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ABSTRACT: Deep neural network (DNN) models have achieved remarkable performance across diverse tasks, leading
to widespread commercial adoption. However, training high-accuracy models demands extensive data, substantial
computational resources, and significant time investment, making them valuable assets vulnerable to unauthorized
exploitation. To address this issue, this paper proposes an intellectual property (IP) protection framework for DNN
models based on feature layer selection and hyper-chaotic mapping. Firstly, a sensitivity-based importance evaluation
algorithm is used to identify the key feature layers for encryption, effectively protecting the core components of the
model. Next, the L1 regularization criterion is applied to further select high-weight features that significantly impact the
model’s performance, ensuring that the encryption process minimizes performance loss. Finally, a dual-layer encryption
mechanism is designed, introducing perturbations into the weight values and utilizing hyperchaotic mapping to
disrupt channel information, further enhancing the model’s security. Experimental results demonstrate that encrypting
only a small subset of parameters effectively reduces model accuracy to random-guessing levels while ensuring full
recoverability. The scheme exhibits strong robustness against model pruning and fine-tuning attacks and maintains
consistent performance across multiple datasets, providing an efficient and practical solution for authorization-based
DNN IP protection.

KEYWORDS: DNN IP protection; active authorization control; model weight selection; hyperchaotic mapping; model
pruning

1 Introduction

Deep neural networks (DNNs) have achieved remarkable success across a wide range of tasks and
have been extensively adopted in commercial applications over the past decade [1]. The development of
high-performance DNN models typically demands access to large-scale datasets, substantial computational
resources, and highly skilled personnel, rendering such models valuable intellectual property assets [2]. How-
ever, these models are increasingly vulnerable to unauthorized exploitation, including model stealing and
reverse engineering, which pose significant threats to intellectual property rights. Consequently, protecting
the intellectual property of DNNs has emerged as a critical research focus, and various techniques have been
proposed to safeguard models against infringement.

Current intellectual property protection technologies for deep neural networks (DNNs) can be catego-
rized into passive verification and active defense approaches [3], both of which exhibit inherent limitations.
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Passive verification methods primarily rely on embedding watermarks into models for subsequent own-
ership authentication [4,5]. Extensive research has been devoted to developing various watermarking
techniques [6,7]. However, these approaches suffer from two major limitations: (1) Their reactive nature
only allows post-infringement forensics, offering no means to proactively prevent unauthorized usage;
and (2) the watermark embedding process typically requires full model retraining, leading to considerable
computational and time overhead [8,9]. Active protection technologies, although capable of enabling access
control through encryption, present their own challenges. Most existing solutions require retraining the
entire network for parameter encryption, which entails significant encryption costs for already-trained DNN
models. Furthermore, certain parameter encryption schemes demand complete encryption of all model
parameters, similarly demanding considerable encryption overhead. These constraints pose substantial
challenges for practical implementation in large-scale commercial models.

The fundamental dilemma of existing methodologies lies in their inability to balance security and
efficiency. Passive approaches appear computationally efficient due to their encryption-free nature, yet
critically lack proactive defense capabilities. Conversely, active methods enable real-time protection at
the expense of practicality, as global parameter encryption and mandatory retraining impose prohibitive
operational constraints. More critically, both paradigms fail to address the synergistic optimization between
encryption granularity and algorithmic efficiency-excessive encryption squanders computational resources
whereas simplistic encryption becomes vulnerable to reverse-engineering attacks. This paper proposes a
dynamic fine-grained encryption framework that achieves dual optimization of security and efficiency
through feature layer selection and 4D hyper-chaotic mapping. The main contributions of this paper include
the following:

- A novel active protection scheme for DNNs is proposed, which safeguards DNN models through a
critical weight selection strategy and a dual encryption mechanism. This approach eliminates the need
to retrain the DNN model or encrypt all model parameters.

- A DNN critical weight selection strategy is designed to protect DNN IP by encrypting only a small subset
of parameters that have the most significant impact on model performance.

- A novel dual encryption strategy for critical weights is developed, leveraging a 4D Lorenz hyperchaotic
map and an amplitude recovery mask to encrypt the positional information and values of critical weights,
respectively. This ensures the protection of key model parameters.

