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ABSTRACT: With the rapid development of the industrial Internet, the network security environment has become
increasingly complex and variable. Intrusion detection, a core technology for ensuring the security of industrial control
systems, faces the challenge of unbalanced data samples, particularly the low detection rates for minority class attack
samples. Therefore, this paper proposes a data enhancement method for intrusion detection in the industrial Internet
based on a Self-Attention Wasserstein Generative Adversarial Network (SA-WGAN) to address the low detection rates
of minority class attack samples in unbalanced intrusion detection scenarios. The proposed method integrates a self-
attention mechanism with a Wasserstein Generative Adversarial Network (WGAN). The self-attention mechanism
automatically learns important features from the input data and assigns different weights to emphasize the key features
related to intrusion behaviors, providing strong guidance for subsequent data generation. The WGAN generates new
data samples through adversarial training to expand the original dataset. In the SA-WGAN framework, the WGAN
directs the data generation process based on the key features extracted by the self-attention mechanism, ensuring that
the generated samples exhibit both diversity and similarity to real data. Experimental results demonstrate that the
SA-WGAN-based data enhancement method significantly improves detection performance for attack samples from
minority classes, addresses issues of insufficient data and category imbalance, and enhances the generalization ability
and overall performance of the intrusion detection model.
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1 Introduction
With the rapid advancement of digitalization and Internet technology, the Industrial Internet is

significantly transforming our production methods and lifestyles. By interconnecting sensors, equipment,
and production systems, the Industrial Internet facilitates real-time data collection, analysis, and application,
thereby optimizing production processes, enhancing efficiency, and reducing costs. This technology not only
fosters a fundamental shift in production models but also generates unprecedented business opportunities
for enterprises. Consequently, the Industrial Internet has gradually become an essential engine for driv-
ing productivity and industrial development. However, unlike traditional industrial control systems that
typically operate within isolated internal networks with minimal consideration for external threats [1], the
extensive interconnection of new industrial equipment and the ongoing advancement of smart technologies
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have led to increasingly complex and diverse cybersecurity challenges for industrial Internet systems.
These challenges encompass computer viruses, malware, distributed denial-of-service (DDoS) attacks, and
more [2]. As external threats continue to evolve, traditional protection mechanisms are facing heightened
demands, and the security of the industrial Internet is under significant strain. Therefore, industrial Internet
intrusion detection technology has emerged to monitor, identify, and respond to potential security threats
within the system. This technology aims to prevent malicious activities such as unauthorized access, data
tampering, and device destruction, while providing continuous security protection for industrial control
systems through innovations in system architecture [3,4] and optimizations in algorithm performance [5,6].
However, in practice, industrial Internet systems generate a substantial amount of normal traffic data, which
constitutes the majority of the dataset. In contrast, abnormal traffic data—representing potential intrusions
or attacks—remains relatively scarce. This imbalance in data poses significant challenges for intrusion
detection systems. As a result, the model often focuses excessively on normal traffic data while neglecting
abnormal traffic data during training. This not only restricts the model’s generalization capabilities but also
risks creating a bias toward the majority class of samples, potentially hindering its ability to effectively identify
security threats.

In order to address the issue of data imbalance in industrial Internet intrusion detection, this paper
proposes a data enhancement method for intrusion detection that is based on the WGAN and a self-attention
mechanism. The primary contributions of this paper are as follows:

(1) A traditional GAN (Generative Adversarial Network) consists of a generator and a discriminator:
the generator expands the dataset by creating new samples, while the discriminator evaluates the
authenticity of these generated samples. In this study, we enhance the GAN framework using WGAN,
which improves the stability of the training process and increases the diversity of the generated samples.
This enhancement brings the generated data samples closer to real data and effectively addresses the
issue of data imbalance.

(2) To improve the quality of generated samples, the study integrates the self-attention mechanism into
the generator of the WGAN. When generating new anomalous traffic data, the generator employs the
self-attention mechanism to concentrate on key features within the data. This approach ensures that
the generated anomalous traffic samples are not only quantitatively enhanced but also qualitatively
closer to real anomalous traffic.

(3) This paper demonstrates that this combination not only balances the category distribution within the
dataset but also significantly improves the quality of the generated samples, allowing them to more
closely align with actual attack patterns. The enhanced data samples effectively boost the accuracy and
generalization capabilities of the intrusion detection model in detecting anomalous traffic, thereby
providing a stronger safeguard for the security of industrial Internet systems.

2 Related Work
Early research in the field of intrusion detection did not adequately address the imbalance in data

distribution among different classes of training samples. Consequently, many classification models tend to
perform well only on the majority class of test samples. In contrast, the leakage rates for the minority class
of test samples are significantly higher than average, with some individual instances of minority class attack
traffic exhibiting leakage rates as high as 100%. In real network environments, these hard-to-detect intrusion
flows are often more aggressive, thereby increasing network security risks. Given the widespread and
challenging nature of the unbalanced dataset classification problem, researchers have investigated this issue
in depth. Currently, methods for addressing the unbalanced data classification problem can be categorized



Comput Mater Contin. 2025;84(3) 4433

into three main groups: data-level methods, algorithm-level methods, and Generative Adversarial Network
(GAN)-based methods.

