches, such as machine learning and anomaly-based detection, can better manage
unknown or changing threats, more established strategies, like signature-based detection, are also helpful.
By decreasing uncertainty, the application of HBF Frank aggregation operators in decision-making makes it
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possible to compare different detection methods in a more flexible and trustworthy way. This study highlights
the need to take into account a variety of factors when choosing a detection method and how doing so might
increase cybersecurity efficacy. Better detection methods are essential to stay up with the ever-increasing
cyber threats. This study would be significant since it would shed light on how to choose a suitable detection
method to bolster organizational defenses. The findings of this study may help direct future advancements in
cyber threat identification, resulting in a more secure online environment. Moreover, we discuss the different
comparison results with other existing theories to show the importance of the new proposed approach for
classifying the best cyber threat detection technique. In the future, we aim to extend our work with the help
of the following theories [30,31].

8.1 Key Findings
• The development of a new theory that relies on HBF Frank aggregation operators fills missing gaps in

the current cyber threat detection frameworks and methodologies.
• The development of some new aggregation operators such as HBFFWA, HBFFOWA, HBFFWG, and

HBFFOWG operators.
• The integration of positive and negative evaluation criteria helps decision-makers manage uncertain and

imprecise situations in their decision processes.
• The development of the MCDM approach focuses on classification along with prioritization procedures

for cyber threat detection techniques.
• The methodology provides accurate detection method selection capabilities when dealing with unveri-

fied data and uncertainties.
• The research presents an application of the methodology through its implementation within a cyber

threat detection case study.
• The research presents examples that show how aggregation operators help decision-making procedures

in actual cybersecurity situations.
• The manuscript performs an exhaustive evaluation of the new approach compared to traditional research

methods within this field.
• A summary highlighting both the success rate of the framework along its anticipated roles in improving

cybersecurity protocols follows the analysis.
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