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ABSTRACT: Predicting the health status of stroke patients at different stages of the disease is a critical clinical task. The
onset and development of stroke are affected by an array of factors, encompassing genetic predisposition, environmental
exposure, unhealthy lifestyle habits, and existing medical conditions. Although existing machine learning-based
methods for predicting stroke patients’ health status have made significant progress, limitations remain in terms of
prediction accuracy, model explainability, and system optimization. This paper proposes a multi-task learning approach
based on Explainable Artificial Intelligence (XAI) for predicting the health status of stroke patients. First, we design
a comprehensive multi-task learning framework that utilizes the task correlation of predicting various health status
indicators in patients, enabling the parallel prediction of multiple health indicators. Second, we develop a multi-task
Area Under Curve (AUC) optimization algorithm based on adaptive low-rank representation, which removes irrelevant
information from the model structure to enhance the performance of multi-task AUC optimization. Additionally, the
model’s explainability is analyzed through the stability analysis of SHAP values. Experimental results demonstrate that
our approach outperforms comparison algorithms in key prognostic metrics F1 score and Efficiency.

KEYWORDS: Explainable Al; stroke prognosis; multi-task learning; AUC optimization

1 Introduction

As a serious cerebrovascular disorder, stroke constitutes a substantial risk to the health of millions glob-
ally. The multifactorial pathogenesis of stroke involves dynamic interactions among genetic polymorphisms,
environmental triggers, and modifiable risk factors. The complex interactions among these factors make the
management of health status in stroke patients particularly challenging. Accurate prediction of the health
status of stroke patients is essential, as it facilitates clinical decision-making, contributes to the formulation
of personalized treatment strategies, and ultimately enhances patient survival rates alongside quality of life.
In the medical field, conventional approaches to predicting health status predominantly depend on clinical
experience and basic statistical models like logistic regression and Cox proportional hazard models. While
these methods can provide some predictive information, their predictive power and model explainability are
limited [1,2].

The rapid advancement in data science and machine learning has led to an increased focus on health
status prediction methodologies that leverage big data and sophisticated models [3,4]. Machine learning
models, such as Support Vector Machines (SVM), Random Forests (RF), and Deep Neural Networks
(DNN), excel at extracting useful features from complex data, significantly improving prediction accuracy
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and robustness [5,6]. For instance, research by Wang et al. demonstrated that deep neural networks
significantly outperform traditional statistical models in stroke prognosis prediction [7]. Multi-task learning
is an inductive transfer method that uses the domain information contained in the training signals of
related tasks as inductive bias to improve generalization ability [8,9]. Therefore, multi-task learning uses
the relationship between tasks to comprehensively capture the multidimensional characteristics of patients,
thereby improving prediction accuracy. For example, in the field of medical image processing, multi-task
learning has shown excellent performance [10]. However, most existing multi-task learning studies use
accuracy as a benchmark evaluation metric, which is only applicable to balanced distributions, and the
issue of negative transfer may lead to the model being trained in the wrong direction. On the other hand,
a major limitation of these traditional machine learning models is the lack of explainability, which presents
a significant barrier in clinical applications. Clinicians need to understand the internal logic of model
predictions to ensure their reliability and practical acceptability. Finally, model performance optimization
and parameter selection largely rely on extensive experiments and experience, lacking a systematic approach.

To address the aforementioned issues, this paper proposes an Explainable Artificial Intelligence (XAI)
based Multi-Task Learning (XAI-MTL) method for predicting the health status of stroke patients. The main
contributions are as follows:

1. First, we design a comprehensive multi-task learning framework that simultaneously predicts multiple
health status indicators of stroke patients, leveraging task correlations to improve prediction accuracy.

2. Second, we develop a multi-task AUC optimization algorithm based on adaptive low-rank representa-
tion, which removes irrelevant information from the model structure through a low-rank model. This
significantly enhances the performance of multi-task AUC optimization. This method not only improves
the model’s predictive capability but also increases its robustness and stability by reducing irrelevant
information between parameters.