2.1 Data Enhancement Methods Based on the Data Level
The principle of data-level methods is to achieve a quantitative balance between the two types of data by

adjusting the imbalanced ratio of minority and majority class samples in the dataset. There are two primary
techniques for this: oversampling and undersampling.

Oversampling addresses class imbalance in datasets by increasing the number of samples in the minority
class. Common techniques include SMOTE (Synthetic Minority Over-sampling Technique) and its variants.
Among traditional oversampling methods, the SMOTE algorithm, proposed by Nitesh [7], is the most widely
recognized. This algorithm expands minority class samples through random interpolation. While it is simple
and effective for expanding minority class data, it is susceptible to generating noisy samples, particularly
when the data dimensionality is high, which can adversely affect the model’s classification performance.
Liang et al. [8] proposed the LR-SMOTE (Logistic Regression-Synthetic Minority Oversampling Technique)
algorithm, which enhances the oversampling process by adjusting the distance between the generated
data and the original samples. Experimental results indicate that LR-SMOTE outperforms the traditional
SMOTE algorithm in terms of G-means value, F-measure value, and AUC. Gu et al. [9] introduced the
CBSMOTE (CenterBorderline_SMOTE) algorithm, which improves data quality by extracting features from
attack data. This algorithm effectively addresses the data imbalance problem and enhances classification
performance and model generalization ability. Douzas et al. [10] proposed the KMeans-SMOTE algorithm,
which combines K-means clustering with SMOTE. This method clusters a small number of samples and then
synthesizes targeted oversampling points within different clusters. However, this approach incurs additional
storage and computational overheads, which may lead to model overfitting.

Under-sampling methods address the challenges associated with oversampling techniques by either
eliminating redundant samples from the majority class or retaining representative samples to create a
balanced dataset. Existing under-sampling methods can be categorized into proximity-based methods and
clustering-based methods. Proximity-based methods remove noise and redundant samples based on the
labels of the nearest neighbors. For instance, Nwe and Lynn [11] employed the k-Nearest Neighbors (KNN)
algorithm to eliminate majority class samples that are found among the nearest neighbors of minority
class samples, thereby reducing class overlap. Vuttipittayamongkol and Elyan [12] proposed four nearest-
neighbor-based methods and applied them to 24 public datasets from UCI and KEEL, with NB-REC and
NB-TOMEK yielding particularly favorable results. Yan et al. [13] introduced the concept of spherical nearest
neighbors to identify the nearest neighbor points of majority class samples and subsequently proposed two
strategies (SDUS1 and SDUS2) for selecting representative majority class samples based on diversity indexes.
Cluster-based methods select representative sample points through clustering algorithms. Ibrar et al. [14]
utilized a cluster-center-based under-sampling method to reduce information loss by selecting the centroid
of the majority class as a retained sample. Tsai et al. [15] proposed an under-sampling method based on
cluster analysis and instance selection, known as CBIs (Cluster-based Instance Selection), which groups
most classes of samples through cluster analysis and screens representative samples in each group to remove
redundant data, achieve data balance, and improve classification performance. Although under-sampling
methods possess the characteristics of independent classification algorithms and reliable sample data, current
under-sampling methods typically rely on a single nearest neighbor or clustering information, making it
challenging to accurately identify noisy samples and potentially leading to the loss of key information.
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2.2 Data Enhancement Methods Based on Algorithm Level
Algorithmic-level methods focus on a limited number of class samples by adjusting the classification

model. These methods primarily include cost-sensitive learning and ensemble learning. Cost-sensitive
learning rebalances the classes by modifying the loss values, while ensemble learning addresses the issue
of imbalanced data by combining multiple learners. Louk and Tama [16] employed the Focal Loss method
to enhance learning effectiveness on imbalanced data by dynamically adjusting sample weights, decreasing
the weight of easily categorized samples, and increasing the weight of hard-to-classify samples. This
approach improves learning outcomes for unbalanced data. Mulyanto et al. [17] utilized Focal Loss as a loss
function in conjunction with Deep Neural Networks (DNN) and Convolutional Neural Networks (CNN),
assigning higher weights to hard-to-classify samples during training. Their experiments demonstrated that
the combination of Focal Loss and CNN yielded the best results. Gupta et al. [18] addressed the imbalance
problem by increasing the misclassification cost of attack class samples through cost-sensitive deep modeling
and ensemble methods. Bedi et al. [19] tackled the category imbalance issue using a Siamese neural network,
which classifies training samples by calculating the similarity between training samples and input samples,
achieving a higher recall rate for a limited number of attack class samples. Subsequently, Bedi et al. [20]
improved this method and proposed the I-SiamIDS method, which consists of a two-layer ensemble
model. The first layer identifies attacks, while the second layer further classifies these attacks into specific
categories. Li et al. [21] trained multiple CNN models by combining subsets of majority class samples with
minority class samples to create several sub-datasets, deriving final results through a voting strategy. Du
et al. [22] proposed a cost-sensitive online ensemble learning algorithm that integrates multiple equalization
methods, including initial classifier construction, dynamic misclassification costs, sample sampling, and base
classifier weight computation, thereby enhancing classification performance under unbalanced data streams.
Mhawi et al. [23] introduced a novel integrated learning algorithm for network intrusion detection systems
(IDSs) that combines feature selection with a CFS-FPA hybrid approach, utilizing AdaBoosting and Bagging
to augment four classifiers: Support Vector Machine (SVM), Random Forest, Naive Bayes, and K-Nearest
Neighbors (KNN). Although these approaches have made significant strides in improving the recognition
rates of minority class samples, they also face challenges such as high computational complexity and the risk
of overfitting.

