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ABSTRACT: Deep neural networks remain susceptible to adversarial examples, where the goal of an adversarial attack
is to introduce small perturbations to the original examples in order to confuse the model without being easily detected.
Although many adversarial attack methods produce adversarial examples that have achieved great results in the white-
box setting, they exhibit low transferability in the black-box setting. In order to improve the transferability along the
baseline of the gradient-based attack technique, we present a novel Stochastic Gradient Accumulation Momentum
Iterative Attack (SAMI-FGSM) in this study. In particular, during each iteration, the gradient information is calculated
using a normal sampling approach that randomly samples around the sample points, with the highest probability of
capturing adversarial features. Meanwhile, the accumulated information of the sampled gradient from the previous
iteration is further considered to modify the current updated gradient, and the original gradient attack direction
is changed to ensure that the updated gradient direction is more stable. Comprehensive experiments conducted on
the ImageNet dataset show that our method outperforms existing state-of-the-art gradient-based attack techniques,
achieving an average improvement of 10.2% in transferability.
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1 Introduction

In recent advancements, neural networks have proven to be highly effective for various complex tasks.
Notably, their ability to classify images into multiple categories has been one of the most prominent uses
[1,2]. Despite their effectiveness, image classification models are vulnerable to adversarial attacks, where
imperceptible perturbations are applied to the input data, leading the models to make erroneous predictions.
The process of crafting adversarial examples has garnered increasing attention, as studying these examples
helps uncover the weaknesses of models, thereby contributing to improving their robustness. However,
adversarial examples have also posed significant security threats, particularly in critical applications such as
facial recognition [3,4], autonomous driving [5,6], and 3D target detection [7]. Although these difficulties
exist, adversarial examples play a vital role in revealing vulnerabilities within neural networks and are key to
enhancing the models’ robustness.

Adversarial attack methods are generally classified into two primary types: white-box and black-box
attacks. In the case of white-box attacks, the attacker is granted total control over the internal structure
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and parameters of the target model, allowing for targeted modifications [8,9]. Powerful attacks can be
developed by directly creating adversarial examples that leverage the gradient data from a target model. In
contrast, black-box attacks often involve studying multiple models, where adversarial examples generated on
a surrogate model are transferred to other target models [10]. The ability of adversarial examples to be more
effective in black-box attacks is often linked to boosting their transferability across different models. Given
that it is often challenging to obtain specific parameters and structural details of target models in real-world
scenarios, research on black-box attacks has become increasingly crucial.

Adversarial examples generated under white-box settings have demonstrated outstanding attack per-
formance against models in such settings. Nevertheless, the transferability of these adversarial examples can
usually be poor, particularly when applied to models that employ adversarial training or advanced defenses.
Several methods for adversarial attacks have been introduced with the aim of boosting the transferability
of adversarial examples in black-box settings. For instance, Wang et al. [11] leveraged gradient variance
from previous iterations to stabilize the direction of gradient updates, thereby improving the effectiveness of
adversarial attacks. Similarly, Wang et al. [12] combined momentum accumulation methods in both spatial
and temporal domains by incorporating contextual gradient information from different regions, significantly
boosting the attack success rate on most models. Although these methods have proven effective against
normally trained models, there remains significant room for improvement in attacking adversarially trained
and defended models. Therefore, this study focuses primarily on attacking models with defense capabilities.

In this paper, we introduce a novel attack method named Stochastic Gradient Accumulation Momen-
tum Iterative Attack (SAMI-FGSM). This technique mitigates the overfitting of adversarial examples and
enhances their effectiveness against models that have undergone adversarial training and defense mech-
anisms, by accumulating the stochastic gradient data from each iteration. Specifically, in [11], uniform
sampling over a uniform distribution is used to obtain gradient variance information. However, this uniform
sampling method can easily suppress the gradient’s update towards the optimal direction, especially for
points farther from the sample, which exhibit greater feature differences. To address this, we employ normal
distribution sampling because points sampled from a normal distribution are concentrated around the
sample point, having feature information similar to that of the sample. This approach further enhances the
attack effectiveness compared to the original method. Although traditional momentum or variance tuning
methods such as variance tuning momentum iterative fast gradient sign method (VMI-FGSM) stabilize
the update direction by introducing gradient variance, they still use uniform distribution sampling and are
prone to fall into local optima near highly nonlinear decision boundaries. The normal distribution sampling
proposed in this paper captures key feature changes with a higher probability by sampling neighborhood
points closer to the original sample, which effectively reduces noise interference and is easier to jump out
of local optimum. As depicted in Fig. 1, the sampling method introduced in this paper achieves better
attack success rates than uniform sampling on adversarially trained models. Furthermore, to alter the attack
direction of the original sample, we aggregate gradient information from the selected points. Most gradient
attack and defense work focuses on input transformation or integration of multiple models to improve
the diversity and transferability of adversarial samples, but there is still limited performance in adversarial
training or robustness enhanced defense models. By combining the historical accumulated gradient with
the current normal sampling gradient, SAMI-FGSM takes into account the sensitive area of the model in
the update direction, which significantly improves the success rate of attacking multiple defense models. As
illustrated in Fig. 2, since decision boundary of model is highly nonlinear, original attack direction targets
only one model. By accumulating the gradient from all sampled points, the attack direction can be modified
to target both Model 1 and Model 2, thereby enhancing the transferability of adversarial examples.
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Figure 1: The effectiveness of SAMI-FGSM-based adversarial examples in terms of attack success on the Inc-v3 model.
The blue represents uniform sampling, and the red represents normal sampling used in our method. The results clearly
demonstrate that normal sampling significantly outperforms uniform sampling
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Figure 2: Schematic diagram illustrating our proposed method SAMI-FGSM. The black arrow represents the original
attack direction. Our approach optimizes this direction by accumulating gradient information from sampling points
near the x samples, enabling simultaneous attacks on both Model 1 and Model 2

The main contributions of this paper are as follows:

o The traditional uniform sampling approach in variance adjustment often samples features that hinder
gradient updates. In this work, we employ normal sampling around the sample points to capture features
that enhance attack performance, thereby effectively improving the black-box attack performance of
adversarial examples.

