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ABSTRACT: Infrared images typically exhibit diverse backgrounds, each potentially containing noise and target-
like interference elements. In complex backgrounds, infrared small targets are prone to be submerged by background
noise due to their low pixel proportion and limited available features, leading to detection failure. To address this
problem, this paper proposes an Attention Shift-Invariant Cross-Evolutionary Feature Fusion Network (ASCFNet)
tailored for the detection of infrared weak and small targets. The network architecture first designs a Multidimensional
Lightweight Pixel-level Attention Module (MLPA), which alleviates the issue of small-target feature suppression during
deep network propagation by combining channel reshaping, multi-scale parallel subnet architectures, and local cross-
channel interactions. Then, a Multidimensional Shift-Invariant Recall Module (MSIR) is designed to ensure the network
remains unaffected by minor input perturbations when processing infrared images, through focusing on the models
shift invariance. Subsequently, a Cross-Evolutionary Feature Fusion structure (CEFF) is designed to allow flexible and
efficient integration of multidimensional feature information from different network hierarchies, thereby achieving
complementarity and enhancement among features. Experimental results on three public datasets, SIRST, NUDT-
SIRST, and IRST640, demonstrate that our proposed network outperforms advanced algorithms in the field. Specifically,
on the NUDT-SIRST dataset, the mAP50, mAP50-95, and Fl;.,,, metrics reached 99.26%, 85.22%, and 99.31%,
respectively. Visual evaluations of detection results in diverse scenarios indicate that our algorithm exhibits an increased
detection rate and reduced false alarm rate. Our method balances accuracy and real-time performance, and achieves
efficient and stable detection of infrared weak and small targets.
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1 Introduction

Infrared small target detection is an important research direction in remote sensing and infrared
imaging technology. Due to its strong resistance to smoke interference, long detection range, and the
advantage of being unaffected by lighting conditions, enabling target detection at night or under adverse
weather conditions, it has broad application prospects in military reconnaissance, security monitoring,
astronomical observation, night vision systems, and other fields [1].

Traditional model-driven methods primarily rely on the analysis of target physical and imaging
characteristics, as well as reasonable assumptions based on prior knowledge. However, due to the small
size, low signal-to-noise ratio, and lack of distinct texture and shape features of infrared small targets, these
traditional methods often exhibit low detection accuracy and poor robustness in complex and variable

® Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.064864
https://www.techscience.com/doi/10.32604/cmc.2025.064864
mailto:sdpan@shmtu.edu.cn

4656 Comput Mater Contin. 2025;84(3)

infrared scenes [2]. By stacking multiple layers of nonlinear transformations, CNNs can not only learn deep-
level feature representations of data, better capturing the essential characteristics of targets, but also greatly
reduce the subjectivity and limitations of feature design without human intervention. However, there are still
some issues with current deep learning-based infrared small target detection algorithms.

This article delves deeply into the challenges of detecting infrared small and dim targets in complex
scenes. It addresses three core challenges in the field of infrared small target detection: Firstly, the features of
small targets are easily diluted due to the stacking of information layers in deep networks, thereby reducing
detection accuracy. Secondly, complex environments such as background clutter, illumination fluctuations,
and detector noise severely interfere with small target detection. Thirdly, the difficulty in fully utilizing
information at various levels leads to inefficiencies and missed detections. To address these challenges, a new
network architecture, ASCFNet (Attention Shift-Invariant Cross-Evolutionary Feature Fusion Network), is
proposed. This network integrates traditional prior knowledge with advanced technologies in the field of
deep learning, constructing a unique attention shift-invariant cross-evolutionary feature fusion framework.

The main contributions of this article are as follows:

(1) Design a multidimensional lightweight pixel-level attention module that combines channel reshaping,
a multi-scale parallel subnetwork architecture, and local cross-channel interactions. This enables the
network to focus on key areas in the image while effectively filtering out irrelevant background
interference, significantly alleviating the issue of small target features being overwhelmed during deep
network propagation.

(2) Design a multidimensional shift-invariant recall module that integrates relevant prior knowledge of
targets and backgrounds into the convolutional neural network, endowing the model with unique shift-
invariant characteristics. This ensures that the network can accurately capture the feature information
of targets, regardless of changes in target position, pose, or scale, when processing infrared images.

(3) The designed cross-evolutionary feature fusion strategy is different from traditional sequential
processing, allows the network to integrate multidimensional feature information from different
network levels in a more flexible and efficient manner. This not only achieves complementarity and
enhancement among features, but also greatly enhances the representational ability and robustness of
the features.

2 Related Work

In recent decades, conventional techniques relying on manually crafted features for target identification
have dominated algorithms for infrared small target detection. According to the detection object, these
methods can be broadly categorized into single-frame detection and multi-frame detection [3]. This article
mainly focuses on single frame detection. The mainstream traditional single-frame algorithms include the
transform domain method, such as the early spatial filtering methods Top-hat filter [4]. Their advantage lies
in their straightforward principle and easy implementation, but their overly simplistic assumptions make
them unsuitable for complex scenes. Gradually, these transform domain methods have been developed to
Fourier domain [5], fuzzy space [6], and gradient vector field [7]. These transform domain methods typically
treat infrared small targets as high-frequency components in images, but the actual target background
complexity often far exceeds ideal assumptions, making them difficult to apply. Inspired by the human visual
system, significant detection methods focusing on the energy distribution mechanism of infrared weak and
small targets have also been proposed. The mainstream local contrast methods, such as difference-based
LoG and Dog filters [8], ratio-based LCM [9], ILCM [10], MPCM [11], and the combined difference-ratio
RLCM [12], enhance target visibility by assessing the contrast between the target region and its surrounding
background. While these approaches offer some improvement in detection accuracy, they still struggle
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to cope with extremely complex infrared scenes. The low-rank sparse decomposition method based on
image data structure is also one of the commonly used methods for infrared small target detection, such
as IPI [13], ADMD [14], etc. These methods assume that targets are sparse and backgrounds are low-rank.
Although they exhibit good background suppression, their mathematical definitions are strict, making
targeted improvements difficult. Moreover, when the background is complex, edges, corners, and noise
points also exhibit sparsity. To finely characterize the mathematical relationships among them, the algorithm
often has high computational complexity, which limits practical applications.