2.3 Data Enhancement Methods Based on Generative Adversarial Network
In recent years, breakthroughs in deep learning technology have led to significant advancements in GAN

based methods, which have proven effective in addressing data imbalance issues. These methods have rapidly
infiltrated various multidisciplinary applications. For instance, interdisciplinary technologies are being
explored in medical image synthesis (e.g., ophthalmic image generation), innovations in materials science
(e.g., nanostructure-driven neuromorphic computing), and building automation design (e.g., intelligent
layout generation). In the realm of medical diagnosis, GANs enhance the efficiency of diagnosis and
treatment through image fusion and anomaly detection. In the field of financial technology, they improve
the accuracy of market predictions by utilizing time-series data augmentation. Additionally, in the area
of intrusion detection, GAN-based data generation methods have emerged as a key solution to the data
imbalance problem.

Shahriar et al. [24] proposed a GAN-based IIDS that effectively addresses the challenges of data
imbalance and missing data in Cyber-Physical Systems (CPS) by generating synthetic samples. Experiments
demonstrate that this model outperforms traditional IDS in terms of attack detection and model stability.
Ding et al. [25] introduced a Generative Adversarial Network-based Data Enhanced Intrusion Detection
Method (TMG-IDS), which significantly improves detection effectiveness through a multiple generator
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structure and optimized classifiers. Lee and Park [26] utilized a generative adversarial network model to
create new virtual data that closely resembles existing data, thereby addressing the data imbalance problem
in intrusion detection. They also proposed a model categorized as a random forest to evaluate detection
performance, with experimental results confirming the model’s effectiveness. Fu et al. [27] developed a
method for generating intrusion detection data using generative adversarial networks. Initially, the overall
data is digitized and normalized to maintain data integrity. The ACGAN model is then employed to learn
the hidden features of the data and generate new samples. Finally, the similarity and validity of the generated
data are assessed from multiple perspectives. Experimental results indicate that the data produced by this
method shares similar characteristics with the original data and can effectively enhance the original dataset.
Li et al. [28] applied generative adversarial networks for data augmentation to address the data imbalance
issue. They combined convolutional neural networks with bidirectional long short-term memory networks
(BiLSTM) for network intrusion detection, utilizing the CIC-IDS 2017 dataset to compare their model
against machine learning methods such as random forests and decision trees. The experimental results reveal
that their model significantly outperforms traditional models, demonstrating that the GAN-CNN-BiLSTM
architecture enhances the efficiency of intrusion detection.

Compared to data-level and algorithm-level techniques, GANs can generate synthetic samples that
closely resemble real data, particularly for datasets with complex features or structures. This capability
enhances dataset expansion. However, the performance of GANs is significantly influenced by the model
architecture; an inappropriate model structure can lead to training failures or low-quality generated samples.
Therefore, selecting an appropriate model architecture is a critical consideration in GAN applications.

3 Overview of Generative Adversarial Networks
In 2014, Ian Goodfellow and his colleagues first proposed the GAN model, a neural network architecture

designed for generative modeling [29]. Generative Adversarial Networks represent a significant innovation
in the field of deep learning in recent years, and their unique structure and design principles demonstrate
considerable potential across various applications. GANs consist of two neural networks: the Generator and
the Discriminator. These networks engage in a competitive yet collaborative process to continuously optimize
their performance in a scenario known as adversarial training, where the success of one network is contingent
upon the failure of the other.

The goal of the Generator is to produce realistic data samples from random noise. Typically, it is a neural
network that takes random vectors as input and transforms them into data samples that resemble the training
data through a series of neural network layers. The Discriminator is another neural network designed to
differentiate between the fake data generated by the Generator and the real data. During training, both the
Generator and the Discriminator update their respective parameters using a backpropagation algorithm and
gradient descent. The loss function for the Discriminator is generally based on its accuracy in distinguishing
between real and generated data, while the loss function for the Generator is determined by how often the
Discriminator misclassifies the generated data as real. By alternately updating the parameters of both the
Generator and the Discriminator, the Generative Adversarial Network (GAN) can gradually enhance the
quality of the generated data, making it increasingly similar to real data. The objective function of the GAN
is presented in Eq. (1):

min
G

max
D

V(D, G) = Ex∼d ata[log(D(x))] + Ez∼pz(z)[log(1 − D(G(z)))] (1)

where D(x) denotes the probability that the discriminator classifies the data x as real, and G(z) represents
the data generated by the generator based on the noise z. Additionally, let Ex∼d ata and Ez∼pz(z)denote the
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expectations of the true data and the noise data, respectively. This objective function embodies a zero-sum
game, in which the generator aims to minimize the function while the discriminator seeks to maximize it.