« Additionally, by accumulating the gradient information obtained from stochastic sampling, our method
can alter the original attack direction of adversarial examples, steering it closer to the optimal direction.

This approach enhances the attack effectiveness of adversarial examples against adversarially trained and
defended models.
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o Comprehensive experiments conducted on the ImageNet dataset demonstrate the applicability of our
method. The proposed adversarial attack technique outperforms existing methods, as evidenced by the
result on various models.

2 Related Work
2.1 Adversarial Attacks

This section classifies gradient-based iterative attacks into two categories: traditional gradient attack
methods and those that evolve from gradient-based strategies.

2.1.1 Baseline Based on Gradient Attack

Threats to deep neural networks are typically classified into two types: black-box and white-box
attacks. Research into the transferability of adversarial examples is classified as part of black-box attack
techniques, where the attacker is unable to access details such as the parameters or structure of the victim
model. Additionally, black-box attacks can target multiple other models simultaneously, making black-box
transferability methods highly sought after. Fast Gradient Sign Method (FGSM) [13], originally developed for
white-box attacks, inspired the creation of iterative gradient-based methods tailored for black-box research.
This, in turn, spurred the quick advancement of more effective techniques to improve transferability in
black-box settings. Dong et al. [14] integrated momentum in gradient-based iterative attacks, while Liu et al.
[15] combined the accelerated gradient of Nesterov with gradient attack methods using a momentum-based
approach. Wang et al. [11] addressed the issue of local optima by utilizing the gradient variance from earlier
steps in the iteration process, and Wang et al. [12] integrated spatial domain gradients within images with
earlier work that concentrated on temporal domain gradients. Global momentum initialization is used by
Wang et al. [16] to improve update direction stability.

2.1.2 Gradient Attack-Based Derivation

Since gradient-based adversarial attacks were first introduced, numerous methods have been devel-
oped along this baseline. In addition, several methods derived from this baseline have been thoroughly
examined, typically combined with the original approaches to create adversarial examples that offer better
transferability. As an example, Li et al. [17] successfully used the optimization process of multi-step attacks
to produce adversarial examples with higher black-box success rates by predicting induced adversarial
losses through linear mapping of intermediate-level discrepancies. In order to create adversarial examples
with better transferability against both normally trained and defended models, Long et al. [18] presented
a novel spectral simulation attack that applies spectral transformations to the inputs and performs model
enhancement in the frequency domain. Large step-size updates were used for adversarial examples by Yang
et al. [19], who calculated several samples with small step sizes within each large step and then averaged the
gradients of these samples. By reducing the discrepancy between the true update direction and the steepest
descent direction, this method improves the transferability of the resulting adversarial examples.

2.1.3 Attacks Based on Feature Destruction

In recent years, attacks on the feature space of models have been extensively studied. For example, Wang
et al. [20] proposed the Feature Importance-aware Attack (FIA), which focuses on disrupting important
object-related features that play a major role in model’s decision-making, resulting in adversarial examples
with improved transferability. Huang et al. [21] focused on augmenting perturbations on designated layers
of the source model to adjust existing adversarial examples for better performance in black-box settings.
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Zhu et al. [22] refine the gradient by averaging it over several nearby data points, and subsequently modify the
update gradient with a decay indicator. These methods show that destroying the high-level semantic features
of the model or optimizing the middle layer differences can significantly improve the black box attack effect.

2.1.4 Attacks Based on Input Transformation

Diverse Inputs (DI) attack [23] generates diverse input patterns by using arbitrary changes on the
input samples at every iteration, where the random transformations consist of a certain probability to
perform random resizing and padding, resulting in adversarial examples that exhibit greater randomness and
enhanced transferability. Translation-Invariant (TI) attack [24] approximates the gradient by applying a fixed
kernel matrix to the gradient of an untranslated image. Each iteration requires a gradient computation as the
image is subtly shifted. Thus produced adversarial examples to deceive another model with higher probability.
The Scale-Invariant (SI) attack [15] presents scale invariance by scaling a collection of input images by an
element of 1/2' (i signifies the hyperparameter), and optimizing the gradient of this set of images with the
gradient of input images to create adversarial examples with transferability.

2.2 Adversarial Defense

The threat posed by adversarial examples to deep neural networks has driven the design of more
sophisticated defense mechanisms [25]. Tramér et al. [26] proposed separating the generation of adversarial
examples from model parameter training, aiming to increase perturbation diversity during training while
reducing the dimensionality of the adversarial examples. A fast adversarial training technique was proposed
by Shafahi et al. [27], which simultaneously updates the model parameters and image perturbations within
one iteration, achieving a training speed 3 to 30 times faster than traditional approaches. In their work,
Gokhale et al. [28] developed an adversarial training approach that creates novel samples, maximizing the
classifier’s exposure to the attribute space, all without relying on test domain data. The min-max optimization
problem is tackled by this adversarial training approach, which first optimizes the loss from adversarial
perturbations in the inner maximization phase and then finds the best model parameters in the outer
minimization phase.

Currently, one of the best techniques for increasing model robustness is adversarial training; however,
it faces challenges related to increased training costs, particularly on large-scale datasets. To address the
high computational costs, recent studies have focused on designing efficient methods to enhance model
robustness. Naseer et al. [29] developed a NRP model, which uses self-derived supervision to learn to purify
images from adversarial interference. To identify hostile examples, Xu et al. [30] developed two feature
squeezing methods: Bit Reduction (Bit Red) and Spatial Smoothing. In response to adversarial inputs, Feature
Distillation (FD) [31] was introduced as a defense system utilizing JPEG compression.

