l(o%)| Computers, Materials & & Tech Science Press
, Continua ,

D0i:10.32604/cmc.2025.064901

ARTICLE Check for

updates

Fixed Neural Network Image Steganography Based on Secure Diffusion Models
Yixin Tang"’, Minqing Zhang">"", Peizheng Lai"’, Ya Yue'~’ and Fugiang Di"”"

'College of Cryptography Engineering, Engineering University of People’s Armed Police, Xian, 710086, China

*Key Laboratory of People’s Armed Police for Cryptology and Information Security, Engineering University of People’s Armed Police,
Xi’an, 710086, China

Key Laboratory of CTC & Information Engineering, Ministry of Education, Engineering University of People’s Armed Police, Xi’an,
710086, China

*Corresponding Authors: Minging Zhang. Email: api_zmq@126.com; Fuqiang Di. Email: 18710752607 @163.com

Received: 27 February 2025; Accepted: 26 June 2025; Published: 30 July 2025

ABSTRACT: Traditional steganography conceals information by modifying cover data, but steganalysis tools easily
detect such alterations. While deep learning-based steganography often involves high training costs and complex
deployment. Diffusion model-based methods face security vulnerabilities, particularly due to potential information
leakage during generation. We propose a fixed neural network image steganography framework based on secure diffu-
sion models to address these challenges. Unlike conventional approaches, our method minimizes cover modifications
through neural network optimization, achieving superior steganographic performance in human visual perception and
computer vision analyses. The cover images are generated in an anime style using state-of-the-art diffusion models,
ensuring the transmitted images appear more natural. This study introduces fixed neural network technology that allows
senders to transmit only minimal critical information alongside stego-images. Recipients can accurately reconstruct
secret images using this compact data, significantly reducing transmission overhead compared to conventional deep
steganography. Furthermore, our framework innovatively integrates ElGamal, a cryptographic algorithm, to protect
critical information during transmission, enhancing overall system security and ensuring end-to-end information
protection. This dual optimization of payload reduction and cryptographic reinforcement establishes a new paradigm
for secure and efficient image steganography.
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1 Introduction

Image steganography is a crucial tool for covert communication, ensuring that only authorized users
possess the necessary information to extract and decrypt secret messages, thereby recovering the original
data. To counter human visual inspection and machine-driven steganalysis, stego-images must be indis-
tinguishable from cover images in visual appearance and statistical properties. The foundational covert
communication framework, the “prisoner’s model,” was introduced by Simmons [1] in 1983. This model
involves two prisoners (Alice and Bob) and a warden (Cain). Alice embeds a secret escape plan into a
natural-looking image, transmitting it to Bob through a monitored channel without Cain’s awareness.

Traditional steganographic methods primarily modify cover media to embed secret data. Classic spatial-
domain techniques include LSB (Least Significant Bit) [2], WOW (Weighted Optimization Watermarking)
[3], and HUGO (Highly Undetectable Steganography) [4], while transform-domain approaches leverage
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DWT (Discrete Wavelet Transform) [5] and DCT (Discrete Cosine Transform) [6]. However, these methods
often suffer from high distortion and are easily detectable by advanced steganalysis tools.

In the field of traditional steganography, there are also approaches that utilize encryption of images or
texts, known as Reversible Data Hiding in the Encrypted Domain (RDH-ED). RDH-ED not only enables
embedding additional information within the ciphertext but also allows for the exact, lossless recovery of the
original plaintext. This technique is particularly valuable in applications where even minor distortions are
unacceptable. Based on how they leverage redundancy in the cover data for embedding purposes, symmetric
encryption-based RDH-ED methods can be divided into two main types: “vacating room before encryption
(VRBE)” [7,8], and “vacating room after encryption (VRAE)” [9,10].

With advancements in generative networks, steganography has transitioned from traditional methods
to data-driven paradigms. Hu et al. [11] further improved extraction accuracy and payload capacity using
deep convolutional generative adversarial network (DCGAN), mapping secret information to noise vectors
for generating stego-images via GAN.

The rise of DNNs (Deep Neural Networks) has significantly advanced steganography. Notable
frameworks like Learning-Based Neural Network Steganography (LNNS) [12-15] replace manual cover
modification with data-driven embedding. LNNS employs an encoder-decoder architecture: the encoder
embeds secrets into cover images, while the decoder extracts them. Training objectives aim to balance
minimal visual distortion with high extraction accuracy. However, DNN-based methods demand extensive
datasets and computational resources, resulting in large model files. Securely transmitting these models
between parties is impractical, as the overhead often exceeds that of directly transmitting encrypted images.
Training a high-performance neural network to complete generalized steganography tasks takes several
hours or even days.