The structure of the GAN model is illustrated in Fig. 1, which primarily consists of two components: the
discriminator and the generator. The training process can be divided into the following steps:

(1) Initialize Generators and Discriminators: Generators and discriminators are neural network models
that require proper initialization. During this phase, the architectures of both the generators and dis-
criminators are designed and constructed. Following this, initial values are assigned to the parameters
of each network using either random initialization or specific weight initialization methods. These
parameters include the weights and biases of the neural networks, which determine how the networks
process inputs and generate outputs.

(2) Training the Discriminator: At the outset of the training process, the discriminator is presented with
a batch of real samples alongside a batch of fake samples generated by the generator. It classifies these
samples and computes the loss function. Subsequently, the backpropagation algorithm is employed to
update the weights of the discriminator, thereby enhancing its classification accuracy for both real and
fake samples.

(3) Training the Generator: The generator produces a batch of synthetic samples and presents them to
the discriminator. The discriminator then evaluates these synthetic samples and computes the loss
function. The backpropagation algorithm is employed to update the generator’s weights, thereby
enhancing the likelihood that the samples it generates will be misclassified as real by the discriminator.

Repeat steps (2) and (3): alternately train the generator and the discriminator until either a predeter-
mined number of training rounds is completed or the loss function converges.

Generate network 

G

Discriminant network

D

Real data

Generate data

random noise

z P(z)

Real datasets

x Pdata(x)

Updating the discriminant 

Network D

True/False

Updating the Generation Network G Parameters

Figure 1: Structure of the basic model for generating adversarial networks

4 Data Augmentation Model for Intrusion Detection Based on SA-WGAN
This study addresses the issue of data imbalance in industrial Internet intrusion detection by proposing a

GAN enhancement method that incorporates a self-attention mechanism. Traditional methods often exhibit
low detection rates when confronted with limited types of anomalous traffic. In this paper, we improve the
generator structure and introduce the self-attention mechanism, enabling the model to concentrate on the
key features of traffic data. This enhancement not only improves the quality of the generated samples but
also optimizes computational efficiency. Experimental results demonstrate that the anomalous traffic data
generated by this method significantly outperforms traditional generation methods in terms of fidelity and
diversity. By augmenting the dataset, the intrusion detection model can be trained more effectively, thereby
enhancing its ability to recognize potential security threats and ultimately improving the overall security of
the industrial Internet.
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4.1 Model Design
The data enhancement model based on the Generative Adversarial Network (SA-WGAN) can generate

samples that closely resemble the real data distribution through the collaboration of two primary compo-
nents: the generator and the discriminator. The generator produces high-quality samples utilizing an inverse
convolutional layer and a self-attention mechanism, while the discriminator assesses the authenticity of the
generated data. The model structure is shown in Fig. 2.
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Figure 2: Structure of the SA-WGAN-based intrusion detection data enhancement model

(1) Generator
In the generator, a series of inverse convolution (also known as transposed convolution) layers are

employed to progressively upsample the latent vectors of the inputs, resulting in samples with intricate
structures and details. Furthermore, a self-attention mechanism is integrated into the model, enabling it
to capture long-range dependencies and improve the quality of the generated samples by assessing the
correlations between various locations in the input sequence. Ultimately, the generator produces samples
that closely mimic the real data distribution, thereby facilitating data generation and enhancement.
(2) Attention module

In the attention mechanism module of the model, first, the input sequences are subjected to three
different linear transformations (i.e., multiplied by the weight matrix) to obtain f (x), g(x), and h(x)
with different output channel sizes. The purpose of these transformations is to map the input data to a
new representation space for subsequent similarity computation and weighting operations, as shown in
Eqs. (2)–(4). Where Wf , Wg , and Wh denote the weight matrices trained by different methods. Next, f (x)
is transposed and multiplied by g(x) using Eq. (5) to obtain a similarity score matrix. Each element of this
matrix represents the similarity between a query and a key. Then, a softmax function is applied to the
similarity score matrix to transform it into an attention weight matrix. The softmax function converts the raw
scores into a probability distribution with positive numbers and a sum of 1, which represents the importance
of each key for the current query.

f (x) =Wf x (2)
g(x) =Wg x (3)
h(x) =Wh x (4)
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si j = f (xi)T g(xi) (5)

Finally, a weighted sum is performed using the attention weight matrix pairs. Specifically, each h(x)
vector is multiplied by its corresponding attention weight, and then all the weighted value vectors are
summed to obtain the self-attentive output for the current query location. This process allows the model to
dynamically aggregate information based on the similarity of different locations in the input sequence. The
attention weights are calculated according to Eq. (6), where βj,i indicates the degree of influence of the model
on the ith location when synthesizing the Jth region. Then, the attention feature map is obtained according
to Eq. (7). Finally, the feature map with attention mechanism is combined with the feature vector x to obtain
the feature mapping Y with attention mechanism by Eq. (8), where γ is the scale parameter.