3 Methodology

This section begins with a definition of adversarial attacks, followed by an introduction to the baseline
gradient-based methods. We also explain the underlying motivation for our research and describe the
proposed Stochastic Gradient Accumulation Momentum Iterative Attack method, drawing connections to
previous attack approaches.

3.1 Explanation of Adversarial Attack

Adversarial attacks involve generating an adversarial example x?"

classifier f with parameters 6. The crafted adversarial example x*¢"

from a clean sample x using a
causes the classifier f to produce
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incorrect classifications, i.e., f (x;0) # f (x?;0), where f (x;0) represents the output of the deep neural
network (DNN), often denoted by y. The loss function of the classifier f is represented as J (x, y, 6). The
generated adversarial example must satisfy the constraint ||x*®" — x| » < & where ¢is the constraint value, and
|||, denotes the p-norm distance, with p typically being 0, 2, or oo. In this work, consistent with previous
studies [11], we set p = oo. The specific definition is given as:

fo (x“d") # y,8.1. Hx“dv - xH p <€ )

3.2 Gradient-Based Attack

Following the introduction of the Fast Gradient Sign Method (FGSM) [13], iterative refinements in
gradient-based adversarial attacks have resulted in the creation of advanced techniques, including SM?I-
FGSM [12]. All of these methods rely on gradient optimization. The gradient-based optimization family
includes FGSM [13], I-FGSM [32], MI-FGSM [14], NI-FGSM [15], VNI-FGSM [11], VMI-FGSM [11], and
SM’I-FGSM [12].

Fast Gradient Sign Method (FGSM) [13] as the earliest proposed gradient-based attack, generates
adversarial examples by inputting a clean sample x into the network and performing a single update based
on the loss function J(x®?", y, 8). The loss function is only calculated once in the adversarial example. The
following is the particular generation process:

Yo xve-sign (Ve (x,,0)) (2)

xa
where V, denotes the gradient with respect to x, J(-) represents the loss function, sign(-) is the function

that computes the sign of the gradient V,, and ¢ is the perturbation magnitude.

Iterative Fast Gradient Sign Method (I-FGSM) [32] extends the single-step method FGSM to a multi-
step attack by introducing a step parameter a:

x84V = x5 4o sign (thm] (xfdv,y; 9)) (3)
where x8%" = x, x is a clean sample, a = ¢/ T, ¢ is the perturbation size, and T is the iteration count.

Momentum Iterative Fast Gradient Sign Method (MI-FGSM) [14] introduces the momentum factor
p collects the gradient of every iteration of I-FGSM as momentum in the next gradient calculation:

V yaar ] (xfdv,y; 0)
Gi=U- g+ (4)
T
Xl = x ™+ asign (gr) (5)

where g, = 0, u is the momentum element, and g; is the sum of the current gradient and u times (¢ — 1) the
next gradient.

Nesterov Iterative Fast Gradient Sign Method (NI-FGSM) [15] introduces the idea of Nesterov
Gradient Descent (NAG) by replacing all x% in Eq. (4) with x?¥ + « -y - g; when calculating x%% to
additional strengthen the black-box aggressiveness of MI-FGSM.

Variance momentum Iterative Fast Gradient Sign Method (VMI-FGSM) [11] steady the updated
guidance of the present gradient by incorporating the gradient variance details from the prior round of
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iterations:
vx;zdv](x?dv, y, 9) + Vi
G =Y g+ , (6)
Hvxfdv](x? ",y;@) + thl
adv _ _adv .
xty = x4 +a-sign(gim) (7)

where vy =+ YN Vel (x', y50) = Vi J(x, y;0), x' is a random sample within a specific range of x
uniform distribution.

Spatial Momentum Iterative Fast Gradient Sign Method (SM*I-FGSM) [12] considers contextual
gradient knowledge in various image regions, introducing a momentum accumulation system from the
timing to the spatial domain, with the gradient updated as:

= 2 VeI (Hi (x¢7), ) (8)
in1
xfl =X o sign (gh,) )

where H; (.) represents the random resizing and padding used to transform x??, n denotes the number of

transformations in the spatial domain, and A; denotes the weight of the gradient.

3.3 Stochastic Gradient Accumulation Method

Deep neural networks often exhibit complex forms when handling high-dimensional classification tasks
due to the highly nonlinear and often high-curvature nature of their decision boundaries. Fig. 2 illustrates the
high curvature of Model 1and Model 2’s decision boundaries. To induce misclassification in both Model 1and
Model 2, our goal is to generate an adversarial example x that identifies the optimal attack direction during
its creation. The current techniques for generating adversarial examples struggle in transferring attacks to
other models because of the pronounced curvature in the decision boundary. In contrast, robust models
feature smoother decision boundaries, which significantly weakens the impact of adversarial attacks against
defensive and adversarially trained model.

Our goal is to improve the black-box transferability of adversarial examples by refining the attack
direction, steering it towards a more aggressive path. Inspired by VMI-FGSM [11], we investigate the
gradient information of a uniform distribution around the sample during the iterative process, effectively
improving the transferability of the final adversarial example. Building on this, we consider sample feature
information closer to the surrounding sample points, which shares similarities with the feature information
of the sampling points. By setting the sampling point as the center of a normal distribution, we can sample
misleading features near the sample point with maximum probability. Due to the concentration of the normal
distribution around the sample point, most sampled points exhibit features that are more closely aligned with
the original examples. In adversarial attacks, critical feature variations often occur near the model’s decision
boundary. The localized focus of the normal distribution increases the likelihood of sampling points that
are closer to these critical regions, thereby providing more informative guidance for gradient optimization.
This focus reduces deviations in gradient update directions, resulting in smoother and more stable gradient
variations, which enhance the generalization and cross-model transferability of adversarial perturbations.
Furthermore, the localized sampling characteristic of the normal distribution mitigates the interference
of high-curvature decision boundaries on gradient updates, particularly in adversarially trained models,
thereby improving the accuracy of gradient update directions and the overall attack effectiveness. In contrast,
uniform distribution sampling generates points randomly across the entire sampling range, which may result
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in sampled points with features that deviate from the original examples, introducing noise and irrelevant
information into the optimization process. As shown in Fig. 1, the comparison of the two sampling methods
clearly demonstrates that normal sampling outperforms uniform sampling on adversarially trained models.
To boost the attack power of the adversarial example, we add gradient information from the original sample
as noise to image. This is achieved by performing random sampling around the sample’s point based on a
normal distribution and aggregating the gradients obtained from this sampling.