3.  Finally, we validate the model’s explainability through SHAP value analysis. By calculating the SHAP
values of the deep learning model, we provide transparency and explainability to the model’s predictions,
enabling clinicians to better understand and trust the model’s output.

2 Related Works
2.1 AI for Stroke Prognosis

Al technology shows great potential in stroke diagnosis, especially in improving diagnostic speed and
accuracy [11]. By analysing 3D tomographic images, Al can reliably identify stroke features such as large vessel
occlusion (LVO) [12]. For example, Convolutional Neural Networks (CNNs) show high sensitivity (85%) in
LVO detection, which is a significant advantage over other methods. Al has also shown its importance in
the field of stroke care and rehabilitation [13,14]. For example, a systematic evaluation study reviewing the
scientific evidence for Al in stroke care over the past decade highlighted the expanding role of AI in stroke
diagnosis, treatment, outcomes, and rehabilitation [15]. Most of these studies demonstrated the accuracy
and effectiveness of Al applications in stroke care. To address the class imbalance in medical datasets for
stroke prediction, Abousaber [16] propose an innovative meta-learning framework that integrates advanced
hybrid resampling techniques, ensemble-based classifiers, and explainable artificial intelligence (XAI). This
framework significantly enhances both stroke prediction performance and model explainability.

2.2 Multi-Task Learning

To address the shortcomings of the single-task model, namely its limited learning capacity and
interpretive limitations, multi-task learning has emerged as a promising avenue of research. For example,



Comput Mater Contin. 2025;84(3) 5301

Harutyunyan et al. [17] proposed a public benchmarking suite comprising four different clinical prediction
tasks: in-hospital mortality, physiological collapse, length of hospital stay, and phenotypic classification.
Cheng et al. [18] developed a deep neural network architecture for predicting the risk of death in patients
with multiple chronic diseases by integrating multi-task learning and cost-sensitive learning. Bertsimas and
Ma [19] elucidated the dynamics of task learning interdependencies by balancing self-exploitation and cross-
task exploration through a novel attentional mechanism, resulting in an average improvement of 11.6% over
a traditional single-task model across 40 disease diagnosis, three hospital operation prediction, and one
patient phenotype tasks. However, most of the existing methods using accuracy as the benchmark evaluation
criterion are only applicable to the balanced distribution scenario, and negative transfer may affect the model
training in the wrong direction.

2.3 Explainability

Despite the superior performance of complex machine learning models in healthcare prediction, the
results are often not subjected to explainable analysis. Some scholars focus on the study of interpretability.
Ribeiro et al. proposed the LIME (Local Interpretable Model-agnostic Explanations) method in 2016,
which generates interpretable surrogate models by perturbing input samples and analyzing prediction varia-
tions [20]. This model-agnostic framework enables local explanations for any black-box model, particularly
critical in clinical decision support systems [21]. Building on this, Lundberg and Lee introduced SHAP
(SHapley Additive exPlanations), unifying game-theoretic Shapley values with local explanation methods to
provide globally consistent feature importance quantification [22]. Rebane et al. [23] compared the global
and local explanations provided by an attention-based RNN architecture with the explanations provided
by a more basic RNN using a post hoc SHAP framework and demonstrated that SHAP can provide more
clinically appropriate global explanations.

3 XAI-MTL Architecture

This section provides a detailed overview of the proposed XAI-MTL for stroke prognosis, including
task definitions, algorithm design, and how SHAP values are utilized to validate explainability, as depicted
in Fig. 1.
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3.1 Dataset

The EQ-5D-3L serves as an assessment tool for evaluating health status, comprising two compo-
nents: the EQ-5D-3L Health Description System and the Visual Analog Scale (EQ-VAS). The Health
Description System encompasses five dimensions: mobility, self-care, usual activities, pain/discomfort, and
anxiety/depression. The EQ-5D-3L has been widely used in clinical trials, population studies, and real-
world research, and over the past 25 years, it has been translated into multiple languages through a rigorous
translation process.

The EQ-5D Health Description System covers five dimensions, each with three levels, to describe
an individual’s health status at a specific point in time. These five dimensions are Mobility, Self-Care,
Usual Activities, Pain/Discomfort, and Anxiety/Depression. Each dimension has three response options: no
problems, some problems, and severe problems.