β j , i =
ex p(si j)

∑N
i=1 ex p(si j)

(6)

o j =
N
∑
i=1

β j , i h(xi) (7)

yi = γo j + x j (8)

(3) Discriminator
In the discriminator, features are progressively extracted from the input data through a series of

one-dimensional convolutional layers, while the Leaky ReLU activation function enhances the model’s
nonlinearity. As the network deepens, the number of channels is gradually increased to capture more complex
features. The final output of the discriminator is a probability value that indicates the likelihood that the input
sample is real, typically ranging between 0 and 1. If the output is close to 0, the discriminator considers the
input sample to be a fake generated by the generator; conversely, if the output is close to 1, the discriminator
considers the input to be real. An output near 0.5 indicates that the discriminator is uncertain about the
authenticity of the input, suggesting that it lies in a fuzzy region between real and generated samples.
During training, the discriminator’s objective is to maximize the probability of correctly classifying real and
generated samples, thereby encouraging the generator to produce more realistic outputs while minimizing
the probability of incorrect classifications to enhance the discriminator’s accuracy.
(4) Loss function

The Jensen-Shannon (JS) divergence [30], which is commonly employed as a loss function in traditional
generative adversarial networks, quantifies the difference between the distribution of generated samples and
that of real data. This measurement guides the generator in producing more realistic samples. However,
the asymmetry inherent in the JS divergence between the two distributions can create an imbalance in the
training process of both the generator and the discriminator. Such an imbalance may result in issues including
training instability, mode collapse, and the vanishing or exploding gradient problem.

To address the issues in the original GAN, Arjovsky et al. [31] proposed utilizing the Wasserstein dis-
tance, also referred to as the Earth-Mover (EM) distance, to measure the distance between two distributions,
rather than employing the Jensen-Shannon (JS) divergence. The Wasserstein distance is defined by the
following Eq. (9):

W(Pr , Pg) =
in f

γ ∼ ∏(pr ,pg)
E(x , y)∼γ[∣∣x − y∣∣] (9)
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where Pr and Pg represent two probability distributions, and X and Y are the random variables in these
distributions, respectively. inf denotes the lower bound, i.e., the smallest expected distance among all possible
transmission modes. E(x ,y)∼γ[∣∣x − y∣∣], on the other hand, denotes the expected value of the distance between
random variables X and Y. The distance between X and Y is usually calculated based on some kind of distance
metric (e.g., Euclidean distance). This expected value is usually computed based on some distance metric
such as the Euclidean distance. Specifically, the Wasserstein distance attempts to find an optimal transmission
method that minimizes the expected value of the distance between random variables during transmission
from distribution Pr to distribution Pg . This transmission method can be understood as a kind of “bulldozing”
process, in which the probability mass (which can be imagined as a mound of earth) is “bulldozed” from the
Pr distribution to the Pg distribution, and the Wasserstein distance is the minimum cost of this bulldozing
process. Since the inf in Eq. (9) cannot be solved directly, Arjovsky transforms it as shown in Eq. (10):

W(Pr , PG) =
1
K

sup
∣∣ f ∣∣L ≤ K

Ex∼pr[ f (x)] − Ex∼pg [ f (x)] (10)

The restriction on Eq. (10) is that the Lipchitz constant ∣∣ f ∣∣L of the function f does not exceed K, and
the upper bound of Ex∼pr[ f (x)] − Ex∼pg [ f (x)] is taken for all possible satisfactions of the condition for f
under this condition, and then Eq. (10) is transformed approximately as shown in Eq. (11):

W(Pr , PG) ≈
1
K

sup
∣∣ fω ∣∣L ≤ K

Ex∼pr[ fω(x)] − Ex∼pg [ fω(x)] (11)

For the constraint ∣∣ fω ∣∣L ≤ K in Eq. (11), WGAN uses weight clipping to restrict all parameters fω of the
discriminator ωi to not exceed [−c, c] to satisfy the Lipschitz continuity condition. This is done to ensure
that the gradient of the discriminator is not too large or too small, thus making the training process more
stable. Therefore, the objective function of WGAN is shown in Eq. (12):

V = Ex∼pr[D(x)] − Ex∼pg [D(x)] (12)

Maximize Eq. (13) as much as possible under the restriction of not exceeding [−c, c], at which point
V approximates the Wasserstein distance between Pr(x) and Pg(x). The loss functions of the generator and
discriminator in WGAN are shown in Eqs. (13) and (14) as follows:

LD = −Ex∼pg [D(x)] (13)
LG = Ex∼pg [D(x)] − Ex∼pr[D(x)] (14)

Compared to the Jensen-Shannon (JS) divergence used in traditional GANs, the Wasserstein distance
provides a more accurate measure of the difference between two probability distributions and offers greater
stability in addressing issues such as gradient vanishing and mode collapse. By incorporating the Wasserstein
distance as a loss function, WGAN is able to better guide the generator in producing realistic samples while
enhancing training stability and convergence speed, thereby making the generative adversarial network more
efficient and reliable. However, weight tailoring may lead to a waste of network parameters, as the tailoring
operation restricts the parameters to their range, which may prevent the model from reaching its optimal
solution. In addition, weight tailoring may cause the model to perform poorly in some cases because it is
a coarser way to control the complexity of the model. In this paper, we choose to add a gradient penalty
term to the loss function of WGAN, which acts directly on the gradient to ensure that the magnitude and
direction of the gradient meet the requirements by penalizing the gradient of the discriminator. This method
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can control the gradient size more accurately and avoid the problem of disappearing or exploding gradients
that may be caused by weight cropping. The loss function of the discriminator is shown in Eq. (15):