Based on this, we present a new attack method called Stochastic Gradient Accumulation Momentum
Iterative Attack (SAMI-FGSM). At each iteration, the method combines the gradient information from
the earlier step to ensure a more stable gradient direction, effectively smoothing the update direction.
Additionally, during the calculation of accumulated gradient information, it incorporates sample gradient
information from a specific normal distribution range. The specific implementation of the proposed
SAMI-FGSM method is as follows:

Definition: Given a classifier f with parameters 6 and a loss function J(x',y;6), the gradient
accumulation can be described as follows:

N
A(x) = Z in](xi,y;e) (10)
i=1

wherex’ = x +r; r; ~N(0,(§- e)d), and N(0, (3 - s)d) denotes a d-dimensional normal distribution. After
obtaining the random gradient information from the (¢ — 1)-th iteration through the above process, this
information is used to adjust the gradient of x??” in the ¢-th iteration, thereby stabilizing the gradient update
direction more effectively. Specifically, A,.; aggregates the gradients of all sampled points in the current

iteration, and this accumulation affects the gradient update in the following ways:

Stable direction: The historical gradient information (A;) is combined with the current gradient to
smooth the randomness of the single gradient update and avoid falling into local optimum.

Enhanced generalization: The gradient mean of multiple sampling points implies the local geometric
characteristics of the decision boundary of the model, so that the attack direction is more suitable for the
boundary differences of different models.

The complete process of the proposed stochastic gradient accumulation method is described in
Algorithm 1, referred to as SAMI-FGSM. The method proposed here demonstrates optimal performance
along the primary path of gradient-based attacks and is compatible with various derivative techniques, such
as frequency domain attacks [18] and adaptive targeted attacks [33]. Furthermore, the proposed method is
compatible with a variety of existing methods such as DIM attacks, TIM attacks, and SIM attacks.

Algorithm 1: SAMI-FGSM

Input: An image x labeled y; a decay factor y; A classifier f with a loss function J; a total number of
iterations T; a perturbation constraint value ¢&; the sampling ceiling factor J; the number of gradient
accumulations N.

Output: Adversarial examples x**”

L a=¢/T

20 g9=0; Ap = O;xgdv =x

33 fort=0—-T-1do

4: Compute the gradient V] (xfdv, y)

(Continued)
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Algorithm 1 (continued)

5:

10:

Update g;,; by gradient accumulation based momentum
Vx?dv] (x?dv, y) + A[
o] (507, 7) + Ad],

Update gradient accumulation A;,; = A (xfd") by Eq. (10)
Update x4

t+1
adv adv

xil =%+ sign(gen)
end for

adv _ ,.adv
X = xT

return xX*¥

gtr1=U-grt+

3.4 Differences from Existing Attacks

Inc-v3 that achieve the highest average attack success rate compared to six other models.

Derivative methods based on gradient attacks primarily originate from FGSM. This section provides
an overview of the key gradient-based attack techniques, as illustrated in Fig. 3. If the domain upper bound
0 is set to 0, SAMI-FGSM degenerates into MI-FGSM. In the same way, setting the decay factor u to 0
and limiting the number of iterations T to 1 results in these methods returning to the standard FGSM.
Moreover, the aforementioned gradient-based attack methods are capable of being integrated with many
input transformations, such as DIM, SIM, and TIM, to enhance the transferability of adversarial examples.

Input

MI-FGSM ] Transformations w
L )

L L

§uo =

—_— . J
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; = |
( sma || /[ VMID(TS)I
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Figure 3: Linkages between various adversarial attacks

Higher Attack Performance

Finally, the framework design of SAMI-FGSM is inspired by VMI-FGSM and inherits the key ideas in
VMI-FGSM in design. While SAMI-FGSM and VMI-FGSM are on the same level, SAMI-FGSM simplifies
the approach of VMI-FGSM and reduces computational overhead. The contribution of SAMI-FGSM is not a
simple combination of existing techniques, but through normal sampling theory and gradient accumulation
mechanism, it solves the fundamental limitations of traditional methods in local optimum trap and defense
model attack efficiency. As presented in Table 2, the proposed method generates adversarial examples for
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4 Experiments

This section begins with a comprehensive description of the datasets and models employed in the
experiments. Next, a comprehensive comparison is made between the proposed approach and baseline
attacks, focusing on single models and various input transformations. The experimental findings clearly show
the advantages of our method. The impact of adversarial examples produced by our approach in comparison
to three baseline attacks is shown in Fig. 4. Fig. 5 illustrates the attention heatmaps of the original image and
the adversarial examples generated by SAMI-FGSM on the Inc-v3 model. Finally, we discuss the parameter
ablation study conducted on the proposed SAMI-FGSM. It is important to remember that the average success
attack rates reported in all tables represent black-box attack performance, with (*) indicating the results on
white-box models.

SRl - F R A

Clean VMI-FGSM VNI-FGSM SM?I-FGSM SAMI-FGSM

Figure 4: The original image is shown in the first column, while the sample effect image of the confrontation created
by our SAMI-FGSM method and the three baseline attacks on Inc-v3 model is shown in the remaining column. It is
obvious that our method’s attacks have a larger success rate than the baselines, yet the difference in visualization remains
minimal
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(b) Adversarial Example

Figure 5: Examples of model attention heatmaps generated by Grad-CAM [34] are used for clean images and for SAMI-
FGSM generated adversarial examples

4.1 Experimental Setup

Dataset. Based on earlier works [11,14,15,23], we randomly selected one image from every one of the
1000 categories in the ILSVRC2012 validation set, each selected image was able to be correctly categorized
in all models in that paper. We also list other mainstream datasets, as shown in Table 1. In the standardized
adversarial attack research, ILSVRC2012 still has the only unified benchmark; Although other large-scale
or diverse datasets have more advantages in the number of categories, they have not yet formed a unified
evaluation standard in the adversarial attack community or the computational cost is too high.