The Third International Stroke Trial (IST-3) dataset originates from a real-world, international, multi-
center, randomized open-label treatment trial aimed at evaluating the effect of intravenous thrombolysis
in acute ischemic stroke patients within 6 h of onset [24]. This investigation involved 3035 stroke patients
from 156 hospitals spanning 12 countries. The patients were limited to those who exhibited clear acute
stroke symptoms and signs, had a known stroke onset time, were eligible to begin treatment within 6 h of
symptom onset, and had been reliably excluded from intracranial hemorrhage or other stroke-like structural
brain lesions (such as brain tumors) through CT or MRI scans. Comprehensive data were collected for
each participant over the course of the trial. Upon enrollment (within 6 h of symptom onset), demographic
details such as gender and age, along with diagnostic information including the NIHSS score, stroke subtype,
comorbid conditions, and blood test results were systematically recorded. Acute treatment information was
recorded 24 h post-stroke. By the seventh day, additional data on the patient’s history of previous strokes,
medication history, medications administered between the 24th hour and the seventh day, and Glasgow
Coma Scale scores were documented. Follow-up data at six months and eighteen months comprised the
Oxford Handicap Scale (OHS) and EQ-5D-3L questionnaire results, utilized to assess the capability of the
multi-task learning (MTL) model in predicting patients’ responses on the EQ-5D-3L at these intervals.

Multi-task learning was employed to forecast various EQ-5D dimensions for patients at the six-month
and eighteen-month follow-up points. Throughout the model training and inference stages, consideration
was given exclusively to patients who were alive at the respective time points and had complete responses for
all questionnaire items.

3.2 Algorithm Design

This study utilizes a multi-task AUC optimization algorithm grounded in adaptive low-rank repre-
sentation for model training. This approach improves the effectiveness of multi-task AUC optimization
by mitigating parameter redundancy via low-rank structuring of the model. In contrast to existing
methodologies, this investigation integrates pointwise AUC optimization with low-rank representation,
thereby addressing limitations found in prior research concerning multi-task AUC optimization utilizing
low-rank representation.

3.2.1 Multi-Task Learning Paradigm

ForL learning tasks, let Si= {ZI,ZZ,...,ZT} denote the multi-task related data set, where Z' =
{X',Y"},i €1, T] represents the data of the i task. For each learning task in S, X’ € R**" denotes the feature
matrix of the i task, where d and n; denote the feature dimensions and samples of the i task, respectively,
and each column of X; corresponds to the feature vector of the i task. Similarly, Y? € R™" denotes the
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output variable of the i task, and each element Y; of X; is the corresponding sample label. The feature matrix
W e R1) s defined as the joint parameter matrix of the learning tasks, and the specific form is denoted as
W = [Wl, w2, ..., WL]. In this paper, the multi-task learning model is uniformly defined as a linear model,
i.e., each stroke prognosis-related learning task is denoted as g() (X) = W()T X, consequently, the multi-task
learning optimization problem for stroke prognosis can be formulated as follows:

mwinﬁ(w) +Ap(w) ey

where {(w) =Y, ¢;, {; is the empirical risk of the i task, A is the hyperparameter and ¢(w) is the
regularity term.

3.2.2 Multitask Learning for Low-Rank Representations
(1) Multitask learning for low-rank representations

In multi-task learning (MTL), highly correlated tasks exhibit significant informational overlap. During
training, the model parameters of such tasks may converge toward similar values or structural configurations.
This latent parameter correlation within a multi-task model typically enhances generalization performance,
as it enables the model to better identify and leverage inter-task relationships for effective knowledge
sharing. Motivated by this observation, low-rank structured multi-task models have garnered significant
research interest. The low-rank constraints mitigate model complexity, enhance the model’s capacity to
capture task commonalities, suppress negative transfer, improve individual task performance, and achieve
holistic optimization.