While these approaches may lead to some improvement in detection accuracy, traditional methods
rely heavily on manually designed features, making it difficult to comprehensively cover all possible target
features. When facing complex and ever-changing infrared scenes, feature loss or false detection phenomena
are prone to occur.

Over the recent years, an increasing number of scholars have devoted themselves to applying deep
learning algorithms to the field of infrared small target detection. For instance, Dai et al. initially proposed
a bidirectional asymmetric attention modulation network, which utilizes top-down global attention and
bottom-up local attention to ensure the full integration of infrared small targets in the feature pyramid
[15]. Furthermore, based on this, they introduced the attention local contrast network, decoupling the
image block size and filter size in traditional methods, replacing them with dilation factors and effective
receptive fields, thus achieving the seamless integration of prior knowledge with deep learning techniques.
However, due to the use of local contrast mechanisms to constrain the network model in ALCNet [16], its
generalization performance in complex background scenes is limited. Li et al. proposed DNANet, which
preserves the deep representation of targets and achieves adaptive enhancement of features by introducing
the dense nested interaction module (DNIM) and the cascaded channel spatial attention module (CSAM)
[17]. However, precisely because it frequently uses upsampling and downsampling operations in the model to
ensure multiple interactions, the model becomes cumbersome, computationally complex, and has poor real-
time performance. Zhang et al. studied the contextual relationships and feature utilization in the transmission
of infrared small target detection networks, proposing an attention-guided pyramid contextual network that
improves detection accuracy through the fusion of shallow and deep features [18].

However, despite significant progress in infrared small target detection using deep learning methods,
there are still some issues and limitations. Firstly, in neural network learning, as the model parameters
increase, the expression ability of the model will enhance and the amount of information it can store will
also increase. However, this also brings the risk of information overload, especially for infrared small targets
that lack color, texture, and other features. They are easily overwhelmed by redundant information in deep
networks, resulting in detection failure. Secondly, we observe that modern convolutional networks are not
translation invariant, and even small movements in the input can cause drastic changes in the output. Due
to the low pixel ratio of small targets and the presence of background clutter similar to the target in complex
scenes, it may lead to model detection errors. In addition, the application scenarios of infrared small target
detection algorithms often require the algorithm to have extremely high stability and real-time performance.
How to fully and efficiently utilize the features of each layer in the network, so that the model can maintain
stable detection performance in different scenarios while reducing computational complexity, is also an
urgent problem to be solved.
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3 Proposed Methodology
3.1 Overall Architecture

The overall network structure we designed is shown in Fig. 1, which can be divided into three main
parts: the backbone network, the neck network, and the detection head. The input image first passes through
the backbone network, which comprises five layers and incorporates four downsampling operations. In the
second, third, and fourth layers of the backbone network, each downsampling step is followed by an MLPA
module. This module significantly enhances feature representation by increasing the attention on critical

pixel regions.
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Figure 1: The overall network structure of ASCFNet

The fifth layer contains the MSIR module, which does not perform any downsampling operations.
Instead, it combines a full-dimensional dynamic convolution kernel and anti-aliasing pooling, enabling
the extraction of multidimensional information from the convolution kernel space while maintaining shift
invariance. This ensures the robustness of feature extraction.

The feature maps processed by the backbone network are then transmitted to the neck network.
This network employs a cross-evolutionary feature fusion structure comprising three components: MSFI
for hierarchical feature extraction and selection, RAFI for multi-scale fusion, and CPAM for key feature
activation. Acting as a crucial link between the backbone and detection head, the core function of CEFF is
to facilitate the comprehensive and efficient fusion of diverse features extracted by the backbone network.

Finally, the fused features from the neck network are selectively input into the detection head, which
adopts an anchor-free decoupling structure. This structure directly predicts the target’s position and category,
simplifying the detection process. The detection head ultimately outputs the detection results, including the
accurate location and category information of the target, achieving precise recognition and localization of
objects in the input image.
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3.2 Multidimensional Lightweight Pixel Level Attention Module

In order to solve the feature dilution problem mentioned earlier, where critical features are dispersed
across network layers, reducing their impact on the final prediction, we have designed a multidimensional
lightweight attention module suitable for infrared weak target detection. The primary objective of this
module is to minimize computational costs while emphasizing pixel-level pairwise relationships. This
enables the efficient extraction of multi-dimensional features—such as channel, spatial, global, and local
dimensions—of infrared weak targets in the initial phases of the network.

The overall module architecture of MLPA is shown in Fig. 2. Within this architecture, the features are
reshaped from the channel dimension to the batch dimension and further subdivided into multiple sub-
feature groups. This approach maximizes the preservation of inter-channel information while maintaining
computational efficiency, ensuring a balanced distribution of spatial semantic features. To avoid significant
semantic differences in features, we gradually shuffle these channels between each other and reset their
weights. Each subnetwork facilitates local cross-channel interactions without compromising the channel
dimension. Finally, all processed channels are cross fused again and their weights are reassigned, and then
output as a whole.
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Figure 2: MLPA module architecture diagram

In the second green box, the features are processed separately by two parallel sub-networks—one
focusing on global features and the other on local features. By fusing the feature maps output by these sub-
networks, the channel features of the target are projected into the spatial domain, facilitating comprehensive
multidimensional information acquisition and enhancing the model’s perceptual capabilities. A comple-
mentary variable dynamically adjusts the weight distribution between local and global features to ensure
balanced integration.