Table 1: Mainstream image classification datasets

Dateset Categories Typical application scenarios
ILSVRC2012 (ImageNet) 1000 Standard classification, adversarial attack evaluation
CIFAR-10 10 Small scale classification benchmark

CIFAR-100 100 A benchmark for fine-grained classification
ImageNet-21K 11221 Semantic learning, multi-label classification
Openlmages V4 19794 Integrated classification, detection, and segmentation

Models. To better contrast our method with the existing dominant methods, seven naturally trained
models are used, four of which are typically trained models are Inception-v3 (Inc-v3) [35], Inception-
v4 (Inc-v4) [36], Inception-Resnet-v2 (IncRes-v2) [36], Resnet-v2-101 (Res-101) [37], as well as three
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adversary-trained models that have been trained using adversarial examples, namely, ens3-adv-Inception-
v3 (Inc-v3ens3) [26], ens4-Inception-v3 (Inc-v3ens4) [26], and ens-adv-Inception-ResNet-v2 (IncRes-v2eps)
[26]. In the experiment of this paper, every one of these models functioned as a stand-in model to produce
adversarial examples. In addition to the above CNNs, we also use transformer-based architectures including
ViT [38], PiT [39], Visformer [40], Swin [41]. Besides, we utilized three cutting-edge defensive models
to evaluate our strategy’s attack performance: Neural Representation Purifier (NRP) [29], Bit-Reduction
(Bit-Red) [30], Feature Distillation (FD) [31], Resize and Padding (RP) [42], HGD [43], and RS [44].

Baseline. We consider eight gradient-based attacks as our baselines, including MI-FGSM, NI-FGSM,
VMI-FGSM, SM?I-FGSM, NEAA [45], NAA [46] and MFAA [47]. Additionally, our method can be paired
with various common input transformation attacks to test its compatibility and effectiveness.

Hyperparameters. The parameters used in our experiments are consistent with those in the baseline
attack methods. Specifically, the number of iterations, maximum perturbation, and step size are set to T = 10,
€ =16/255, a = 1.6/255, respectively. For the gradient-based momentum term (decay factor) in the baseline
attacks, it is set to 1.0. For the three input transformation methods, the parameter settings are as follows:
DIM has a transformation probability of 0.5, SIM involves 5 scale copies, and TIM uses a Gaussian kernel of
size 7 x 7, as established in previous studies. For VM(N)I-FGSM, the settings are consistent with the optimal
attack performance reported in [11], where the domain upper bound factor f3 is set to 1.5, and the number
of samples for variance adjustment N is set to 20. For the method we propose, based on stochastic gradient
accumulation, the sample size drawn from normal distribution is N = 500, and the upper limit for sampling
is set to 5/2.

4.2 Attack a Single Model

In this part, we tested several baseline methods and our proposed Stochastic Gradient Accumulation
Momentum Iterative Attack (SAMI-FGSM) on individual deep neural network models. Table 2 shows that
the Inc-v3 model was initially used to generate adversarial examples for the experiments. The adversarial
examples were generated on the Inc-v3, Inc-v4, and IRes-v2 models, and then evaluated on eight different
models, comprising one white-box model, two models trained without defenses, two adversarially trained
defense models, and three models with advanced defensive techniques. Table 3 demonstrates that our SAMI-
FGSM technique surpasses every baseline method in terms of attack success rates.

Table 2: Experimental results of SAMI-FGSM with adversarial examples produced by baseline attacks under a single
model on each of the seven models. The best results are bold

Attack Inc-v3* Inc-v4 IncRes-v2 Res-101 Inc-v3,,, Inc-v3,,, IncRes-v2, Average
FGSM 67.2 25.7 26.0 24.5 10.2 10.4 4.5 16.9
I-FGSM 100.0 20.3 18.5 16.1 4.6 5.2 2.5 11.2
MI-FGSM 100.0 45.6 42.3 35.8 14.1 12.4 6.2 26.1
NI-FGSM 100.0 51.5 49.4 40.6 13.0 12.3 6.8 28.9
VMI-FGSM  100.0 714 68.5 60.0 32.7 30.6 174 46.8
VNI-FGSM  100.0 76.8 75.0 64.6 34.5 333 19.2 50.6
NAA 98.1 85.0 82.4 771 50.5 50.8 31.5 62.8
MFAA 97.6 86.5 84.6 78.1 51.9 46.2 32.5 63.3
NEAA 99.3 88.0 87.2 78.8 51.4 52.6 31.8 64.9
SM2I-FGSM 99.8 78.5 76.1 65.5 62.8 61.6 48.0 65.4