Given a parameter matrix W, if its rank satisfies 0 < rank < min(d, L), the matrix is considered
low-rank. To enforce this structure, regularization terms can be imposed to constrain the rank of the high-
dimensional parameter matrix. With the regularization term ¢ (w), the following optimisation problem can
be constructed in the form of a parameter decomposition:

miny N (M, N) + Ap(M,N)
s.t.W=MNT )

where M € R(4%7) is the feature latent matrix, N € R(“*") is the task latent matrix, and r € N, is the latent
variable. M and N denote two independent parts after decomposition from the feature and task dimensions,
respectively. Based on the above form, the linear model for multi-task learning can be called g("(X) =
(I)TX, and the latent variable r must satisfy the condition 0 < rank < r < min(d, L). Since the rank
of the two parts of the decomposed parameter is much smaller than the min(d, L), the two parts of the

parameter will always ensure a low-rank structure in the optimisation process.

Based on the above low-rank structure, AUC optimisation can be transformed into an AUC optimisa-
tion method that optimises the decomposition parameters, thus ensuring that the model is not affected by
negative migration. By formalising £( M, N), the following multi-task AUC optimisation algorithm based on
the low-rank representation can be obtained:

L
E(M,N):%Z ! > Y F(M,N,xj,xi) (3)

i1 Ni,+1i - i i
=L T 600 4 es)

F(M,N,x;x;) = (l—f((MNT)(i);xj) +f<(MNT)(i);xk)2 (4)
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where f ((MNT)(i) ;xj) = (MNT)(i)Tx, Sf) and S denote the positive and negative sample data sets,

respectively; n; , and n; _ denote the number of positive and negative samples in the i task, respectively.
It is easy to see that the pairwise AUC form still generates a huge iteration complexity. Therefore, the AUC
optimisation function must be reconstructed.

From the pairwise AUC loss function, it can be known that the complexity of each iteration in the AUC
optimisation process is O(n; 4, n; ). In this paper, we use the stochastic online AUC maximisation method
to reconstruct the AUC maximisation function, whose optimisation objective is proved to be equivalent
to the original optimisation objective. Specifically, the equivalence problem is expressed as the following
extremely large miniaturisation problem:

min max h(w,a,b,a) = E,[F(w,a,b, a;z)] (5)

w,a,b a€R

where w € R? is the weight vector of the linear model f(w;x), h(w, a, b, a) is a convex function with respect
to w, a, b and a concave function with respect to «, and w, a, b are three auxiliary optimisation variables. Let
p = Pr(y =1) be the proportion of positive samples, then we have
F(w,a,b,a;z) =

(1= p)(f(wsx) = a)*T,qy + p(f (ws x) = b)* T,y

#2(1+ &) (pf (i) Iy~ (1= p) f(wi )T, )

-p(1-p)a?

(6)

The above problem is characterised by low iterative complexity, and its optimal model f(w?;x) is
obtained by a very, very small optimisation, which greatly reduces the difficulty of AUC optimisation by
using a single-sample optimisation form instead of the original pairwise optimisation form.

(2) Multi-task AUC optimisation based on decomposing NNFEN regularity

Building on the AUC max minimisation approach above, this multi-task AUC empirical risk minimi-
sation problem based on a low-rank representation can be modelled as
min maxF(M,N,a,b,a;S) =
a,b,M,N «

i ¢(MN",a,b,0;8 M,N
u)rhr)lﬁNmo?x( a,b,a )+(p( )

(W,a,b,a;S) =

7)
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where a, b, « € REXD are the three auxiliary optimisation vectors and a;, b;, «; € R is the i component of
a, b, a, respectively, and let W = MNT represent the parameter matrix of the multitasking model inW. W is
decomposed into M ¢ R(@*1) and N € R(EX7) | Next, an extensible and adaptive non-convex regular term is
introduced to help constrain the parameter optimisation and solve the problem by a general gradient descent
method. The regular term ¢(M, N) is denoted as

A
(M, N) = ([ M7 +[N[7) - A [MNT], ®

where 1 is the hyperparameter and |[a||r = /X1, X7 afj is the Frobenius paradigm, which in turn can be
used to solve the above convex optimisation problem using the gradient-descent-ascent method.