Recent breakthroughs focus on fixed neural networks [16-18] and other emerging frameworks [19,20].
In fixed neural networks, pre-trained models remain static, with only input data being optimized. This
approach drastically reduces training time and model complexity. Fixed Neural Network Steganography
(FNNS) eliminates the need for trainable encoders. Instead, decoders generate weights from a seed without
training. This method minimizes system complexity and enhances security by perturbing cover images
to adapt to the fixed decoder. However, fixed neural networks [16-18] focus only on the protection of
steganography itself and do not emphasize the need for ensuring the security of content transmitted over
public channels to guarantee the safety of steganography.

In summary, traditional steganography involves minor changes to an image to hide data. It’s easy to
do and quick, but it’s also easier for someone to detect. Image encryption scrambles the entire image so the
hidden data is protected and hard to see, but it can be more complicated to decrypt. Neural network (NN)
based steganography uses AI (Artificial Intelligence) to hide data very secretly and make detection difficult.
However, they need a lot of training data and powerful computers. Overall, traditional methods are simple
but less secure, encryption offers better protection but is more complex, and NN-based methods are very
good at hiding data but harder to develop.

1.1 Related Work

Hu et al. [11] introduced a novel DCGAN-based image steganography method, which demonstrated
outstanding performance in steganographic capacity, undetectability, and image reconstruction quality,
achieving better results in metrics like PSNR (Peak Signal to Noise Ratio) and SSIM (Structural Similarity).
Regarding Learning Neural Network-based steganography, Shumeet [12] employed Laplacian Pyramid Net-
works to enhance the steganographic process, enabling secret information embedding without significantly



Comput Mater Contin. 2025;84(3) 5735

altering the appearance of generated carrier images. Through multi-scale decomposition, this approach
facilitates the effective reconstruction of embedded content during information extraction, ensuring high
quality and precision. To further optimize algorithm performance, Rahim et al. [13] incorporated loss
penalties during steganographic network training to enhance training stability. Zhang et al. [14] improved
secret information processing by converting secret images into invisible high-frequency information prior
to embedding. In the latest research, Jing et al. [15] enhanced both steganographic and extraction networks
by proposing HiNet—a deep learning framework utilizing invertible neural network technology. This
innovation not only embeds secret information into images but also enables accurate extraction of hidden
data from stego images.

During the development of FNNS, to enhance the robustness of steganography and confirmed that
their embedding is elusive, encode data as the labels of the image that the evasion attacks produce. But
the limited steganographic capacity restricted its practical application value. Kishore et al. [18] proposed a
method that trains only on input images (without modifying the network architecture) to effectively hide
secret information. By expanding the decoder’s output dimensions to enhance steganographic capacity, this
approach balances the fidelity of original images with the ability to extract and decode hidden messages.
They improved the robustness of FNNS to JPEG (Joint Photographic Experts Group) compression by
adding a JPEG layer (with quality factor 80) in their optimization pipeline, in which the back-propagated
gradients are approximated with identity transformation. However, existing FNNS methods still suffer
from high distortion in generated stego images, where visual artifacts become perceptible under high
embedding capacities.

Recent research has introduced several innovative approaches to neural network-based steganography.
Luo et al. [19] proposed a framework based on the State Space Model (SSM) that dynamically adjusts
the information distribution among multiple carrier images to optimize the embedding process. They
introduced the concept of “Immune-Cover” to resist steganalytic tools based on statistical analysis. Since
images with distortion resistance reduce embedding damage, the original cover image is reconstructed
through the Immune-cover construction module (ICCM) and associated with the steganography task. The
method demonstrates excellent robustness and efficiency. Li et al. [17] proposed Cover-separable Fixed
Neural Network Steganography via Deep Generative Models. This method leverages mature deep generative
models to create carrier images and embeds secret information into AI-generated carriers using a minimal
perturbation strategy. The sender and receiver share a seed as a key to generate identical carrier images and
decoders. This ensures no visual distortion even under high embedding capacities while accurately extracting
hidden information, in terms of optimizing neural networks. To address the loss of reconstruction accuracy
caused by lossy transmission during the steganographic process, they incorporated existing denoising
networks into the steganography procedure to enhance its robustness. Zhou et al. [20] further improved
concealment and image quality through a channel attention mechanism and multi-module collaborative
optimization, reducing detection risks. This provides an efficient solution for secure communication and
privacy protection. However, Zhou’s method overlooks the security risks in key transmission and employs
insufficiently complex prompt words for deep generative models, resulting in overly simplistic carrier
images. To overcome these challenges. We propose a Secure Diffusion Model-based Fixed Neural Network
Steganography for image steganography. This method efficiently accomplishes steganographic tasks under
high embedding capacities while maintaining robust resistance to steganalysis but also ensures the secure
transmission of prompt words, random seeds, and other minimal critical information through public-key
encryption, guaranteeing the security of generated images during transmission. The key advantage of this
approach lies in its dual assurance: it secures the steganographic process with minimal critical information
while also safeguarding the secure transmission of such information.
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1.2 Objective of This Study