LD = Ex̃∼pg [D(x̃)] − Ex∼pr[D(x)] + λx̂∼Ppenal t y E[(∣∣∇x̂ D(x̂)∣∣2 − 1)2] (15)

where x̃ is obtained by sampling from the generated pseudo-data distribution Pg , x is obtained by sampling
from the real data distribution Pr, x̂ denotes the data mixed by a certain proportion of x̃ and x, x̂ ∼ Ppenal t y
denotes sampling uniformly on a straight line between any data obeying Prand Pg, ∇x̂ D(x̂) denotes the
derivative of D (x̂) over x̂ to compute the gradient, and λx̂∼Ppenal t y E(∣∣∇x̂ D(x̂)∣∣2 − 1)2 that is the gradient
penalization term, which denotes that the loss function will be the L2 paradigm of gradient of the input data
constrained to be around 1.

Compared to traditional methods, such as weight clipping, the gradient penalty does not impose
restrictions on the model’s parameters. Instead, it directly regulates the model’s complexity during the
optimization process. This approach results in a more natural and smooth training experience while also
enhancing training efficiency. Furthermore, by applying a penalty term to the gradient of the discriminator,
the gradient penalty compels the discriminator to satisfy the Lipschitz constraint, which improves both the
stability and performance of the model. This constraint ensures that the gradient of the discriminator in
the input space remains bounded, thereby preventing issues such as exploding or vanishing gradients and
making the training process more reliable.

4.2 Model Training Process
In this paper, data enhancement techniques are employed to improve the performance of intrusion

detection models. The methodology is implemented through several steps. First, the raw data undergoes
preprocessing, which includes low variance filtering, normalization, and unique heat coding. Next, random
noise z is input into a generator to produce minority class samples, which are then combined with actual
majority class samples to create a balanced dataset. In the data enhancement module, the generator enhances
the training data by generating synthetic data G(z), while the discriminator evaluates and classifies both the
real and generated data, outputting the classification results. Ultimately, after training the discriminator, the
generator becomes capable of producing more realistic minority class samples, thereby improving the model’s
classification performance for intrusion detection tasks. The final model is trained using the balanced dataset
and outputs classification results, effectively enhancing the recognition capability of the intrusion detection
module. The entire model training process is illustrated in Fig. 3.

5 Experiment and Analysis

5.1 Experimental Environment
The experimental environment described in this paper is based on a 64-bit Windows 10 system equipped

with a 3.00 GHz Intel(R) Core (TM) i7-9700 CPU. The programming language utilized is Python 3.7.13, and
the integrated development environment (IDE) employed is PyCharm. The experiments were conducted
using the PyTorch 1.13.1 deep learning framework. All experiments were carried out under consistent
hardware and software conditions, as well as identical algorithmic parameters.
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Figure 3: Model training process

5.2 Model Structural Parameters
The generator model comprises five layers, primarily including the transposed convolutional layer and

the self-attention mechanism. The first through fourth layers progressively upsample the input data using the
transposed convolutional layer to produce feature maps of varying sizes, while the final layer generates output
samples of size 17. The self-attention mechanism is incorporated in the third layer to enable the generator to
concentrate on the key features within the data, thereby enhancing the quality and fidelity of the generated
samples, as illustrated in Table 1.

Table 1: Generator model structure parameters

Layers Network infrastructure Input dimension Convolution
kernel size

Step Padding Output
size

1 ConvTranspose1d 10 3 2 1 160ReLU

2 ConvTranspose1d 160 3 2 1 80ReLU
3 SelfAttention 80 1 – 1 80

4 ConvTranspose1d 80 3 2 1 20ReLU

5 ConvTranspose1d 20 3 2 1 17ReLU

The discriminator model comprises four transposed convolutional layers, which are activated using the
Leaky ReLU function. Each layer progressively extracts features from the samples produced by the generator
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and ultimately outputs a scalar value that indicates the probability of the sample being real. This structure
aims to enhance the generator’s performance by evaluating the generated samples, thereby facilitating the
generation process in relation to the training data. This is shown in Table 2.

Table 2: Discriminator model structure parameters

Layers Network infrastructure Input dimension Convolution
kernel size

Step Padding Output
size

1 ConvTranspose1d 17 3 1 1 20LeakyReLU

2 ConvTranspose1d 20 3 2 1 80LeakyReLU

3 ConvTranspose1d 80 3 2 1 160LeakyReLU

4 ConvTranspose1d 160 3 2 1 1LeakyReLU

5.3 Dataset
5.3.1 Dataset Description

In 2014, Mississippi State University released a standardized dataset for intrusion detection in industrial
control systems that is derived from network layer data from natural gas pipeline control systems [32]. The
dataset contains network layer data from natural gas pipeline control systems covering a wide range of attack
types and normal data. The specific attack types are shown in Table 3.