SAMI-FGSM 994 88.1 86.6 82.8 71.3 70.3 54.3 75.6
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Table 3: Typical attack success rates generated by the four baseline attacks and our methods on three models. The best

results are bold

Model Attack Inc-v3 Inc-v4 IncRes-v2 Inc-v3,, IncRes-v2,, FD BIT NRP Average
MI-FGSM  100.0* 493 479 30.7 18.7 284 201 16.9 30.3
NI-FGSM 99.9* 54.0 54.2 33.9 23.4 29.7 24.0 20.7 343
Inc-v3 VMI-FGSM  100.0* 69.0 66.6 48.0 41.7 46.9 379 428 50.4
SM?I-FGSM  99.8* 78.5 76.1 61.6 48.0 58.9 475 491 59.9
SAMI-FGSM  99.4* 88.1 86.6 70.3 54.3 61.5 52.1 53.7 66.7
MI-FGSM 43.1 99.3* 34.1 21.7 12.8 211 176 154 23.7
NI-FGSM 46.9 99.8% 38.0 21.5 12.7 21.0 196 183 255
Inc-v4 VMI-FGSM 70.8 99.6* 61.3 39.9 36.0 33.2 286 253 42.1
SM?I-FGSM 76.0 99.5% 67.8 46.5 38.3 39.8 33.6 29.2 473
SAMI-FGSM  86.7 97.9* 83.6 71.9 61.0 48.5 43.2 39.6 62.0
MI-FGSM 43.6 36.2 98.8% 22.2 18.7 199 15.0 164 24.6
NI-FGSM 45.8 39.5 97.0* 22.7 19.5 21.8 189 193 26.8
IncRes-v2 VMI-FGSM 68.9 66.2 97.2% 475 427 335 298 317 45.8
SM?I-FGSM 73.1 69.3 97.5% 52.3 49.8 428 365 40.1 51.9
SAMI-FGSM 844 81.3 93.5% 69.4 67.6 545 46.8 50.1 64.8

4.3 Attack with Input Transformations

To increase the efficacy of adversarial attacks, Wang et al. [11] demonstrated through experiments that
DI (DIM), SI (SIM), and TI (TIM) attacks can be integrated into a composite transformation approach
(DTS). This method, which integrates multiple transformations, can be paired with gradient-based attack
techniques, resulting in enhanced attack success rates. Our approach, the Stochastic Gradient Accumulation
Momentum Iterative method (SAMI-FGSM), focuses on improving the transferability of adversarial exam-
ples. We validate that our approach is just as applicable as classical gradient-based methods by combining
this method with composite transformation techniques. Table 4 demonstrates that combining our method
with different input transformations consistently improves attack performance.

Table 4: Success rates of black-box attacks were generated on three models using our technique combined with DTS
and by the usual four baseline attacks. The best results are bold

Model Attack Inc-v3 Inc-v4 IncRes-v2 Inc-v3,., IncRes-v2, FD BIT NRP Average
MI-FGSM- 99.7* 829 79.9 71.0 57.3 70.4 442 479 64.8
DTS
Inc-v3  NI-FGSM-  99.9* 84.0 81.9 70.9 58.1 70.9 45.0 44.6 65.1
DTS
VMI-FGSM- 99.7*  84.0 81.9 78.0 62.9 73.9 51.6 55.7 69.7
DTS
SM?I-FGSM-  99.7*  86.9 87.0 79.7 68.1 78.6 56.9 57.8 73.7
DTS
SAMI- 98.8*  86.2 86.2 85.0 76.1 84.8 63.1 65.3 78.1
FGSM-DTS
MI-FGSM- 842  99.7% 79.8 64.7 53.0 65.3 36.1 32.5 59.4
DTS
Inc-v4  NI-FGSM- 87.0 99.8% 79.8 62.9 52.1 66.0 35.3 31.0 59.2
DTS

(Continued)
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Table 4 (continued)

Model Attack Inc-v3 Inc-v4 IncRes-v2 Inc-v3,, IncRes-v2,  FD BIT NRP Average

VMI-FGSM- 889 99.9*  83.8 72.9 62.3 7L0 427 389  65.8
DTS
SM2I-FGSM- 919  99.9* 878 76.0 64.4 767 572 408 707
DTS
SAMI- 93.1 972  90.5 84.3 71.9 80.2 658 510 767
FGSM-DTS
MI-EGSM- 770 737  973* 60.3 574 670 389 427 596
DTS

IncRes- 1 pgsm- 779 743 o71* 60.7 57.0 675  40.8 446  60.4
DTS
VMI-EGSM- 792 778  97.0* 66.3 62.7 709 488 504 652
DTS
SM2I-FGSM- 803  79.0  98.1* 67.9 64.8 769 572 531 685
DTS
SAMI- 851 825 933* 82.0 82.4 802 65.6 634 773
FGSM-DTS

4.4 Attack an Ensemble of Models

Through the integration of multiple models, Liu et al. [48] demonstrated that such an approach
boosts the attack performance of adversarial examples, significantly increasing their transferability. Typically,
there exist three kinds of ensemble methods: ensemble at the prediction level, ensemble at the logit level,
and ensemble within the loss function. In this work, we utilize the logit ensemble method, where we
average the logit outputs from the Inc-v3, Inc-v4, and IncRes-v2 models. By making a slight sacrifice in
attack performance in white-box attacks, we gain enhanced transferability in black-box attacks, where our
proposed method exhibits optimal performance. We conduct experiments on two adversarially trained
defense models, and six models with advanced defensive techniques, in Table 5, the upper section reports
the success attack rates (%) of four baseline attacks and our proposed method across three ensemble models,
while the lower section shows the results when combined with DTS. Additionally, we combine the composite
transformation method (DTS) with the ensemble approach to confirm the generality of our proposed
approach. Compared to the four standard gradient-based attack techniques, our approach delivers superior
performance, achieving an average success rate of 88.9%.