Our research contributions can be summarized as follows:

« Enhanced Anti-Steganalysis and Reduced Distortion
To improve the anti-steganalysis capability of stego-images while minimizing distortion, we map secret
information onto a mask image and design a composite loss function to train the mask image. This
dual optimization ensures undetectability by steganalysis tools and high-fidelity preservation of the
original image.

o Increased Complexity of Stego Images
To enhance the complexity of generated stego images, we develop a method leveraging a finely-tuned
Stable Diffusion model. Our approach ensures rich diversity in stego image outputs while maintaining
semantic consistency by employing simple-to-complex prompt words and generating images guided by
random seeds.

« Secure Transmission of Critical Parameters
We implement an ElGamal algorithm-based encryption scheme for these critical parameters to safeguard
the security of prompt words and seeds during transmission. This cryptographic layer guarantees end-
to-end security throughout the steganographic process.

Our work aims to advance steganography in reliability, security, anti-steganalysis resilience, and
application versatility, addressing real-world challenges to ensure information security across diverse
scenarios.

2 The Proposed Scheme

The core architecture of our method comprises three distinct phases: stego image generation, secure
transmission of critical parameters, and secret information extraction.

During the stego image generation stage, the process is divided into two parts: generating a cover image
using a diffusion model and embedding secret information into the carrier image via a mask image. Here,
the cover image is not a natural image selected from traditional fixed datasets but rather a non-natural image
synthesized through the denoising process of the diffusion model. Under a fixed neural network generated
from a shared seed, we construct a mask image with minimal impact on the carrier image by balancing
anti-steganalysis capability and the fixed neural network’s accuracy of secret information extraction. The
stego-image is then obtained by adding the mask image to the cover image.

During the secret information extraction, the receiver utilizes the securely transmitted critical infor-
mation (e.g., decrypted prompt words and seeds) to regenerate the identical cover image and fixed neural
network. The mask image is derived by subtracting the carrier image from the received stego image, and
the original secret information is accurately reconstructed from the mask image through the preconfigured
fixed neural network. As shown in Fig. I, this section presents the overall framework of the proposed
algorithm.

In this context, the acronym I, stands for the secret image. I,,, denotes the trained and optimized mask
image. SD represents the Stable Diffusion. I, is the cover image, which is generated by the SD model under
the seed (S;) and prompt conditions. The steganographic image I; is obtained by adding the I,, to the I.. KI
stands for the key information. KI includes the seed (S;) and prompts, which are encrypted and transmitted
alongside the I;; via a public channel.
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Figure 1: The overall framework of steganography using fixed neural networks based on secure diffusion models

2.1 Generate the Cover Image

In the steganography algorithm proposed in this article, the generation of the cover image differs from
traditional approaches to cover images. Conventional cover images typically rely on naturally captured or
artist-created images in various styles, as procedurally generated images were not widely transmitted across
the internet then. In recent years, however, advanced deep generative models have rapidly created vast
quantities of exquisite, elaborate, and high-quality images. Many companies and individuals now use these
models for tasks like cartoon character design, comic creation, and illustration. Building on state-of-the-art
deep generative models [21], we employ Stable Diffusion as the foundational generator for cover images. To
address the growing prevalence of images generated online by deep anime-style, we adopt AwPainting as the
generator (denoted as G). AwPainting is a generative model fine-tuned from Stable Diffusion v1.5 through
further training on a large dataset of anime-style images, achieving superior performance in generating
professional-grade anime artwork. As shown in Fig. 2, when comparing realistic images generated by other
series of Stable Diffusion with real photographs, distinct artificial features are evident, drawing considerable
attention from adversaries. However, when comparing generated anime images to authentic hand-drawn
anime images, the details are much closer, which can reduce the likelihood of suspicion. We tested the entropy
of the first image in each group. Entropy measures the amount of uncertainty or information contained
in an image. Lower entropy indicates more straightforward content or more repetitive patterns, with pixel
distribution more concentrated and less overall information. As shown in Table 1, the results demonstrate
statistically that the generated anime images are more similar to natural paintings, which is more conducive
to completing the steganography task. By introducing a random or specified seed S, and a designated prompt,
these elements are synthesized into Sc, which enables the generator to precisely produce the image I, as
shown in Eq. (1).