Table 3: Description of datasets

Attack type Description Label Number
Normal Normal data 0 61,156
NMRI Naive malicious response injection attack 1 2763
CMRI Complex malicious response injection attack 2 15,466
MSCI Malicious state command injection attack 3 782
MPCI Malicious parameter command injection attack 4 7637
MFCI Malicious function command injection attack 5 573
DOS Denial-of-service attack 6 1837

Recon Reconnaissance attack 7 6805

5.3.2 Data Preprocessing
It plays a crucial role in the experimentation and testing of industrial Internet intrusion detection mod-

els, significantly influencing their performance and detection accuracy. The data preprocessing described in
this paper is primarily divided into three steps: low-variance filtering, normalization, and one-hot encoding.
(1) Low variance filter

The dataset discussed in this chapter is complex and variable, comprising numerous features. However,
not all features are well-differentiated; some exhibit very low variance, indicating that they do not contribute
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significant information. These features are deemed unimportant and are subsequently removed. For example,
if a feature accounts for 95% of the instance values across all input samples, it can be considered not
particularly useful. A feature in which 100% of its values are identical provides no meaningful information.
In this paper, we eliminate the nine feature columns with the lowest variance, resulting in a dataset with
seventeen valid features.
(2) Normalization

The Gas Pipeline dataset comprises high-dimensional features characterized by significant intervals
between their maximum and minimum values. In this paper, the feature values are mapped to a specific
range of [0, 1] using min-max normalization. The normalization formula is presented in Eq. (16):

x′p =
xq −min (xp)

max (xp) −min (xp)
(16)

(3) Unique thermal coding
Classifiers cannot directly process the unordered discrete features of natural gas pipeline datasets. In

this paper, we employ solo thermal coding to create a mapping table for discrete feature data, transforming it
into an ordered and continuous format. The dataset includes eight classification results: Normal (0), NMRI
(1), CMRI (2), MSCI (3), MPCI (4), MFCI (5), DOS (6), and Recon (7). These classifications can be encoded
as follows: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0,
0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), and (0, 0, 0, 0, 0, 0, 0, 1). This is illustrated in Eq. (17):

One − hot encodi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1, 0, 0, 0, 0, 0, 0, 0) , if the result is Normal (0) .

(0, 1, 0, 0, 0, 0, 0, 0) , if the result is NMRI (1) .

(0, 0, 1, 0, 0, 0, 0, 0) , if the result is CMRI (2) .

(0, 0, 0, 1, 0, 0, 0, 0) , if the result is MSCI (3) .

(0, 0, 0, 0, 1, 0, 0, 0) , if the result is MPCI (4) .

(0, 0, 0, 0, 0, 1, 0, 0) , if the result is MFCI (5) .

(0, 0, 0, 0, 0, 0, 1, 0) , if the result is DOS (6) .

(0, 0, 0, 0, 0, 0, 0, 1) , if the result is Recon (7) .

(17)

5.4 Analysis of Experimental Results
5.4.1 Data Set Description and Data Enhancement

This paper utilizes the natural gas pipeline dataset provided by Mississippi State University in 2014,
which is characterized by data imbalance. Specifically, the dataset comprises 63.035% Normal type data,
15.941% CMRI type data, and 7.871% MPCI type data. In contrast, the MSCI type data constitutes only
0.806%, while the MFCI type data represents a mere 0.590%. Consequently, the experiments in this section
concentrate on augmenting the two minority classes, MSCI and MFCI. The number of samples per class in
the gas pipeline dataset without augmentation is shown in Fig. 4.
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Figure 4: The number of samples of each category in the gas pipeline dataset before data augmentation

To balance the data categories in the natural gas pipeline industry dataset, this paper generates new
samples for the two minority classes, MSCI and MFCI, which are underrepresented in the training set,
using the SA-WGAN-based data augmentation method. After augmentation, the number of samples for the
minority classes, MSCI and MFCI, was increased to match the other attack classes. Specifically, 1000 new
samples were generated for each minority class using a generative adversarial network, and these new samples
were merged with the original training set to create a new, data-enhanced dataset. This process effectively
balanced the data categories within the dataset. The distribution and proportion of each category in the
SA-WGAN-enhanced gas pipeline dataset are presented in Table 4.

Table 4: Sample distribution of the gas pipeline dataset after SA-WGAN data augmentation

Sample type Number of samples (%)
Normal 63.035
NMRI 2.847
CMRI 15.941
MSCI 1.836
MPCI 7.871
MFCI 1.621
DOS 1.893

Recon 7.014

In order to further evaluate the quality of samples generated by the SA-WGAN, we visualize and
compare the original dataset with the SA-WGAN-augmented dataset using the t-distributed Stochastic
Neighbor Embedding (t-SNE) technique. t-SNE is a nonlinear dimensionality reduction method that
minimizes the Kullback-Leibler divergence between the data distributions in high-dimensional and low-
dimensional spaces. This technique effectively maps high-dimensional data to a low-dimensional space while
preserving both the local and global structures of the data.

Through t-SNE dimensionality reduction, we mapped the original dataset to a two-dimensional space
and visualized the comparison with the dataset generated by SA-WGAN. Fig. 5 illustrates the t-SNE
visualization results categorized by data source. Overall, the original data and the two types of data generated
by SA-WGAN exhibit an overlapping distribution trend in the two-dimensional space, indicating that the
generated samples share a high degree of similarity with the original data in the feature space. In the central
region of the 2D space, the generated data form two dense, red, forked clusters, which enhance the two
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attack types, MSCI and MFCI, that have very few samples in the original dataset. These clusters are centrally
generated in the core region of the target category within the high-dimensional feature space, resulting in
the t-SNE mapping into distinct clusters after dimensionality reduction.