2 Related Work

Passive verification. Uchida et al. [10] proposed for the first time a generalized framework for embedding
watermarks in deep network models by embedding watermarks into model parameters via a parameter
regularizer without compromising the performance of the model. Chen et al. [I1] embedded unique
fingerprints in the model parameters, and the model owner can verify the ownership of the model by
identifying the embedded fingerprints. Wang et al. [12] inserted a separate neural network in DNN using
selective weights for watermarking and changed the neural network to be used only in the training phase and
watermark verification phase. However, references [10-12] all of these schemes embed watermarking directly
in the internal weights of the model, which is easy to be detected and attacked. Adi et al. [13] proposed a
black-box watermarking-based IP protection method for DNNs, which can be applied to most classification
tasks and can be well combined with various learning algorithms. Le Merrer et al. [14] proposed a method to
construct a watermarking algorithm using antagonistic samples using the zero-bit watermarking algorithm
with trigger sets. This method only alters the sample labels without altering the original data and requires
very few queries to extract the watermark. Li et al. [15] utilized frequency domain image watermarking to
generate triggers to construct DNN watermarks, and this black box watermarking scheme can be effective
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in resisting fraudulent claims attacks due to the high stealthiness of frequency domain watermarking.
References’ [13-15] methods have broader application prospects, but the black-box watermarking method
modifies the training dataset of the model, which inevitably affects the accuracy of the model, and may not
be suitable for application in some domains with higher accuracy requirements. Existing studies on DNN
IP protection primarily rely on passive verification mechanisms. These approaches often require substantial
resources during the initial deployment phase and can only verify model ownership retrospectively, after an
infringement has occurred. Moreover, they offer no effective defense against adversarial behaviors such as
unauthorized usage or model tampering. As such, passive verification schemes are increasingly insufficient
for modern IP protection demands. In response, active DNN IP protection aims to proactively prevent and
detect misuse, attracting growing attention and emerging as a key research direction.

Active DNN Intellectual Property Protection: Several proactive DNN protection schemes have emerged
in recent research. Pyone et al. [16] proposed an input preprocessing framework where authorized users
must apply identical image transformations to utilize the DNN model effectively. Ren et al. [17] intro-
duced a model-locking mechanism that generates correct inference results exclusively for users possessing
specific authentication markers. Luo et al. [18] implemented hierarchical authorization through Laplacian
mechanism-based output perturbations with varying intensity levels. Tian et al. [19] developed a selec-
tive encryption algorithm for IP protection while enabling tiered service functionalities. However, these
methods universally require model retraining, incurring substantial encryption overhead. Hardware-assisted
solutions have also been explored: Pan et al. [20] leveraged Physical Unclonable Functions (PUFs) to
generate device-bound secret keys for weight permutation and diffusion-based encryption. Fan et al. [21]
devised a passport-based protection strategy demonstrating strong resilience against model modification
and ambiguity attacks. Chakraborty et al. [22] proposed a trusted device-embedded framework where DNNs
serve as key-dependent functions, restricting model accessibility to authorized hardware owners. Although
these hardware-based approaches achieve active protection, they still demand model retraining and often
involve labor-intensive key embedding processes. Parameter encryption schemes present alternative solu-
tions. Zhou et al. [23] created an access-controlled framework preventing unauthorized users from obtaining
functional DNN models. Inspired by Zhu et al. [24] and Li et al’s [25] chaotic image encryption, Lin
et al. [26] developed a chaos mapping-based weight obfuscation method that scrambles convolutional/full-
connected layer kernels into chaotically disordered states through positional ambiguity. While eliminating
retraining requirements, these parameter-level approaches necessitate full-model encryption, resulting in
prohibitive computational costs that hinder commercial deployment. Some more novel approaches have
been proposed [27-29], but again the network needs to be retrained. All of the above works perform active
authorization control on DNN models, so that only legitimate users can use the services provided by the
model properly with a specific secret key, and illegitimate users cannot obtain the correct functionality of
the model.