I = G(Sc) ©)
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Figure 2: Comparison between generating anime images and generating real images

Table 1: Entropy of the first image in each group

Types Animate Real person

Generative model [7.1162, 6.9981, 6.9451] [4.4389, 4.2001, 3.9596]
Hand-drawn painting or photography [6.3328, 6.9053, 6.7464]  [6.7927, 6.9064, 6.7698]

2.2 Randomly Generated Decoding Network

Convolutional neural networks (CNNs) have consistently demonstrated strong performance for image
processing tasks. A CNN typically comprises two critical components: its network architecture and weight
parameters. Traditional implementations involve constructing a loss function based on input-output rela-
tionships and iteratively updating the network’s weights via methods like stochastic gradient descent (SGD)
to minimize the loss. However, due to the massive scale of training data, the complexity of CNN architectures,
and the substantial computational resources required for training—some algorithms employ up to 19
convolutional layers [22]—the secure transmission of such models may even exceed the cost associated with
securely transmitting secret information. The proposed algorithm adopts a FNN as the decoder to address
these challenges. Experimental validation was conducted to identify the optimal FNN architecture, as shown
in Fig. 3.

The FNN network in the algorithm design resembles classical DNN [23]. The first block comprises a
Pixel Unshuffle (PNS) layer, Conv layer, LeakyReLU layer [24], and InstanceNorm2d (IN) layer. The second
block consists of a Conv, LeakyReLU, and IN layers. The final block includes a Conv layer, Sigmoid activation
function, and PixelShuftle (PS) layer for output. The LeakyReLU and Sigmoid activation functions effectively
map the secret image from feature space back to conventional image space, enhancing model performance
and gradient propagation efficiency.

The IN layer calculates the mean and standard deviation for each channel of every sample and
performs normalization. Compared to Batch Normalization, IN focuses more on the independence of
individual samples, making it particularly suitable for processing images with diverse styles and helping
the network learn finer-grained features. The Pixel Unshuftle/Shuffle layers perform tensor upsampling and
downsampling, adjusting tensor dimensions for input/output compatibility. Modifying the upsampling and
downsampling values allows adjustment of the embedding capacity.
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Figure 3: The optimal FNN architecture

The FNN weights are generated by S; and remain fixed after generation. Instead, the algorithm trains the
mask image I,,, to minimize the loss function between the extracted secret image I,.. (after FNN processing)
and the original secret image I;.

Let w denote the weights of the decoding network. The generation process of these weights can be
represented by Eq. (2).

w = 8(s1, D) @)

where S is the weight setting function and D represents the architecture of the decoder network. We present
the specific structure of the decoding network, as shown in Table 2.

Table 2: Provides specific parameter details of the network structure

Network Channels Convolutional Size of the  Activation Normalization Tensor

layer kernel size  feature map function layer reshaping
Input 12 - 12%512*512 - - PUS
Conv 12 3*3 96*256%256 LReLU IN -
Conv 96 3*3 96*128%128 LReLU IN -
Conv 96 3*3 3*128*128 Sigmoid - PS
Output 3 - 3*256*256 - - -

Then, we provide the full name of some crucial acronyms in Table 3 for easier reference and reading.
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Table 3: Important acronyms list

Acronyms Full name
FNNS Fixed Neural Network Steganography
GAN Generative Adversarial Network
CNNs Convolutional Neural Networks
SGD Stochastic Gradient Descent
KI Key Imfomation
SD Stable Diffusion
PNS Pixel Unshuffle
IN InstanceNorm2d
PS PixelShuffle

2.3 Training the Mark Image

In our algorithm, I. denotes the cover image generated by the deep generative network G and I
represents the secret image to be hidden. Both images are RGB three-channel. Our objective is to ensure
that the stego image remains undetectable by steganalysis while maintaining high accuracy in the extracted
secretimage. Eq. (3) specifies the algorithm’s formalized goals, including minimal interference, boundedness,
accurate extractability, and resistance to steganalysis. Eq. (4) provides the expression of the loss function,
where ea parameter weights each term.