In order to capture richer multi-scale spatial information within the same processing stage, we flexibly
used convolution kernels of different sizes to highlight the target area in the entire image background.
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Specifically, in the 3 x 3 branch within the local cross channel interaction in the first green box, we capture
multi-scale features by stacking multiple 3 x 3 kernels, which preserves the encoding ability between channels
while ensuring accurate transmission of spatial structural information. In the 1 x 1 branch within the second
green box, we employed 1D global average pooling in two directions, allowing the module to comprehensively
capture global and local information in both horizontal and vertical spatial dimensions of X; and X, to
recalibrate channel weights. Specifically, the input features are endowed with the ability to perform final
encoding correction on the processed features, ensuring that the final output of the model comprehensively
considers the outputs of each stage and effectively avoids excessive bias.

Overall, the MLPA module we designed provides comprehensive encoding of multidimensional infor-
mation. It effectively suppresses the surge in computational complexity while ensuring seamless detection
and clear feature presentation of infrared small targets. Even with deeper network layers, this module
maintains sufficient interactions between global information and local features, including those from
adjacent regions. Furthermore, the attention module integrates channel, spatial, local, and global information
with high flexibility and scalability.

3.3 Multidimensional Shift-Invariant Recall Module for Infrared Small Targets

Compared with conventional medium and large-sized target detection, small target detection is more
affected by minor perturbations because small targets have a smaller pixel ratio. As shown in Fig. 3, in
the original infrared image on the left, small targets are high-lighted with red boxes. Adjacent to this is a
zoomed-in view of the marked small targets after being affected by minor noise, along with the corresponding
three-dimensional model. On the right is a schematic diagram illustrating the IoU variations between
conventional targets and small targets. It can be observed that minor noise interference can cause the
detection box of small targets to shift relative to the actual target. This shift results in a more significant
change in the IoU for small targets, leading to fluctuations in the regression process during training, which
impacts network optimization. To address this issue, we designed a multi-dimensional shift-invariant recall
module. This module incorporates a full-dimensional dynamic convolution kernel and anti-aliasing pooling,
enabling the model to capture complementary features across all four dimensions of the convolution kernel
space within this layer, without increasing network depth. Moreover, it endows the model with distinctive
shift-invariant characteristics.
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Figure 3: The impact of minor perturbations on small targets

The overall structure of MSIR is shown in Fig. 4. The input x consists of n convolutional kernels W,
W, ..., Wy, which first undergo full-dimensional dynamic convolution to produce x;. The processed x; is
then multiplied by the original input convolution group x to form a new convolution group x4, which is
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subsequently subjected to anti-aliasing pooling. The anti-aliasing pooling process consists of three steps: 2D
abstract projection, dense evaluation, and subsampling. Finally, the output x, is obtained.
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Figure 4: MSIR module architecture diagram

For the given n convolutional kernels Wj...W,, the corresponding kernel space has four dimensions:
spatial kernel size k x k, the number of input channels C;, and output channels C,,; for each convolutional
kernel, and the number of convolutional kernels 7. The MSIR module we designed integrates features from
all four dimensions of the kernel space. In principle, these four aspects of features are complementary. By
progressively multiplying the convolutional kernel W; with dynamic weights «; following the sequence of
position, channel, filter, and kernel dimensions, the convolution operation achieves independent respon-
siveness across all spatial positions, input channels, filters, and kernel parameters of input x. This approach
enables more effective acquisition of intricate contextual information.

We observe that commonly used downsampling methods in deep learning often disregard the Nyquist
sampling theorem. However, infrared small target detection tasks place high demands on image detail
preservation. Considering that incorporating prior knowledge can help ensure prediction results conform to
fundamental physical mechanisms and common sense, and inspired by the analysis of downsampling theory,
we turn our attention to pooling operations, which are widely used in modern convolutional networks.

Max pooling, as an example, consists of two key steps: applying the maximum operator over a sliding
window densely and naive downsampling. While the maximum operation performs exhaustive evaluation
across a sliding window, preserving shift equivariance, the subsequent downsampling step fails to maintain
this property. To address this limitation, we draw inspiration from anti-aliasing techniques in signal
processing. First, x; is subjected to a 2D abstract projection, and then an anti-aliasing filter with a 3 x 3
kernel is applied after the maximum operator to mitigate aliasing effects and enhance the model’s robustness
to input shifts. Note that this is not simply inserting a low-pass filtering module into the network, but
rather integrating it with the commonly used pooling operations in downsampling that directly affect shift
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invariance, allowing the filter to enhance rather than replace max pooling. This improvement not only retains
the advantages of max pooling but also makes the output relatively unaffected by input shifts.

Overall, the MSIR module effectively explores the multidimensional information within the convolu-
tional kernel space, optimizing the design and pooling strategy without causing a substantial increase in
the model’s parameter count, while maintaining shift invariance and improving robustness to small input
image movements.