Most existing active DNN IP protection methods require either model retraining or specialized
hardware support, leading to significant overhead in terms of time and computational resources. In contrast,
the method proposed in this paper achieves IP protection by encrypting only a small subset of critical
weights from selected feature layers. This design significantly reduces both computational and time costs,
while maintaining high efficiency in both encryption and decryption processes. Unlike the chaotic weighting
approach proposed by Lin et al. [26], which is limited to encrypting square-shaped parameter regions, our
method supports encryption over arbitrarily shaped parameter subsets. Furthermore, by applying a dual-
stage parameter selection strategy, our approach minimizes the number of parameters to be encrypted,
thereby enhancing overall efficiency.
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3 The Proposed Algorithm

3.1 Problem Statement

The overall concept of the proposed scheme is illustrated in Fig. I. The DNN model, developed by
the model owner at substantial computational and time costs, must be protected to prevent unauthorized
exploitation. As depicted in the figure, both authorized users and potential attackers can access the encrypted
model via a public cloud API. However, only authorized users possess the trusted decryption key provided
by the model owner. Upon decryption, authorized users can fully restore the model and utilize its services
as intended. In contrast, attackers, lacking the correct key, are restricted to an encrypted version of the
model with significantly degraded inference accuracy. The goal of our scheme is to prevent unauthorized
entities from benefiting from high-performance models, while ensuring that legitimate users experience no
degradation in model accuracy or functionality after decryption.
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Figure 1: Overall flowchart of DNN IP protection

3.2 Model Encryption

During DNN model training, each convolutional layer of the network works together to optimize the
model performance after a certain number of iterations. However, the role played by each convolutional layer
is different, i.e., each convolutional layer has a different degree of influence on the model performance. There-
fore, before selecting the weights for encryption, the model owner first sorts all the feature layers according
to their importance according to the feature layer importance discrimination algorithm (Algorithm 1), sets a
parameter p, which represents the proportion of the number of feature layers selected for encryption to the
total number of feature layers, and then processes the selected encrypted layers to get the weights that have
the greatest effect on the model, and then the weight positions are scrambled using a 4D Lorentz hyperchaotic
system, and an Amplitude recovery maskis added to the weights for further encryption.
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3.2.1 Structured Obfuscation

According to Algorithm 1, firstly sort all feature layers by importance, and add different degrees of
disturbance to the weight of each feature layer. After each disturbance, calculate the change in model
accuracy, obtain the accuracy drop value drop, and compare it with the drop threshold th. If it is greater than
the threshold th, the feature layer will be marked as the layer to be encrypted, and the drop value drop will
be retained. The initial threshold is set to 0.1. After all feature layers are selected, sort the feature layers by
the drop value to obtain the feature layers to be encrypted. Here, the disturbance range and threshold th can
be reasonably adjusted according to the task calculation amount and calculation time. In order to obtain a
more accurate ranking of the importance of the convolutional layer, this paper selects a larger disturbance
range and a smaller th value.

Algorithm 1: Feature layer importance evaluation

Input: Threshold : th=0.1

1: Trained DNN model : F

Output: Layers to be encrypted : En

2: function Discrimination() /* Core evaluation procedure */

3:for L; € F do /* Iterate through all layers */

4:  pe=0.1,drop=0

5 while pe > 1x107'° do /* Continue until perturbation becomes negligible */
6: Li.weight.data+ = pe /* Apply additive weight perturbation */

7: drop = ACCriginal — ACCyrop /* Calculate accuracy degradation */
8
9

if drop > th then /* Check significance threshold */
: Save L;, drop in En and break /* Record sensitive layer */
10: end if

11: pex* = 0.1/* Exponentially reduce perturbation magnitude */
12:  end while
13: end for

14: argsort(drop) — En /* Sort layers by sensitivity descending */
15: return En /* Return security-critical layer indices */

In this algorithm, the outer loop runs n times while the inner loop runs 10 times, resulting in a time
complexity of O(nx10). The algorithm only retains the feature layer that has the most significant impact on
model performance during each iteration, ultimately producing just a sorted list of feature layer importance.
Therefore, its space complexity is O(1).