I'l'IliIldLl (IC + Im,IC)

L+1, €[0,1] (3)
D, (Im) =1
F(I.+1,)=0
LOSS=axdp (Ic+ Ly, 1)+ f+F(I.+ 1) +y*dpn(Is, Dy (Iy)) (4)

In Egs. (3) and (4), dpy (I + Iy, I.) denotes the MSE loss between the stego and cover images.
d1(Is, Dy, (I,)) denotes the MSE loss between the stego and recovered images. F (I, + I,,) represents the
cross-entropy between the output and label generated by the steganalysis tool. The values of «, # and y must
be adjusted based on the prompt (i.e., the content generated for the cover image). We performed ablation
studies to optimize the three parameters. The value of =107 was set based on the previous work [17],
ensuring that the scale of the loss function for anti-steganography analysis is comparable to the other two
items. We employed a grid search approach. In the first stage, a coarse search was conducted: the parameters
a and y were set within the range [0, 2] with a step size of 0.5, quickly identifying the optimal region where
a is in [0.5, 1.5] and y is in [0.5, 1]. In the second stage, the search was refined around the coarse results,
using a smaller step size of 0.1, which yielded the optimal values of a = 1 and y = 0.6. Further, more precise
searches resulted in minimal performance improvements, so we adopted these values as the parameters for
subsequent experiments.

2.4 ElGamal for Ensuring Algorithm Security

ElGamal encryption [25] is a public-key cryptosystem designed based on the intractability of solving
the discrete logarithm problem over finite fields. Proposed by Taher ElGamal in 1985, it is widely used in
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secure communication, digital signatures, and key exchange, serving as the foundation for many modern
cryptographic protocols (e.g., the Diffie-Hellman key exchange). By leveraging ElGamal encryption, the
critical information KI can be securely transmitted. In Algorithm 1, we provide pseudocode demonstrating
the encryption of KI (composed of S;, S;, and prompt) using ElGamal and the subsequent key exchange
between Alice and Bob.

Algorithm 1: ElIGamal Embedding ()

Input: Key Information KI, large prime p, generator g;

Output: Encrypted key information KI; Decrypted KI

L. G={L...,q-1}.//G isacyclic group of order g generated by g

2.Choose x, where x € G.

3. y =g*modp.//Compute y

4.Bob sets (y, g, p) asthe publickey and x as the private key.

5.Choose k, where (k,p—1) = 1&&k € Z

6.Ci = g¥modp, C, = y*KImodp, KI = (Cy, Cy)/1 Alice Compute Cy, C, as KI
7. KI = g—;%mod p.// Decryption by Bob

Notably, the implementation of ElGamal over elliptic curves combines enhanced security, compu-
tational efficiency, and optimized resource utilization. We further present the encryption method on
elliptic curves:

Select an elliptic curve Ep(a, b) and embed KI into a point Pg; on the curve. Then Choose a generator G
of Ep(a, b). Bob publishes Ep(a,b) and G as public parameters, selects n;, as the private key, and computes
the public key Pg = npG. To send Px; to Bob, Alice selects a random positive integer k and generates the
ciphertext using Eq. (5):

KI = {kG,KI + kPg} (5)

Bob decrypts KI via Eq. (6):

KI+kPB—I’IBkG=KI+k(HBG)—l’lBkGZKI (6)

An adversary attempting to recover KI from KI must solve for k, which requires computing the discrete
logarithm of kG on the elliptic curve (i.e., determining k from G and kG). This problem is computationally
infeasible, ensuring the security of KI under the ElGamal framework.