Next, the AUC method for point-by-point optimisation is introduced, under the theorem of reference
that the parameters are able to converge to within &* with an iterative complexity of O(e~®) when optimising
F(M,N,a,b,a;S). In the case of asymmetric low-rank decomposition problems, it was shown in that
gradient descent methods with stochastic initialisation are able to converge to a global minimum at
polynomial speed, despite the fact that the low-rank optimisation problem is both non-convex and non-
smooth. Therefore, this paper exploits this advantage to optimise the decomposition parameters using
stochastically initialised variables and gradient updating to further improve the optimisation speed and
performance of the multitask AUC method.

Problem (7) can be further optimised using the proximal gradient method by employing the proximal
gradient descent-ascent method as an optimiser to update the parameters while using gradient descent to
update M and N. The specific algorithm is shown in Table 1.

Table 1: Algorithm pseudocode

Input: stroke prognosis multi-task dataset S

Parameter initialisation: latent variable r, number of iterations k, update step 7, #n> v Ha>
momentum g, random initialisation M' € R¥", N' e RL*", y! = (a',b') = 0, = 0

Output: MKNK'

LLetk=1

2. While k < K

3. §m=VuF (M NK v aks)

4. gy =VNF(MF Nk VE oK)

5. bt = puly - nugan uy™ = pul - nngn
6. Mk+1 — Mk + uﬁl,Nk-H — Nk + u;c\]+l

7. § =V F(MF N5V akS)

8. §u=VuF (M NKVE ak;S)

9. vl = proc, (v = nyukt)

10. ak+l = proc, (of = mauk)

11. k =k+

12. End While
13. Return Mk, Nk, vk, ak

(1) First, the algorithm inputs multi-task training data and randomly initialises the model parameters;
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(2) In steps 3 to 6, the algorithm calculates the gradients of M and N to update the parameters;

(3) In steps 7 to 10, the variables v and « are updated by the proximal gradient descent-ascent method,
where v = (a,b);

(4) Finally, after K rounds of iterations, the algorithm outputs the optimal parameters M* and N* as
the final parameters of the multitask model.

3.3 SHAP Explainability

Across numerous applications, particularly in critical decision-making contexts such as medical diagno-
sis and treatment planning, model explainability remains a fundamental requirement. While deep learning
models are widely adopted for their superior performance, their complexity often results in them being
perceived as “black boxes” This necessitates the application of Explainable Artificial Intelligence (XAI)
techniques to elucidate the decision-making mechanisms of these models.

SHAP (SHapley Additive exPlanations) is a widely adopted X AI framework grounded in Shapley values
from cooperative game theory, which quantifies the contribution of each feature to model predictions. SHAP
values provide a quantitative measure of each feature’s contribution to the final prediction, reflecting both
the magnitude and direction of its influence. In clinical settings, such as stroke patient prognosis prediction,
SHAP scores enable the identification of key factors influencing patient survival and functional recovery. This
facilitates clinicians’ understanding of model predictions and supports informed adjustments to treatment
strategies when warranted.

The basic idea of SHAP scores is to determine the impact of each feature on the predicted outcome by
calculating its marginal contribution to all possible combinations of features. The specific steps and formula
settings for calculating SHAP scores are described below.

3.3.1 Calculation Step

For each feature i and feature subset S, calculate its marginal contribution:
Asi=v(Su{i}) -v(S) )

where v(Su {i}) is the predicted value when the feature is included and v(S) is the predicted value when
the feature i is not included.

3.3.2 Calculation SHAP

Based on the definition of the Shapley value, the SHAP value ¢; can be calculated by weighting the
average of all marginal contributions:

S| (M —|S|-1)!
SM - s -t

¢i = Y S,i (10)

SA\{i}

where || is the size of the subset S and M! is the total number of combinations of all features.