Table 5: The upper part shows the attack success rate (%) of four baseline attacks and our method produced at each of
the three integrated models, and the lower part shows the effect of combining the attacks with DTS on this basis. The
best results are bold

Attack Inc-v3 Inc-v4 IncRes-v2 Inc-v3¢nsa IncRes-v2eps FD BIT NRP HGD RP RS Average

MI-  100.0* 99.9* 100.0* 52.4 43.8 54.2 39.0 30.9 24.8 22.2 30.3 372
FGSM
NI-  100.0* 100.0* 100.0* 55.0 459 55.1 411 33.0 22.3 231 30.7 38.3
FGSM
VMI- 100.0* 100.0* 100.0* 78.9 75.1 70.9 56.0 48.6 54.3 50.6 35.6 58.8
FGSM
SMI- 99.9%  99.9*  99.8* 85.1 80.4 80.9 62.5 58.1 74.6 61.2 421 68.1
FGSM

(Continued)
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Table 5 (continued)

Attack Inc-v3 Inc-v4 IncRes-v2 Inc-v3ens IncRes-v2e,s  FD BIT NRP HGD RP RS  Average
SAMI- 99.7%  985*  98.1* 88.2 82.9 82.8 65.6 61.2 80.5 81.3 43.2 73.2
FGSM

MI- 99.9* 100.0%  99.8* 93.8 914 90.5 73.5 80.8 82.3 83.6 49.7 80.7
FGSM-

DTS

NI- 100.0* 99.8* 100.0* 96.5 94.0 90.6 74.5 82.1 87.9 86.5 58.2 83.8
FGSM-

DTS

VMI-  99.8*  99.9*  99.9* 95.4 94.8 91.9 78.3 82.9 90.3 91.0 63.6 86.1
FGSM-

DTS

SM’I- 99.9% 100.0% 100.0* 96.5 95.1 92.9 80.6 84.5 91.9 91.4 67.4 875
FGSM-

DTS

SAMI- 98.1* 98.0* 971* 96.8 96.5 93.1 815 849 924 91.8 745  88.9
FGSM-

DTS

Notably, our method consistently outperforms others on both single and ensemble models, demonstrat-

ing its effectiveness and highlighting the vulnerability of current defense models.

4.5 Attack a Transformer Architecture Model

In order to verify the generalization ability of SAMI-FGSM on Transformer architecture models, four
typical vision Transformer models are selected as target models in this section: ViT, PiT, Visformer, and
Swin Transformer. The experiment uses Inc-v3 as the source model to generate adversarial samples, and the
attack results are shown in Table 6. The average attack success rate of SAMI-FGSM on four Transformer
models reaches 53.7%, which is 21.7% and 10.9% higher than the baseline methods VMI-FGSM (32.0%) and
VNI-FGSM (42.8%), respectively. Experiments show that SAMI-FGSM has significant advantages on the
Transformer architecture model.

Table 6: Attack success rate (%) on Transformer model based on adversarial examples generated by Inc-v3. The best
results are bold

Attack ViT PiT Visformer Swin Average
FGSM 15.0 178 26.4 32.7 22.9
I-FGSM 49 10.0 14.6 21.7 12.8
MI-FGSM 172 23.8 33.7 425 29.3
NI-FGSM 16.6 215 33.3 43.2 28.7
VMI-FGSM 236 278 34.9 41.5 32.0
VNI-FGSM 263 35.9 52.5 56.3 42.8
SAMI-FGSM 39.1 48.9 58.7 68.1 53.7
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4.6 Statistical Significance Test

To ensure the statistical reliability of the results, we performed a paired ¢-test between SAMI-FGSM and
the baseline method, and each attack experiment was independently repeated 10 times. The significance test
was performed using a two-sample ¢-test with significance level a = 0.05 to verify whether the performance
difference between SAMI-FGSM and baseline methods was significant. As shown in Table 7, The two-sample
t-test shows that SAMI-FGSM has a significantly higher attack success rate than VMI-FGSM on the defense
model. In addition, in the cross-model transfer scenario, the average success rate of SAMI-FGSM is 28.8%
higher than that of the baseline method, indicating that its performance improvement is highly stable.

Table 7: Attack success rate (%) of VMI-FGSM and SAMI-FGSM in 10 independent repeated runs

Attack Inc-v3* Inc-v4 IncRes-v2  Res-101 Inc-v3,

ens3

VMI-FGSM  100.0 711+12 685+15 602+0.6 327+09 306+04 174+11 46.8+0.9
SAMI-FGSM 994 881+0.7" 867+04" 828=+12" 71.3+0.8" 703 +09" 543+03" 756+07"

Inc-v3,,,, IncRes-v2,  Average

Note: TIndicates that the p-value < 0.05 is statistically significant compared with the baseline method (VMI-FGSM).

4.7 Evaluation of Disturbance Perceptibility and Verification of Robustness to Input Transformations

We invite 20 subjects to blind test 100 pairs of original/adversarial examples. The experimental results
show that less than 10% of the samples are correctly distinguished by the subjects, which further verifies the
perceptual imperceptibility of SAM I-FGSM under the constraint of € = 16/255. In addition, we also tested
the robustness of perturbation to Gaussian noise (¢ = 0.1), motion blur (kernel = 5+ 5) and random cropping
(20%). As shown in Table 8, the proposed method has strong robustness to noise, blurring and cropping on
the premise of maintaining low perception.

Table 8: Experiments on robustness to input transformations

Input transformations Change of attack success rate

Gaussian noise -32
Motion blur -8.7
Random cropping -84

4.8 Parameters Ablation Study

This section presents ablation studies on two parameters of SAMI-FGSM to assess its effectiveness.
First, we assess the influence of the two parameters, sampling limit § and sampling number N, on the attack
performance of SAMI-FGSM. To evaluate the influence of these hyperparameters, adversarial examples are
created Utilizing Inc-v3 as a source model, with default settings of § = 5/2 and N = 500.