3 Experimental Results and Analysis

The experimental platform adopts PyTorchl.ll.0, Cuda 11.3, programming lan-
guagePython3.8(ubuntu20.04), RTX 4090D graphics card with 24 GB of computing capacity and 18 vCPU
AMD EPYC 9754 128-Core Processor. We utilized secret images from five benchmark datasets: ImageNet
[26], COCO dataset [27], CelebA dataset [28], DIV2K dataset and APTOS 2019 Blindness Detection dataset.
From each dataset, 1000 images were randomly selected and resized to 256 x 256 pixels. AwPainting was
employed as the cover image generator, with the following prompts: Prompt-1: “1 girl”, Prompt-2: “European
and American scenery” and Prompt-3: “I1 girl, golden hair, sunset, tuxedo”. The generation parameters were
configured as follows: sampling method DPM++2M Karras, sampling steps chose 30, resolution chose 512 x
512 pixels, CFG scale is 7, and Clip Skip is 2. Using these distinct prompts, we generated 1000 cover images.
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The secret images were embedded into the cover images and extracted using our proposed method. We
then conducted comprehensive evaluations, including security and feasibility analysis, quantitative metrics
(PSNR, SSIM, LPIPS), and anti-steganalysis testing. The algorithm’s performance was evaluated from human
visual perception and machine-based detection perspectives to ensure robustness and imperceptibility.

3.1 Security and Feasibility Analysis

The primary objective and function of a steganography algorithm are to conceal secret information
within a cover medium, ensuring secure and covert transmission over public channels. Thus, security is a
critical evaluation metric for steganographic algorithms [29]. Unlike traditional steganography methods that
modify cover images at the pixel level, this study employs a mask image to minimize alterations to the cover
image. The modifications are applied to the image tensor, which offers higher security. To validate the security
and feasibility of our method, we designed experiments using linear pixel value differencing operations to
generate differential images between the cover and stego images, as well as between the original secret image
and the extracted image. The results confirm the effectiveness of our approach, as shown in Fig. 4.

1,*10 L o-L,*10

i k] A .

Figure 4: Residual images between secret images and recovered images
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The columns in the figure, from left to right, display the cover image, secret image, the residual
between the stego image and cover image (equivalent to the mask image magnified 10 times), the stego
image, the recovered image, and the residual between the recovered image and secret image magnified
10 times. Experimental results demonstrate that the stego image does not leak any secret information
during transmission while enabling complete recovery of the secret data, thereby validating the security and
feasibility of the proposed scheme. We further compared our method with the approach in [18]. As shown
in Fig. 5, our method significantly outperforms [18] in stego image quality, providing stronger evidence for
our solution’s superior security and feasibility.

lIs." cl* 10(0111')

|I~I)*10(Kishore)

Figure 5: Comparison of steganographic image residuals

3.2 Quantitative Experimental Analysis

Quantitative experiments numerically evaluate the performance of the steganography algorithm, with
primary metrics including PSNR, SSIM, and LPIPS.

PSNRis a widely used metric for assessing image quality. It measures distortion by comparing the quality
difference between a processed image and its original version, detecting subtle distortions caused by noise
or algorithmic operations that may be imperceptible to the human eye. For the color images used in this
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algorithm, the PSNR calculation is defined by Eq. (7) where MSE computed via Eq. (8), represents the average
error between the original and processed images.

2
PSNR=10-log10(§/IS§E) (7)
L e
MSE—NZ(I(I) J(i)) (8)
i=1

Here, N is the total number of pixels, I (i) is the pixel value of the original image, and J (i) is the pixel
value of the processed image.

SSIM evaluates the similarity between two images based on luminance, contrast, and structural
information. Luminance compares the average brightness of the two images. Contrast quantifies the color

range through standard deviation and Structural similarity is derived from normalized covariance, reflecting
texture, edges, and other structural features. The calculation of SSIM is given by Eq. (9).

(Zyxyy + Cl) (Zny + Cz)

IM(x,y) =
SSIM(x.7) (yfc+y§,+C1)(a§+a}%+C2)

)

where x and y represent the two images to be compared, y, and y, are the means of the images, indicating
brightness, o2 and a)% are the variances of the images, indicating contrast, and oy, is the covariance, indicating
structural similarity.

LPIPS is a deep learning-based metric for assessing image similarity, designed to better emulate the
human visual system (HVS) in perceiving image differences. Unlike traditional metrics such as SSIM or
PSNR, LPIPS extracts image features using pre-trained deep neural networks and evaluates similarity by
computing distances in the feature space. We compared our method with related steganography approaches
[16,18]. Tables 4 and 5 evaluate the cover and stego images, while Tables 6 and 7 assess the secret image and
recovered image. In each group, the first table fixes the cover image used, and the second table fixes the
prompts. In Luo et al. [16], a FNN is employed for the embedding and extraction of secret information,
utilizing key-controlled perturbations generated by the FNN to embed the data. In contrast, Kishore et al.
[18] capitalized on the sensitivity of neural networks to minor perturbations, achieving satisfactory results
in the steganography task. However, experimental data indicate that the performance of both methods is
inferior to ours when high-accuracy steganographic tasks are required. Experimental results demonstrate
that our method outperforms others across all metrics. Our algorithm ensures security and undetectability
during the steganographic process by utilizing generated anime-style images as cover images. Additionally,
the results confirm that more complex prompts for generating cover images do not compromise the
steganographic task, further enhancing the algorithm’s security. Because based on the experimental data
from the more complex prompt-3, the results across various metrics are close to those of the simpler
prompt.
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Table 4: Comparison of experimental values between the cover image and the stego image under different prompts