3.3.3 Calculate Explanation Error

To ensure the accuracy of the SHAP values, we also need to calculate the explanation error R.
M
R=f(x) =) ¢ w
i-1

The explanation error R should be close to zero to verify the validity of the SHAP value.
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4 Experimental Analysis
4.1 Experimental Setup

The experiments were conducted on a server equipped with an NVIDIA Tesla V100 GPU, running
Ubuntu 18.04. The primary packages used include Python 3.8, PyTorch 1.8, Scikit-learn 0.24, and SHAP 0.40.
Data from the 6-month and 18-month follow-up visits of patients in The Third International Stroke Trial
(IST-3) were treated as two separate datasets. Each dataset was divided into training, validation, and test sets
with proportions of 70%, 15%, and 15%, respectively. This division facilitated model training, tuning, and
final evaluation, while ensuring the model’s generalizability. For categorical features, one-hot encoding was
applied, and for continuous features, normalization was performed.

4.1.1 Parameter Setup

In this section, a Multi-Layer Perceptron (MLP) is chosen as the base deep neural network model, with
the following structure:

« Input layer: This layer accepts the preprocessed feature vector, with the input dimension equal to the
total number of features. Notably, compared to the 6-month follow-up data, the input vector dimension
for the 18-month follow-up data is larger. For instance, the EQ-5D dimensions from the 6-month follow-
up data are included as input features for the 18-month follow-up data. The latitude of the output vector
is set to 256.

o Transformer encoder: We configure the encoder with 2 stacked layers, each containing a 4-head
self-attention mechanism and a feed-forward network. The feed-forward layer maintains an output
dimensionality of 512, with the ReLU activation function applied between its linear transformations.

o Output layer: For survival prediction, the output layer consists of a single neuron with a Sigmoid
activation function. For functional recovery prediction, the output layer contains multiple neurons with
a Softmax activation function.

The key hyperparameters include a learning rate of 0.001, a batch size of 64, 200 training epochs, and
an L2 regularization factor of 0.01. The best hyperparameter combination was selected using grid search
and validation set performance monitoring. The hyperparameter search space encompasses learning rates
of [0.0001, 0.001, 0.01], batch sizes of [32, 64, 128], Transformer layer counts of [1, 2, 3], attention head
configurations of [2, 4, 8], and L2 regularization coefficients of [0.001, 0.01]. A 5-fold cross-validation strategy
is implemented to monitor the validation set weighted F1 score, coupled with an early stopping mechanism
that terminates training if the validation loss exhibits no improvement over 5 consecutive epochs.

4.1.2 Comparison Algorithm

To validate the effectiveness of our method, we compared it with the following baseline methods:

» Single Task Learning (Base): A dedicated model is independently trained for each EQ-5D-3L ques-
tionnaire dimension prediction. The input layer and Transformer encoder architecture align with the
configurations specified in Section 4.1.1.

o Traditional Multi-Task Learning (MTL): Use a standard multi-task learning framework with a shared
feature extraction layer. The shared layer contains three fully connected layers, each containing 256
neurons, with ReLU activation function. Each task has a separate output layer.

« XGBoost: Separate XGBoost models are trained for each task, with the max depth hyperparameter set
to 5.
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4.2 Result Analysis

The main evaluation metrics selected for this study include the EQ-5D dimensions (measured using
accuracy, recall, and Fl-score). For each evaluation metric, we compute the average of the indicators across
multiple tasks as the final measure.

4.2.1 Averaged F1-Score Prediction

The Fl-score is a metric used to evaluate the performance of classification models, considering both
precision and recall. We first examine the overall Fl-score under different methods. The overall Fl-score
is computed by averaging the Fl-scores of all indicators. We begin by comparing the overall Fl-scores of
different methods.

At the 6-month assessment stage (6MaS) stage in Fig. 2, the overall Fl-score for the Base method was
0.3804 (standard deviation of 0.01296), for the MTL method was 0.3419 (standard deviation of 0.02536), for
the XGBoost method was 0.3797 (standard deviation of 0.01679), and for Our Method was 0.3998 (standard
deviation of 0.02012). Observing the results, it is clear that multi-task learning (MTL) methods exhibit a
distinct advantage over single-task learning methods (Base and RF) in terms of overall F1-score. We attribute
this to the ability of the multi-task learning method to jointly train multiple tasks, thereby learning shared
knowledge. Moreover, predicting the EQ-5D dimensions can be viewed as a set of highly correlated tasks,
which ensures the prediction performance of each task. Additionally, we observed that the standard deviation
of the multi-task learning method is larger than that of the single-task learning method, which can be
attributed to the more task-specific nature of the single-task learning model, making its performance more
stable for individual tasks. Compared to traditional multi-task learning methods, our proposed method has
certain advantages in both overall Fl-score and standard deviation of Fl-score, with an improvement of