3.4 Cross-Evolutionary Feature Fusion for Infrared Small Targets

Due to the diverse backgrounds of infrared images and the limited features available for small infrared
targets, it is often necessary to incorporate surrounding environmental information to comprehend the
abstract concepts inherent in the images for accurate detection. Generally, advanced semantic information
in the deeper layers of the network represents abstract image concepts, while the key features of infrared
small targets are concentrated in the fine-grained shallow layers. Thus, efficiently fusing features from
different network layers becomes a critical challenge for accurate infrared small target detection. Current
FPN-based solutions (Fig. 5a—c), despite numerous improvements through attention modules or connection
restructuring, still follow the ‘top-down, then bottom-up’ structure of FPN (i.e., bottom-up feedforward
networks, jump connections, and top-down networks). This sequential fusion strategy overlooks the complex
interactions between features and the information loss that may occur during the upsampling process. To
address this, we propose a Cross-Evolutionary Feature Fusion (CEFF) strategy, which integrates feature maps
from multiple convolutional layers, enabling effective fusion of fine-grained low-level details and coarse-
grained high-level semantic features while improving upon the traditional FPN’s sequential fusion through
a more flexible feature fusion pathway.
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Figure 5: Comparison of FPN and its variants with CEFF structure

As shown in Fig. 6, the entire cross-evolutionary feature fusion structure consists of three parts, namely
Multi-Scale Feature Integration (MSFI), Resolution-Adaptive Feature Integrator (RAFI), and Channel and
Position Attention Mechanism (CPAM). The core of the module is the Multi-Scale Feature Integration
part, which enhances the network’s ability to capture features of different scales through the extraction
of multi-scale information and improves the receptive field. Meanwhile, the Resolution-Adaptive Feature
Integrator further integrates feature maps of different scales, achieving the combination of high-dimensional
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semantic information and low-level detail information of features. On this basis, we introduce a channel
and position attention mechanism that does not require dimensionality reduction, activating key features to

more accurately capture local changes and global context in the feature map.

Input Key channel Key position \ Position attenticn
I[ o --""a’cﬁ?a’fé'n\ ] ""'hctiuété'---..\\ ; i D" avgpool
: .' & £ Lo L | Channel attention Concat
: H : = : AvgPool Conv
i X —» o . 3 : ety split
" L | L ] : Transpose H W
I . . i|; Co , —r
v (e I8 -3 ‘gl
L o 4 —'
. i i L &
sS====== :I —————— =
- [0S -(21] cram
256%256 A 4
@FEED [0 [ Conv |-[1] Conv |- 2 Mpa [3]Conv |- 4 MwA [5[Conv |- 6 MipA -[ZWMSR]
: g v e
(8] Conv_| (o RAR -1
S e e tenin, il
[11] conv_|[12] RARI )i 10 MLPA
13 MLPA (34 Conv | [ESIGoRGE - 16 MweA (17 Conv | -[HENCoRGaEY
19 MLPA
7 === Ty emmmmmmmemmemmmmmmemmmmm e e e ——————— -
! Conv :; AdaptiveMaxPool i Y
; Bn o @ " y i
! Conv Upsample - concat . Squeese il ! . .|
. LeakyRelu i i i Aisptietugioo i} - Concat , l':
I ]
1 Maxpool Iy P ]
| |- conv — Upsample — MSFI )t i Interpolate | I RAFI !

Figure 6: The overall connection structure of CEFF and the specific positions of each component module

As shown in Fig. 7, the MSFI method first extracts feature maps from convolutional layers of different
depths, where shallow convolutions capture more local spatial details, while deep convolutions have larger

receptive fields layer by layer and are used to capture more complex and clustered features of the image. Then,
the extracted feature maps are channel shuftled to enhance the interaction between features, and their spatial
resolution is unified through interpolation upsampling. Then, the three processed feature maps at different
levels are expanded in three dimensions, resulting in 3D feature maps with the same resolution at different
levels. On this basis, they are concatenated and combined before applying channel mixing technology again

to achieve deep fusion and complementarity between features.
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Figure 7: MSFI module structure diagram

The commonly used concatenation method in deep convolutional networks directly combines feature

maps from different sources along the channel dimension. However, due to feature redundancy across
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different levels, this redundancy is exacerbated after straightforward concatenation. Additionally, feature
maps at various levels differ in semantic and spatial resolution, and direct concatenation may result in feature
imbalance, introduce aliasing noise, and degrade model performance. To address this issue, we introduced
the RAFI module, which can segment and merge features of varying sizes, ensuring consistent resolution
across images. As shown in Fig. 8, feature maps at various resolutions can be considered a scale space.
Initially, the effective feature maps with different resolutions are standardized to a common resolution. Then,
progressive connection and fusion strategies are employed to mitigate substantial semantic discrepancies
between features at different levels. Finally, feature maps are concatenated within the scale space to facilitate
information exchange across scales.
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Figure 8: Schematic diagram of RAFI module structure

In addition, in order to enhance the flexibility and accuracy of the fusion process, we also introduced an
adaptive channel and position attention mechanism (CPAM) that does not require dimensionality reduction
to dynamically adjust the fusion weights of features at different scales, as shown in Fig. 9. This not only
preserves rich information in the channel and space, but also activates important information in feature
fusion, ensuring that key information can be highlighted during the feature fusion process, suppressing noise,
and improving the pertinence and efficiency of feature fusion.
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Figure 9: Schematic diagram of CPAM module structure

Finally, the connection structure of the three parts is also worth paying attention to. Traditional
upsampling or downsampling methods may lose subtle feature information after multiple layers. We have
achieved deep fusion of multi-layer features by introducing a long jump connection mechanism. This direct
interaction avoids information attenuation during multi-level transmission, preserving weak infrared target
features. It is worth noting that our “cross” network connections are not random. In fact, whether it is the
RAFI module or the MSFI module, their input features are from adjacent levels, which can prevent sig-
nificant semantic discrepancies that might occur between non-consecutive levels and ensure the continuity
and effectiveness of information flow. In addition, through long connection technology, we combine the
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features output by the channel attention mechanism with the features of the MSFI module as inputs to
the position attention network, providing it with more comprehensive comple-mentary information. This
enables the network to simultaneously fuse features from both the channel and position dimensions, further
improving the model’s detection performance for infrared small targets.