Prompt-1 Prompt-2 Prompt-3
PSNR SSIMt LPIPS| PSNR SSIMt LPIPS|, PSNR SSIM? LPIPS|
(dB)? (dB)? (dB)?
Kishore et al. 23.65 0.5164 0.2098 2298 0.5361 0.2023 21.76 0.5112 0.2234

[18]
Luo et al. [16] 24.62 05735 0.1643 23,59 05915 0.1632 2291 0.5632 0.1709
Ours 4223 09768 0.0030 4239 09728 0.0045 42.18 0.9716 0.0038

Methods

Table 5: Comparison of experimental values between the cover image and the stego image under different datasets

Kishore et al. [18] Luo etal. [16] Ours
Datasets
PSNR SSIMt LPIPS| PSNR SSIMt LPIPS| PSNR SSIM? LPIPS|
(dB)? (dB)? (dB)?

ImageNet 21.45 0.5244 0.2094 23,58 0.5685 0.1623 4216 0.9718 0.0038
COCO 21.76  0.5112 0.2234 2291 0.5632 0.1709 4218 0.9716 0.0038
CelebA 2236  0.5082 0.2164 2341 0.5572 0.1859 4193 0.9690 0.0040
DIV2K 22.53 0.5143 0.2214 2375 0.5849 0.1736 4212 0.9742 0.0039

APTOS 2019 20.45 0.5024 0.2316 22.86 0.5923 0.1689 4032 0.9523 0.0042

Table 6: Comparison of experimental values between the secret image and the recovered image under different prompts

Methods Prompt-1 Prompt-2 Prompt-3
PSNR SSIM? LPIPS| PSNR SSIMt LPIPS|, PSNR SSIM?t LPIPS|
(dB)? (dB)? (dB)?
Kishore et al. 2291 0.7084 0.1698 2248 0.7162 0.1705 2351 0.7895 0.1732
[18]
Luo et al. [16] 23.67 0.7165 0.2413 23.61 0.7468 0.2387 22.83 0.7435 0.2313
Ours 33.48 0.9271 0.0376 33.26 09248 0.0396 33.51 09274 0.0377

Table 7: Comparison of experimental values between the secret image and the recovered image under different datasets

Kishore et al. [18] Luo et al. [16] Ours
Datasets
PSNR SSIMt LPIPS| PSNR SSIMt LPIPS| PSNR SSIM{t LPIPS|
(dB)? (dB)? (dB)?

ImageNet 2295 0.7816 0.1765 21.62 0.7451 0.2353 33.57 09184 0.0442
COCO 23,51 0.7895 0.1732 22.83 0.7435 0.2313 33,51 0.9274 0.0377
CelebA 22.45 0.7996 0.2035 20.78 0.7568 0.2476 3714  0.9497 0.0302
DIV2K 2215 0.7689 0.1847 21.89 0.7638 0.2315 34.29 0.9288 0.0315

APTOS 2019 2315 0.7783 0.1786 22.74 0.7789 0.1634 36.43 09354 0.0311
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3.3 Resistance to Steganalysis

To evaluate the algorithm’s robustness against steganalysis tools, we employed the traditional steganal-
ysis tool StegExpose [30] and the deep learning-based steganalysis tool YeNet [31]. Each experiment utilized
3000 generated images.

As shown in Fig. 6a, the experimental results from the StegExpose are plotted as curves. The ideal curve
represents random guessing, where the correct and error rates are 50%, indicating perfect deception of the
steganalysis tool. Our results are notably closer to this ideal curve than the other two steganographic schemes,
demonstrating superior resistance to traditional statistical steganalysis.
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Figure 6: Comparison of experimental results for steganalysis

In Fig. 6b, YeNets detection accuracy of all three methods increases as the training samples are
progressively augmented. However, our method exhibits a slower rise in detection accuracy: the other two
schemes approach 100% accuracy when trained on 20 sample pairs, while our method remains around 73%
even at 100 pairs.