Sampling Limit §: As shown in Fig. 6, we analyze how the sampling limit § in the normal distribution
affects the performance of black-box transferability. The left plot shows adversarial examples generated using
Inc-v3, while the right plot shows results on the Inc-v4 model. The sampling number N is fixed at 500.
When § = 0, SAMI-FGSM degenerates into MI-FGSM, resulting in lower transferability. When § = 1/5,
despite the small sampling limit, SAMI-FGSM exhibits a significant improvement in attack performance.
When 6 = 5/2, our method achieves optimal attack performance, showing excellent effectiveness even against
several defense models. Finally, as § increases further, the attack performance of the proposed method
gradually decreases. § controls the normal sampling limit, and its value needs to maintain a proportional
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relationship with the perturbation constraint value e. When § = 5/2, it ensures that the sampling points not
only contain local feature disturbances, but also avoids the introduction of irrelevant noise due to the large
range. Therefore, § = 5/2 is chosen for all experiments in this study.
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Figure 6: Success rate of transferability attacks on the remaining six models by SAMI-FGSM produced adversarial
examples on Inc-v3 or Inc-v4 when § is changed

Sample Size N: Next, we examine how the number of samples (N) in the neighborhood affects the
transferability of adversarial examples. As seen in Fig. 7, the left plot represents adversarial examples created
using Inc-v3, while the right plot shows outcomes on the Inc-v4 model. The sampling limit J is set to 5/2 by
default. Our approach also degenerates into MI-FGSM when N = 0. The attack performance of our method
will be significantly affected by the sampling number when N = 20, with the effectiveness of the black-
box attack increasing significantly as N increases. Our method achieves near-optimal attack performance at
N =500. Although there is a slight increase in success attack rates with further increases in N, each iteration
requires extensive sampling and gradient computation. As shown in Table 9, when N increases from 500
to 1000, the average attack success rate increases by 1.9%, but the running time increases by 98.2%. When
N > 500, the success rate increases slowly, while the time cost increases significantly. Thus, a larger N results

in higher computational costs. In our experiments, we set N = 500 to strike a compromise between attack
success and computational efficiency.
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Figure 7: Success rate of transferability attacks on this remaining six models by SAMI-FGSM produced adversarial
examples on Inc-v3 or Inc-v4 when sample size (N) is changed
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Table 9: Running time and attack success rate under different sample number N (GPU uses one NVIDIA A40)

N Time (s) Average

500 840 75.6
800 1339 76.8
1000 1665 775

In summary, when N > 500, the impact of N on black-box attack effectiveness gradually diminishes,
while the parameter § has an important impact on the success attack rate. Therefore, for all experiments, we
choose § =5/2 and N = 500.

5 Conclusion

This paper introduces a novel Stochastic Gradient Accumulation Momentum Iterative Attack (SAMI-
FGSM) to enhance the transferability of adversarial examples. This approach stabilizes the gradient update
direction by calculating the accumulated gradient of random samples during each iteration, effectively
avoiding local optima and achieving higher transferability. The attack efficiency of adversarial examples
may also be boosted by integrating this method with other optimization-based attack techniques. Extensive
experimental results demonstrate that SAMI-FGSM achieves optimal attack performance under both single-
model and multi-model settings. Furthermore, combining our method with various input transformations
further enhances attack success rate. Finally, ensemble experiments using three models validate the efficacy
of SAMI-FGSM and show that it also achieves superior attack performance. Statistical tests further confirm
that the performance improvement of SAMI-FGSM does not fluctuate by chance. This highlights the
vulnerabilities of current defense models, underscoring the need to develop more robust defense strategies.

Although our experiments are based on the ImageNet dataset, the design principle of SAMI-FGSM
has broad applicability and can be extended to other image modalities: medical images usually contain
high-resolution local features and low SNR regions [49]. The normal distribution sampling of SAMI-FGSM
can focus on the subtle disturbances in the lesion area, and the gradient accumulation mechanism can
alleviate the overfitting problem caused by data scarcity. Satellite images have large-scale spatial hetero-
geneity and multi-spectral characteristics [50]. The local sampling strategy of SAMI-FGSM can specifically
perturb the key areas of ground cover classification, and the cumulative gradient can adapt to the complex
decision boundaries of the multi-band model. In the future, we plan to conduct experiments on medical
images and satellite images to verify the attack effect of SAMI-FGSM against the scene classification and
segmentation model.

When improving adversarial attack performance through stochastic gradient accumulation, although
the method based on stochastic gradient accumulation significantly enhances black-box transferability, it is
still necessary to explore more distribution sampling methods to determine whether the normal sampling
process is optimal. In the gradient accumulation process, as the number of samples increases, the attack
success rate also gradually increases. However, the reason why the attack performance reaches a peak at
a certain number of samples needs further research and discussion. SAMI-FGSM also has scenarios or
potential weaknesses that may perform poorly. When the target model employs random preprocessing
such as random cropping and image enhancement to obfuscate the gradients, SAMI-FGSM may suffer
from interference in the sampled gradient estimation, thereby reducing the attack success rate. Existing
experiments mainly focus on CNN classification models. In object detection or segmentation tasks, there
are modules such as anchor box mechanism or self-attention in the model structure, and SAMI-FGSM may
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not be directly applicable or have poor effects. A key limitation of SAMI-FGSM lies in the computational
overhead introduced by the normal sampling process. In comparison to previous methods, generating
a high number of samples for gradient accumulation dramatically increases the per-iteration cost. To
address the computational overhead, future work will explore adaptive sampling techniques that focus
on informative regions to reduce unnecessary computations. Parallel and distributed implementations
may further accelerate gradient accumulation, enabling scalability for large-scale tasks. At present, the
hyperparameters § and N of SAMI-FGSM are considered as fixed values, but there may be differences in the
optimal values between different models and datasets. In the future, an adaptive tuning framework based
on Bayesian optimization or reinforcement learning can be introduced to realize adaptive hyperparameter
adjustment in the attack process, so as to improve the attack efficiency and success rate. It is also possible
to extend SAMI-FGSM to physical adversarial attacks and multi-modal datasets. In other domains, we
will try to adapt SAMI-FGSM to text classification and machine translation tasks in the future. Although
experiments show that normal distribution sampling significantly improves the transferability of adversarial
examples, its theoretical optimality has not been rigorously proved mathematically. This limitation comes
from the high-dimensional non-convex optimization characteristics of adversarial attacks, and its theoretical
analysis requires more in-depth functional analysis and probability theory tools. In our future work, we will
cooperate with scholars in the mathematical field to give priority to solving this problem and establish a
universal theoretical framework for the distributed design of adversarial attacks.
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