4 Experiments and Discussions
4.1 Dataset and Experiment Settings

Due to the inherent dependence of neural networks on datasets, the quantity, quality, and variety of
scene contexts within the data significantly impact the performance of the algorithm. The specific parameters
of the datasets used are shown in Table 1.

Table 1: Dataset comparison table

Datasets Image type Image number Background
SIRST [15] Real 427 Cloud/City/Sea
IRST640 [19] Synthetic 1024 Clouds/City/Tree
NUDT-SIRST [17]  Synthetic 1327 Cloud/City/Sea/Field/Highlight

During training, the Kaiming method is applied to initialize the model’s weights and biases, and a cosine
annealing learning rate scheduler is used. L2 regularization is used to prevent overfitting of the model. The
cosine annealing scheduler aids quick convergence early in training and dynamically adjusts the learning
rate to prevent local optima. L2 regularization retains all feature information, unlike L1 which may lose useful
information. The experimental configuration details and other parameter settings are provided in Table 2.
AdamW retains Adam’s momentum and adaptive learning rate mechanisms but decouples weight decay from
gradient updates, applying it directly to parameter updates for more precise control and avoiding unnecessary
influence on bias parameters. In contrast, SGD converges slowly with manual learning rate tuning, while
RMSprop, though using an adaptive learning rate, is less refined than AdamW in momentum and weight
decay handling.

Table 2: Experimental environment and parameter settings

Name Settings
Processor Intel (R) Core (TM) i9-10900X CPU @ 3.70 GHz
Graphics card NVIDIA GeForce RTX 4090
Deep learning framework Pytorch
Epoch/Batch size 300/16
Optimizer/Momentum AdamW/0.937

We use mAP50, mAP50-95, Fl;.re, ROC, and FPS as evaluation metrics for network performance.
Generally speaking, we can divide true targets and detection samples into four categories: TP (true positive),
FP (false positive), TN (true negative), and FN (false negative). These categories correspond to the number of
positive samples correctly identified as positive, negative samples incorrectly identified as positive, negative
samples correctly identified as negative, and positive samples incorrectly identified as negative, respectively.
Precision is defined as the ratio of correctly predicted positive samples to the total number of samples
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predicted as positive, whereas recall is the ratio of correctly predicted positive samples to the total number
of actual positive samples, as illustrated in the Eqs. (1) and (2).

. TP
Precision = ———— (1)
TP+ FP
TP
Recall = ———— (2)
TP+ FN

However, considering a single metric alone has significant limitations, so the area under the Precision-
Recall curve, also known as the AP value, is often used as a reference, as shown in the Eq. (3).

AP - /OIP(r)dr 3)

By setting multiple IoU thresholds, calculating the corresponding AP values for each threshold and
taking the average for all categories, mAP can be obtained as shown in the Eq. (4).

1 m
mAP = — " AP; (4)
m i

Similarly, mAP50 represents the mAP value with an IoU threshold set at 0.5, while mAP50-95 denotes
the average of ten mAP values obtained by incrementally adjusting the IoU threshold from 0.5 to 0.95 in
increments of 0.05, as shown in Egs. (5) and (6).

1 m
mAP50 = — »" AP, (5)
m i3
1 m 95
mAP50 - 95=—>" > AP, (6)
i=1 n=50

Flcore is the harmonic mean of Recall and Precision, which comprehensively considers the influence of
recall and precision to prevent one indicator from dominating the experimental results. Its form is shown in
the Eq. (7).

Fl ~ 2TP )
9T " 2TP + FP + FN

The ROC curve is also an important indicator for measuring model performance, showing the relation-
ship between the true positive rate (TPR) and false positive rate (FPR) of the model at different thresholds.
The larger the area under the ROC curve, AUC, the better the classification performance of the model, as
shown in the Eqs. (8)-(10).

TP
TPR= ——— (8)
TP+ FN
Fp
FPR= —— 9)
FP+FN

1
AUC = f TPR(FPR) dFPR (10)
0
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For applications requiring real-time processing, the detection efficiency of the model is also crucial. The
commonly used metric for evaluating detection efficiency is frames per second (FPS). A higher FPS value
indicates a higher detection efliciency of the algorithm, as shown in the Eq. (11).

_ frame Num

FPS =
elapsedTime

(11)

4.2 Ablation Study

To demonstrate the effectiveness of the modules proposed in this paper, we conducted experiments
on the NUDT-SIRST dataset using YOLOv8n as the baseline network. We evaluated the network per-
formance by adding or replacing similar functional modules. As shown in Table 3, the values of mAP50
and mAP50-95 were presented as the mean + standard deviation of five experiments. The p-value is
the result of the Wilcoxon signed-rank test, taking the minimum p-value between the two metrics
(mAP50 and mAP50-95) when compared with the baseline model (YOLOv8n). The units for mAP50,
mAP50-95, and p-value are all 1072, Our MLPA, MSIR, and CEFF modules performed the best among the
compared modules of the same type, both in terms of mAP50 and mAP50-95 metrics, and showed statistical
significance (p < 0.05).

Among the compared attention modules, the MLPA module has the fewest parameters and outperforms
other lightweight attention mechanisms of the same type, such as SimAM [20], EMA [21], MLCA [22], and
HiLoAttention [23]. This demonstrates that our module can maintain strong performance while reducing
network complexity. The reason for this is that our design enables the network to focus on the target feature
regions early in the process. As a result, it not only achieves higher accuracy with fewer parameters but also
confirms that shallow networks with parallel substructures can deliver better performance without the need
to increase network depth.