These experiments confirm that our scheme achieves enhanced security and undetectability against
traditional statistical and deep learning-based steganalysis. In addition to the two steganalysis methods
mentioned above, the most recent advanced steganalysis technique is described in reference [32]. We plan to
incorporate this method in future work to evaluate the steganographic performance of our approach. This
steganalysis method, which combines active learning with off-policy deep reinforcement learning (DRL),
may pose significant challenges to our steganographic scheme. HSDetect-Net [33] uses specialized small-
sized convolutional kernels to extract complex details and incorporates a fuzzy layer to improve classification
accuracy. It performs better when handling complex textures generated by steganographic techniques. In
future work, we will consider further countermeasures against these steganographic methods.

3.4 Embedding Capacity

Embedding capacity is an important performance criterion in image steganography. A larger embedding
capacity in images of the same size indicates that more information can be transmitted. Under the premise
of ensuring transmission performance, we compared our algorithm with traditional neural network image
steganography [11] and reversible data hiding over encrypted images [34]. The results are shown in Table 8,
indicate that our algorithm can achieve a higher embedding capacity, allowing for the transmission of the
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same amount of secret information while requiring less carrier information, thereby reducing the likelihood
of detection.

Table 8: Comparison of embedding capacity

Methods Embedding capacity (bpp)

Hu et al. [11] 7328 x 1072
Hua et al. [34] 4.0 x1071~3.5
Our 4.0

3.5 PSNR Degradation

Our algorithm’s performance declines under real-world channel conditions; therefore, we evaluated how
image quality varies with the intensity of Gaussian noise. A random sample of 100 image pairs was used for
testing. As shown in Table 9, when the standard deviation of the Gaussian noise is 1, it significantly impacts
the masked images in our algorithm, resulting in poor quality of the recovered secret images. After the
standard deviation reaches 5, recovering the original secret image becomes nearly impossible. We integrated
a denoising network into the entire steganography process, which helps to recover the image to some extent
after the Gaussian noise attack and improves the quality of the extracted secret image.

Table 9: PSNR variations with Gaussian noise intensity

Standard deviation PSNR (db) Denoising PSNR (db)

1 28.15 28.56
5 20.36 25.42
10 15.29 22.37
15 8.65 20.43

3.6 Computational Complexity

We conducted tests on the segmented runtime of the scheme. The program’s runtime refers to the actual
time it takes for a program to execute from start to finish (measured in seconds, milliseconds, etc.). It reflects
the time required for code to run on particular hardware, operating system, programming language, and
input data. As shown in Table 10, we tested the time for cover-image generation, the time for fixed neural
network to generate stego-images, the encryption and decryption time for key information, and the secret
image extraction time. The results indicate that compared to traditional steganographic networks that require
a large amount of time for training, our method can complete the embedding and extraction processes in a
very short time.

Table 10: Program’s runtimes

Steganography stage Runtime (seconds)
Cover-image generation 2.0637
Generate stego-images 7.6588
Encryption 0.0136

(Continued)
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Table 10 (continued)

Steganography stage Runtime (seconds)
Decryption 0.0004
Secret image extraction 7.6349

4 Conclusion

In this study, we propose a constructive image steganography technique that leverages the fixed neural
network steganography technology introduced by Li et al. [17]. By fully leveraging the generative advantages
of diffusion models and their innovative combination with security, we use the latest high-fidelity anime
generation model to create cover images. We find and complete the embedding of the secret information
with minimal disturbance relative to the cover image. We also design a method to securely transmit the
key information for the generated cover images using the ElGamal algorithm, ensuring the security of
the entire image steganography process. Compared to Li et al. [17], our method innovatively combines
with cryptography, providing stronger confidentiality during transmission and usage. In comparison to
Kishore et al. [18], our algorithm performs better and exhibits superior steganographic effects. A series
of extensive experiments demonstrate that the proposed algorithm can effectively resist steganalysis while
achieving a high extraction accuracy and better steganographic security. However, our algorithm currently
suffers from limited robustness against certain noise attacks. To address this issue, future research will focus
on enhancing robustness to improve fidelity under noisy channel conditions. Potential strategies include
applying traditional scrambling and chaos-based techniques to promote better noise dispersion across the
targeted pixel regions, and incorporating denoising neural networks to process attacked images, thereby
strengthening overall robustness.
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