16.93% in the overall F1-score.
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Figure 2: 6MasS averaged Fl-score for different methods

0.30

=
[~
w

Averaged Fl-score
[=]
]
(=]

Next, we compare the overall Fl-scores of different methods at the 18MaS stage, as shown in Fig. 3. At
the 18-month assessment stage (18 MaS) stage, the overall Fl-score for the Base method was 0.4234 (standard
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deviation of 0.01594), for the MTL method was 0.3989 (standard deviation of 0.04336), for the XGBoost
method was 0.4147 (standard deviation of 0.02197), and for Our Method was 0.4529 (standard deviation of
0.03422). Upon observation, it is evident that, compared to 6MaS, there is an improvement in the Fl-scores
for all methods at 18MasS. This can be attributed to the inclusion of additional input features when predicting
the EQ-5D dimensions at 18Ma$, which enhances the accuracy of the predictions. The comparison of the
methods’ performance at 18MaS is consistent with the results at 6MaS. Compared to traditional multi-task
learning methods, our proposed method achieves a 9.21% improvement in overall Fl-score.
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Figure 3: 18MaS averaged Fl-score for different methods

4.2.2 Comparison of Precision and Recall

As shown in Tables 2 and 3, we employ Average Precision (AP) and Average Recall (AR) across all EQ-
5D dimensions as evaluation metrics. Empirical observations reveal that at both the 6MaS and 18MaS, our
proposed method achieves state-of-the-art performance in both AP and AR metrics. Notably, all methods
exhibit significant improvements in AP and AR at 18MaS compared to 6MaS. Specifically, our method attains
AP and AR values of 0.4668 and 0.4409 at 18MaS, respectively, demonstrating substantial reference value for
clinical decision support by healthcare practitioners.

Table 2: Average precision, average recall, standard deviation of precision and standard deviation of recall of different
methods at 6MaS$S

Average precision SD of precision Average recall SD of recall

Base 0.3974 0.0125 0.3799 0.0147
MTL 0.3865 0.0284 0.3718 0.0231
XGBoost 0.3915 0.0124 0.3808 0.0187

Our method 0.4184 0.0189 0.3957 0.0297
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Table 3: Average precision, average recall, standard deviation of precision and standard deviation of recall of different
methods at 18MaS

Average precision SD of precision Average recall SD of recall

Base 0.4371 0.0156 0.4089 0.0179
MTL 0.3919 0.0515 0.3988 0.0454
XGBoost 0.4226 0.0189 0.4098 0.0266
Our method 0.4668 0.0379 0.4409 0.0324

4.2.3 Explainability Analysis

We assessed the convergence speed of the algorithms by comparing the overall Fl-scores of three
neural network-based multi-task learning methods, MTL, NC-CMTL [25], and Our Method, at different
time points. NC-CMTL serves as a representative of regularization-based MTL approaches, where task
relationships are captured through constrained parameter sharing. We extend this paradigm by introducing
temporal dynamic regularization that adapts to gradient evolution patterns during training.

During the 6 and 18MaS phases in Figs. 4 and 5, all three methods exhibit nearly identical convergence
trends. Due to the incorporation of transformer encoder layers in both NC-CMTL and our proposed method,
the models achieve significant performance improvements compared to the baseline MTL framework.
Notably, our method demonstrates a faster convergence rate than the NC-CMTL approach. By reformulating
the optimization problem as a minimax optimization objective for each sample, our method effectively
reduces the iteration time required during training. Experimental results confirm that the proposed
methodology substantially enhances the efficiency of multi-task learning.
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Figure 4: Training efficiency of different methods for 6MaS$S
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Figure 5: Training efficiency of different methods at 18MaS
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We conducted an explainability analysis of the model obtained through multi-task learning in Fig. 6.
Since multi-task learning involves multiple tasks, it was necessary to perform explainability analysis for
each task individually. At both the 6 and 18MaS time points, predictions were made for six indicators,
including mobility, with each indicator having three levels. Considering that predicting mobility is a relatively
representative task, we take predicting mobility6 as an example, and we show the characteristics of the top
ten SHAP values.