Figure 5: Visualization of the original data and the data distribution after data enhancement

5.4.2 Performance Comparison of Data Enhancement Methods
To assess the effectiveness of data enhancement methods based on GANs and attention mechanisms in

the gas pipeline dataset, models were trained using the following datasets: the original gas pipeline training
set, the dataset enhanced with GAN, the dataset enhanced with WGAN, and the dataset enhanced with SA-
WGAN. The models were validated using the test set, with classification models constructed using both CNN
and SRU (Simple Recurrent Unit), using 100 epochs for training. The results are presented in Table 5.

Table 5: Performance of different data augmentation methods and different classification algorithms

Datasets Arithmetic Accuracy Precision Recall F1

Original dataset CNN 96.99% 87.87% 87.71% 87.79%
SRU 95.52% 82.11% 81.26% 81.66%

GAN enhanced dataset CNN 97.85% 92.25% 91.66% 92.14%
SRU 96.55% 85.54% 84.24% 83.17%

WGAN enhanced dataset CNN 98.33% 93.07% 93.08% 92.15%
SRU 96.83% 86.09% 84.55% 83.87%

SA-WGAN enhanced dataset CNN 98.47% 93.30% 93.27% 92.18%
SRU 97.84% 86.52% 84.78% 84.8%

From Table 5, it can be observed that the detection results obtained from the dataset enhanced using the
SA-WGAN algorithm are superior. On the original dataset, CNN achieved an accuracy of 96.99%, and SRU



4446 Comput Mater Contin. 2025;84(3)

attained 95.52%. The CNN model outperforms the SRU in terms of accuracy, precision, recall, and F1 score.
In the GAN-enhanced dataset, the CNN and SRU achieved accuracies of 97.85% and 96.55%, respectively,
indicating an improvement over the original dataset, particularly in precision and recall, with a significant
enhancement in CNN performance. On the WGAN-enhanced dataset, the accuracy of the CNN further
increased to 98.33%, while the SRU reached 96.83%. However, the improvements in precision and recall were
more modest compared to those observed in the GAN-enhanced dataset. Finally, on the dataset augmented
with the SA-WGAN, the CNN’s accuracy reached 98.47%, accompanied by increases in precision, recall,
and F1 score, highlighting the benefits of data augmentation and feature processing. Overall, the augmented
datasets based on GAN and their variants significantly enhance model performance, particularly in the
application of CNN models.

5.4.3 Performance Comparison of Data Enhancement Methods
To further assess the impact of the SA-WGAN-based intrusion detection data enhancement algorithm

on detection performance, particularly concerning minority samples (MSCI and MFCI), experimental
comparisons were conducted using a balanced training set. Fig. 6 represents the classification of the dataset
after SA-WGAN data enhancement using a CNN classification model, and Fig. 7 represents the classification
of the dataset after data enhancement using the SRU classification model.
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Figure 6: Comparison of recognition accuracy of attack samples based on the CNN model
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Figure 7: Comparison of recognition accuracy of attack samples based on the SRU model

The classification accuracy of most sample types is significantly enhanced with the introduction of
the SA-WGAN in both CNN and SRUintrusion detection models. In both CNN and SRU frameworks, the
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detection accuracy for the Normal class remains stable, while the recognition performance for anomalous
traffic categories, such as NMRI, CMRI, MSCI, MPCI, MFCI, DOS, and Recon, is optimized. Notably,
the most significant improvements are observed in the MSCI and MFCI categories. This demonstrates
that SA-WGAN effectively addresses the data distribution imbalance issue by emphasizing the key features
of traffic through the self-attention mechanism. The generator enhances the diversity and authenticity of
samples from underrepresented classes while simultaneously aiding the detection model in better capturing
complex attack patterns and improving its generalization capabilities. Experimental results confirm that the
integration of self-attention and generative adversarial networks not only bolsters the model’s robustness
against various types of attacks in the industrial Internet but also underscores the method’s universal
optimization value across different network architectures (CNN/SRU). This provides crucial technological
support for enhancing the reliability of security protection systems.

6 Summarize
In this paper, we propose a data enhancement algorithm based on a SA-WGAN for industrial Internet

intrusion detection, aimed at addressing the issue of class imbalance in network traffic data. By integrating
the self-attention mechanism with the Wasserstein generative adversarial network, we achieve accurate
feature extraction and high-quality data generation of attack samples from a limited number of classes.
Experimental results demonstrate that our method significantly enhances the performance of anomalous
traffic detection and validates the utility of the generated data in improving the detection model’s ability
to identify attacks. However, this study has certain limitations. The current experiments are validated
using specific industrial datasets due to the scarcity of publicly available datasets in the Industrial Internet
domain, and the adaptability to multi-protocol hybrid scenarios requires further investigation. Future
research could focus on achieving real-time, traffic-driven adaptive adjustments of data distribution through
online learning mechanisms. Additionally, exploring cross-protocol knowledge transfer and developing
lightweight generative architectures, while further integrating adversarial defense techniques, could enhance
the bidirectional robustness of both the generated data and the detection model. This approach aims to
advance the evolution of the industrial Internet security protection system towards a stage characterized by
adaptability and high generalization.
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