Table 3: Effectiveness ablation experiments on individual modules of MLPA, MSIR, and CEFF on the NUDT-SIRST
dataset, the best results for each type of module are in bold

Setting mAP50 mAP50-95 FPS Params (M) P
Baseline YOLOv8n 98.07 +0.18 80.81+0.20 625 3.01 -
+FocusedLinearAtten 98.46 £ 0.25 7890+ 0.22 526 3.38 0.8

[24]
+SimAM [20] 9786 £ 0.31  75.65+0.27 500 3.01 0.6
+ParNetAttention [25] 98.43+0.22 7737 +£0.31 555 3.97 0.7
+BiFormer [26] 98.62 +0.42 7486 +£0.35 588 3.27 0.5
+LSKBlock [27] 98.20+0.33 78.71+0.28 476 3.37 0.8
+EMA [21] 98.52 £ 0.27 81.09+0.34 434 3.02 31
+MLCA [22] 98.44+£0.30 81.20+0.29 526 3.01 2.8
+PPA Attention [28] 9794 £ 0.54 80.66 +0.47 476 11.67 3.1
+HiLoAttention [23] 95.76 + 0.26 6702+ 0.26 526 3.10 0.3
+AGCBpatch [18] 97.96 £ 0.47  78.62 + 0.53 192 3.35 0.8
+MLPA 98.79 + 0.23 81.85+0.20 294 0.99 1.8
+ASPP [29] 97.84 + 0.48 80.40 + 0.56 99 5.07 2.6
+DCNv2 [30] 9410+ 0.53 6157 £ 042 454 3.17 0.3
+SPDConv [31] 98.21 £0.32 7732+ 0.26 555 2.99 0.7
+BlurPool [32] 98.23 £0.20  81.10 = 0.37 588 3.01 3.0

(Continued)
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Table 3 (continued)

Setting mAP50 mAP50-95 FPS Params (M) P
+ODConv [33] 98.54 £ 0.17 81.02 £ 0.12 400 8.79 3.3
+RFAConv [34] 98.41 + 0.34 81.23 £ 0.27 526 4.40 2.5

+MSIR 98.60 + 0.19 81.34+0.21 370 8.79 2.1

+AFPN [35] 9731+£0.31 80.71+0.43 454 1.85 3.6
+ATAC [36] 9786 £0.49 7939 +0.62 588 3.4 0.9
+MPCM [11] 9795+ 0.57 81.06+0.71 555 3.01 3.2

+CEFF 99.11+0.20 83.26 +0.26 322 3.01 1.5

In addition, among all the performance comparison experiments involving improved convolutional or
pooling modules, the MSIR module proposed in this paper achieves the highest performance, as evidenced
by superior scores in both mAP50 and mAP50-95 metrics. It is noteworthy that ASPP, ODConv, and
RFAConv also demonstrate strong performance across various tests. We attribute this to the fact that,
although these methods employ different specific improvement measures compared to ours, they are inspired
by similar underlying principles. Specifically, convolution operations are inherently multi-dimensional
rather than linear, whereas traditional convolution typically focuses on a single dimension. Additionally, the
shift invariance improvements designed to mitigate the susceptibility of small targets to minor perturbations
are particularly well-suited to the demands of infrared small target detection.

Ultimately, in terms of feature fusion methods and other modules designed to enhance infrared small
target detection, the CEFF module proposed in this paper achieves the best performance in both mAP50 and
mAP50-95, demonstrating the effectiveness of this innovative feature fusion approach. The key innovation
of CEFF lies in its connection order and the way connections are made. To assess the effectiveness of
our design, we performed ablation studies focusing on various connection structures. As shown in Fig. 10
and Table 4, Fig. 10a introduces a small target detection head compared to Fig. 10b, Fig. 10c features a more
lightweight backbone than Fig. 10b, and Fig. 10d shows looser connections and a different fusion order
compared to Fig. 10c. The CEFF module not only simplifies the network by removing a convolutional layer
from the backbone, preventing the feature maps from becoming too small to detect small targets, but also
employs a comprehensive connection strategy that integrates information across all layers. This approach
enables the model to better learn both contextual information and the intrinsic features of the targets,
ultimately improving detection performance.

Layer5 1} "l Detect — Detect Layer5| % . Detect Layer5 | Dl
’ act Xy g w/ | Detect

Layerd Layerd — _'. = Layerd — &1 ot Layerd | ¥/ ‘ )
Layer3 | Layer3 | " < Detect Layer3 |” * \ B petect | |layer3 |+

) 1\ | — X { — Detect
Layer2 |/ ° . \ e Layer2 Layer2 Layer2| \ ‘
Layerl Layerl Layerl Layerl

(a) Four head detection (b) Three head detection (c) Lightweight (d) Cross-evolutionary feature fusion

Figure 10: The various methods employed in the ablation experiments of feature fusion structures
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Table 4: CEFF structure ablation experiment on the NUDT-SIRST dataset, with the best results displayed in bold

Design mAP50 (x1072%) mAP50-95 (x1072) FPS Params (M)
Four head detection 97.88 79.39 294 7.91
Three head detection 98.17 81.67 333 7.50
Lightweight 97.92 82.02 357 2.40
CEFF (ours) 99.05 83.14 322 3.01

The module combination ablation experiments shown in Table 5 demonstrate that the network integrat-
ing all three modules achieves improvements in both mAP50 and mAP50-95 compared to single modules or
pairwise combinations. This indicates that the modules complement each other and are indispensable within
the network—each functioning like interlocking gears, performing their roles while mutually enhancing one
another, reflecting the effectiveness of the overall network design.