treatdelay = having no problem
mam having some problems

weskdainy == having extreme problems

weakleg rand
R infarct size
liftarms 7
ablewalk 7
indepinadl 7
nihss

med adno

vis infarct

F T

0.0 0.1 0.2 0.3 0.4

T

mean(|SHAP value|) (average impact on model output magnitude)

Figure 6: Explainability analysis of mobility prediction at 6MaS
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Upon examining the experimental results, we found that, when predicting mobility6, the top ten
features with the largest absolute SHAP values were treatdelay, stroketype, weakleg rand, R infarct size,
liftarms 7, ablewalk 7, indepinadl 7, nihss, med adno, and vis infarct. The figure illustrates the contribution
of each feature to the prediction of mobility6 at specific classifications. The experiments demonstrate
that our proposed method effectively provides explainability analysis for the model obtained through
multi-task learning.

By observing Fig. 7, we found that high values of vis infarct, med adno, and ablewalk 7 showed
significant positive SHAP values and constituted protective predictive factors. In contrast, the “having some
problems” category identified nihss, weakleg rand, and treatdelay as core risk markers, with their high feature
values strongly associated with negative SHAP values. Notably, in the “having extreme problems” category,
high values of R infarct size and low values of ablewalk 7 formed a bidirectional driving pattern, reflecting
the synergistic effect of structural damage and functional impairment. This multi-dimensional decision
logic, validated by the clustered SHAP distributions across categories, provides an explainable framework
for clinical risk stratification in post-stroke mobility assessment.
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Figure 7: SHAP beeswarm of mobility prediction at 6MaS

Based on the analysis in Fig. 8, in the “having no problem” category, vis infarct, ablewalk 7, and med
adno constitute the core of protective prediction through continuous positive contribution; the “having
some problems” category shows the synergistic negative drive of treatdelay and nihss, forming a continuous
blue gradient band in the sample 200-400 interval, reflecting the cumulative effect of time sensitivity and
neurological deficit; while the polarity reversal pattern of R infarct size and ablewalk 7 in the “having extreme
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problems” category reveals the critical mechanism of structural-functional compensatory imbalance. The
global heat map further verifies the robust contribution of vis infarct and indepinadl 7, but med adno
shows dose-dependent positive heterogeneity in extreme problems, suggesting that drug intervention has an
efficacy threshold effect.
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Figure 8: SHAP heatmap plots of mobility prediction at 6MaS$S

5 Conclusion

This paper proposes an XAI-MTL method for predicting the health status of stroke patients. First,
a comprehensive multi-task learning framework is designed to model multiple health status indicators
of stroke patients at a specific time point as a multi-task learning problem. Second, a multi-task AUC
optimization algorithm based on adaptive low-rank representation is developed. This algorithm improves
the performance of multi-task AUC optimization by removing irrelevant information through a low-rank
model structure. The experiments were conducted on the publicly available stroke patient dataset, The
Third International Stroke Trial (IST-3), and compared with traditional single-task learning models and
existing multi-task learning models. The experimental results demonstrate that our method outperforms the
comparison algorithms in key metrics such as Fl-score and training efficiency, while SHAP value stability
analysis validates the explainability of the model. This study not only improves the accuracy of predicting the
health status of stroke patients but also provides interpretable model support for clinical decision-making.

6 Future Work

In this study, we propose a multi-task learning (MTL) framework based on explainable artificial
intelligence (XAI) for predicting the health status of stroke patients. The methodology primarily focuses on
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optimizing the training process of the multi-task learning system. Subsequent efforts will target enhancing
the explainability analysis of the model to strengthen its clinical relevance, while further improvements in
model performance and training efficiency will be pursued to advance the practical utility of the approach.
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