Table 5: Module combination ablation experiment on the NUDT-SIRST dataset, with the best results displayed in bold

MLPA MSIR CEFF mAP50 (x1072) mAP50-95 (x102) FPS Params (M)

97.90 80.80 625 3.01
Vi 98.81 81.85 294 0.99
Vi 98.46 81.34 370 8.79

Vi 99.05 83.14 322 3.01

Vi J 98.60 81.58 384 8.81
J Vi 98.38 82.84 384 2.45

Vi Vi 98.59 81.86 333 1.01
Vi J Vi 99.26 85.22 322 2.46

From the model’s FPS and Params, it can be seen that computational efficiency was considered in
the design. On NVIDIA RTX 4090, it achieves a single-frame inference speed of 1.9 ms (preprocessing
0.8 ms, postprocessing 0.4 ms), with FLOPs of 2.8 G for 256 x 256 input images. The current GPU memory
usage is 24.2 GB, with parameter memory accounting for about 9.84 MB, indicating that most memory
consumption comes from activation feature maps, which could be further reduced through architectural
optimization. After pruning and quantization, the model size can be further compressed to 0.92 MB (with
accuracy dropping to 97.32% mAP50), friendly to edge-device.

4.3 Comparison to State-of-the-Art Methods
4.3.1 Quantitative Results and Analysis

To demonstrate the superiority of our proposed ASCFNet, we compared it with 19 other typical
methods, including seven classic traditional infrared small target detection algorithms from three different
categories: domain transformation methods (Tophat), low-rank sparse decomposition methods (IPI), and
human visual system-based methods (LCM), as well as nine neural network-based infrared small target
detection algorithms. Among the 12 deep learning-based algorithms, SSD [37], YOLOv5 [38], YOLOvS8
[39], ViT [40], MobileViT [41] and SwinTiny [42] are well-known universal object detection algorithms,
representing classic and advanced methods in the general object detection field. MD vs. FA [43], ACM,
ALCNet, DNANet, IAANet [44], and AGPCNet are classic and advanced algorithms specifically designed
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for infrared small target detection. To ensure the fairness of comparative experiments, all deep learning-
based algorithms adopted identical experimental settings (including dataset splits, augmentation strategies,
hyperparameters, and training environments).

As shown in Table 6, the overall performance of the NUDT-SIRST dataset is generally better than that
of the SIRST and IRST640 datasets. Across all three datasets, deep learning-based infrared small target
detection algorithms consistently outperform traditional methods. From the table data, among general-
purpose object detection algorithms, the Transformer-based ViT underperforms compared to CNN-based
YOLO. This may be because ViT’s advantages are more apparent on large-scale, high-resolution datasets,
while the three commonly used infrared small target datasets in our experiments are relatively lightweight.
This hypothesis is corroborated by experimental data showing that Transformer-based models MobileViT
and SwinTiny outperform ViT in performance metrics, indicating that lightweight algorithms often demon-
strate superior adaptability in small-scale dataset scenarios. Notably, MobileViT exhibits comprehensive
performance advantages over both SwinTiny and YOLOv8n. We posit this stems from MobileViT’s intrinsic
self-attention mechanism design, which enables more effective capture of local feature information in small
object detection tasks.

Table 6: Comparison of performance metrics with classic algorithms on NUDT-SIRST, SIRST, and IRST640 datasets,
with the best results displayed in bold

Method NUDT-SIRST SIRST IRST640
mAP50 mAP50-95 F1 mAP50 mAP50-95 F1 mAP50 mAP50-95 F1
Tophat 63.21 51.06 67.32 42.35 28.67 68.94 75.10 58.21 78.61
IPI 67.35 54.71 71.60 60.37 46.62 71.13 78.69 63.25 81.44
LCM 29.14 17.37 32.09 21.33 19.21 31.75 36.51 24.07 41.10
MPCM 3792 31.00 40.67 27.69 15.93 25.99 44.52 35.87 5714
ADMD 40.60 37.16 42.31 47.62 35.17 50.91 53.31 41.79 67.88
PSTNN 44.37 38.91 46.11 42.54 30.85 4731 56.11 42.60 59.81
SRWS 23.46 12.61 25.63 14.34 9.49 6.22 26.64 15.31 29.77
SSD 59.43 52.09 63.20 40.32 29.17 43.16 56.41 43.52 60.49
YOLOV5 81.30 70.61 82.67 56.64 40.31 59.78 68.98 51.30 72.49
YOLOVS 97.90 80.80 97.42 86.45 69.44 87.92 92.31 84.67 93.22
MDvs.FA  88.42 76.32 89.70 62.10 49.52 68.27 70.56 59.78 74.62
ACM 98.45 80.14 98.66 73.41 60.88 75.27 81.64 70.51 80.70
ALCNet 97.89 81.02 98.34 75.78 61.54 76.95 81.21 72.01 82.09
DNANet 98.16 84.96 98.79 83.97 72.64 84.26 89.75 80.04 91.61
JTAANet 97.90 82.30 98.82 74.12 60.40 76.34 82.36 74.96 84.79
AGPC 98.58 82.61 98.90 85.24 72.48 84.23 93.03 86.02 94.31
ViT 98.75 7774 99.10 58.23 48.77 58.46 74.36 62.51 75.12
MobileViT  98.86 81.26 97.76 86.51 70.12 88.32 92.44 85.02 93.36
SwinTiny 98.77 80.64 99.15 63.41 50.72 63.87 76.98 64.11 77.09
Ours 99.26 85.22 99.31 88.60 79.67 89.69 96.54 87.98 98.82

On the SIRST public dataset, compared to ACM proposed by the authors of this dataset, our algorithm
ASCFNet achieved an improvement of 15.19% in the mAP50 metric and 18.79% in the mAP50-95 metric.
On the NUDT-SIRST and IRST640 datasets, AGPCNet demonstrated the best performance among the
compared algorithms, except for our proposed ASCFNet, which surpassed AGPCNet by 2.61% and 1.96%
in the mAP50-95 metrics, respectively. Across all three public datasets, ASCFNet outperformed the baseline
network YOLOVS, with Fl1 scores increased by 1.89%, 1.77%, and 5.6%, respectively.
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In addition, Fig. 11 compared the mAP50-95 curve and ROC curve of ASCFNet with nine other deep
learning-driven infrared small target detection algorithms on three publicly available datasets: NUDT-SIRST,
SIRST, and IRST640. From the mAP50-95 curve in the first row, it can be seen that although DNANet and
AGPCNet have steeper slopes than ASCFNet, after stabilizing, ASCFNet outperforms all other compared
algorithms. As evidenced by the ROC curves in the second row, our ASCFNet demonstrates superior
performance across all three datasets by positioning closer to the top-left corner and achieving larger areas
under the curve (AUC = 0.974 + 0.008), indicating enhanced TP/FP discrimination capability. The steep
initial ascent reveals that most false positives occur in low-confidence regions. Based on the performance
of mAP50-95 and ROC curves, compared with existing advanced algorithms for infrared small target
detection, our method achieves a balance between detection efficiency and accuracy. Compared with similar
comparative methods, it can stably achieve better infrared small target detection results.
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e
ety LT

1 f iy N’ 1‘\’
os |- \Ky\’\,," \t

MAP50-05
MAP50-05
MAP50-95

ot Y
ous

o 50 100 150 200 250 300
Epoch

(a)

ROC curve on NUDT-SIRST

o 50 100 150 200 250 300
Epoch

(©

ROC curve on IRST640

True Positive Rate

o 01 02 03 04 05 06 07 08 09 1 o o1 02 03 04 05 06 07 08 09 1 o 01 02 03 04 05 06 07 08 09
False Positive Rate False Positive Rate False Positive Rate

(d) (e) (®

Figure 11: mAP50-95 and ROC curve graphs of various algorithms on the NUDT-SIRST, SIRST, and IRST640 datasets.
(a) MAP50-95 curve on NUDT-SIRST dataset; (b) MAP50-95 curve on SIRST dataset; (c) MAP50-95 curve on IRST640
dataset; (d) ROC curve on NUDT-SIRST dataset; (e) ROC curve on SIRST dataset; (f) ROC curve on IRST640 dataset

4.3.2 Qualitative Results and Analysis

We selected five representative images from three datasets and compared the infrared small target
detection results of ASCFNet with those of other algorithms through visualization. As shown in Fig. 12,
correctly detected targets are marked with red rectangles, missed targets with green rectangles, and false
detections with blue circles. In the first and second rows of the Fig. 12, Tophat, IPI, LCM, and MPCM have
unsatisfactory detection results for complex cloudy images, failing not only to accurately detect targets but
also producing a large number of false alarms. In deep learning-based methods, DNANet, IAANet, and
AGPCNet can accurately recognize both targets, but DNANet and IAANet still generate varying degrees of
false alarms. From the third to fourth rows of Fig. 12, it can be seen that IPI, LCM, PSTNN [45], and SRWS
[46] perform better on multi-target, low signal-to-noise ratio images than on complex cloudy images. This is
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because traditional infrared small target algorithms are based on manually designed detection rules, which
typically assume that at least one target exists in the image by default, allowing them to produce at least one
result, even in cases where the target is dim. Although the deep learning-based methods MD vs. FA, ACM,
and ALCNet produce few or no false alarms, they all miss some targets. Overall, from the series of images
in , it is clear that our proposed ASCFNet not only detects all the correct targets but also avoids false
alarms, consistently achieving the best performance.
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Figure 12: Visual comparison of detection effects of different methods
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Fig. 12 (lines 7-8) displays two typical false alarms in ASCFNet’s overhead field detection. First, bright
patches formed by sunlight reflection in hilly areas, whose thermal radiation distribution exhibits gradient
features similar to real targets. Second, debris-like noise caused by irregular thermal patterns of foliage
shadows, whose high-frequency spatial variations challenge the model’s discrimination capability. Further
analysis shows that false alarms are mainly concentrated in scenarios with high background complexity,
while missed detections mostly occur under extreme conditions where the target signal-to-noise ratio is <3
dB and the size is <3 pixels (accounting for 82% of missed detection cases). Notably, false detections exhibit
lower confidence (0.38 + 0.12) than true detections (0.81 + 0.09), proving the model’s ability to discriminate
positives from negatives, consistent with the ROC analysis in Fig. 11. In the future, we will further optimize
the model’s robustness by introducing temporal feature constraints and multi-modal feature fusion.

Fig. 13 compares the feature activation maps of key layers between the Baseline and ASCFNet under
the same scene. Experimental results demonstrate that ASCFNet achieves more profound target feature
learning and more precise feature localization. While the Baseline exhibits scattered activation responses
with significant background noise interference, ASCFNet not only effectively suppresses irrelevant back-
ground activations through its MLPA module but also realizes efficient inter-layer information fusion and
transmission via CEFE, maintaining strong activations in key regions even under complex scenarios.
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Figure 13: The various methods employed in the ablation experiments of feature fusion structures

5 Conclusions

This article proposes a deep learning based infrared weak target detection algorithm ASCFNet. By
designing MLPA, MSIR, and CEFF modules, a unique attention shift-invariant cross-evolution feature
fusion framework is constructed, alleviates problems such as feature dilution, small input disturbance,
and underutilization of features for small targets. ASCFNet consistently achieved the best performance in
ablation experiments conducted on widely recognized public datasets SIRST, NUDT-SIRST, and IRST640,
and compared with advanced algorithms in the field. Among them, the NUDT-SIRST dataset has the highest
indicator values, with mAP50, mAP50-95, and Fl;.,,, reaching 99.26%, 85.22%, and 99.31%, respectively.
The model parameter size is 2.46 M, which is 18.27% lower than YOLOvS8n. Visual evaluations of detection
results in diverse scenarios indicate that our algorithm exhibits an increased detection rate and reduced false
alarm rate.
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