After selecting the target layer for encryption, a weight importance evaluation algorithm is applied
to identify the most critical weights. Specifically, the parameter dimensions of a convolutional layer are
C*N*K*K, where C, N, and K denote the number of input channels, output channels, and kernel size,
respectively (typically 3*3 or 5*5). Due to structural differences across layers, the functional significance of
individual kernels and their associated weights varies. Drawing inspiration from model pruning techniques,
where less significant weights are removed to improve efficiency, we assess weight importance using the L1-
norm. Since convolutional weights are multi-dimensional, they are first flattened into a one-dimensional
array for ranking. The Ll-norm values are then used to partially sort the weights. Based on a predefined
encryption ratio, a selection function identifies the most impactful weights and their corresponding indices.
The result is a list of selected weights and their positions, which defines the final encryption target.
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After calculating the weight information to be encrypted, use the 4D Lorenz Hyperchaotic Map to
scramble the weight position. The Eq. (1) is as follows:

wi = a(wy —wy) + waws
Wh = piw — Wy — wiws + Wy 0
Wé = wWiw) — /31W3

!
Wy = P1Ws— WiW3

where, wy, wp, w3, wy are state variables that changes over time. w! denotes the derivative of time t. The
parameters «y, 31, 1, p1 are the system parameters of the control system behaviour, which affect the dynamic
characteristics of the system. When the parameter values are a; = 10, 8; = 8/3,y; = 28 and 1.52 < p; < 0.06,
the system exhibits hyperchaotic behavior. In this paper, p; = 1.0 is taken. «; regulates the coupling strength
between w; and w,. y; controls the strength of the response of w, to w;, ; determines the decay rate of
w3, p1 controls the growth rate of w,. We use the Runge-Kutta-Fehlberg method (RKF45) to integrate the
differential equations of the 4D Lorenz system and calculate four chaotic sequences X, Y, Z, and W with the
same dimension as the encrypted parameters. The RKF45 method controls the error in the solution process
by adaptively adjusting the step size. It is an explicit Runge-Kutta method with two different orders, usually
fourth and fifth. At each time step, RKF45 calculates two estimates of the fifth and fourth order, and uses
the difference between them to estimate the error to determine whether the step size needs to be adjusted to
achieve the set accuracy. The following is the Runge-Kutta table in the general form of the RKF45 algorithm
(Eq. (2)):

ky =f(ti,)’i)
h k
ky=flti+—, vy +—
2 f( AR 4)
3h 3hk 9hk2)
k = ti — s Vi
’ f(+8y+32+32
12h 1932hk;  7200hk, 7296hks (2)
k4:f(ti+_:yi+ - + )
13 2197 2197 2197
4 4
ks = f (110 oy 2200 gk, + 2500 S5
216 513 4104
ke :f(ti . ﬁ;)’i _ 8hk 4 2hk, - 3544hk3+ 1859hk, 11hk5)
2 27 2565 4104 40

where, t; is the current time step, y; is the estimated value of the current step, f(¢;, y;) represents the ordinary
differential equation, which can usually be defined as d,/d; = f(t, y), ki, ka, k3, k4, ks, k¢ are intermediate
values, and h is the set step size. The step size set in this paper is & = 0.01. Then, the linear combination of
derivative terms can be obtained to calculate the Runge-Kutta approximation of the fourth-order y,, and
the fifth-order y},, (Eq. (3)):

) 16k, 6656k; 28561k, 9ks 2ke
Yin=Yith + + [
135 ' 12825 56430 50 55
@ (25k1 | 1408k 2197k, k5)
Yint =i 216 | 2565 & 4104 5

(3)
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The error estimate can be obtained by taking the difference between the two approximations (Eq. (4)):

_ 3 4
Ei=yin—Vin (4)
Adjust the step size according to the error estimate to meet the predetermined error tolerance. If the
error exceeds the tolerance, reduce the step size; if the error is within the tolerance, increase the step size
appropriately. Next, sort the subscripts of the X, Y, Z, and W sequence elements in ascending (or descending)
order according to their size, and obtain four new subscript sequences, as shown in the Eq. (5):

{Sh{lx,ly,lz,lw} = &(x),§(y), &(2), &(w)

X, ¥,2,w = ©(my, my, mz, my)

(5)

where, Sh is a dictionary used to store new sequences, ® is a hyperchaotic map, mjy, m,, ms, my are the
sizes of the encrypted areas, and the & function is used to rearrange the X, Y, Z, and W sequences. Use the
sequences I, I, I, I,, in the dictionary Sh to confuse the parameter dimensions that need to be encrypted.
Then use Sh to rearrange the parameters that need to be encrypted and generate a decryption key. The final
position of the original parameter is determined by the four chaotic sequences, achieving highly nonlinear
obfuscation of the encryption layer. The obfuscation equation (Eq. (6)) can be expressed as:

i\ (L)

i L)
v |7 oo (6)
p') \l(p)

where, i’, j/, k', p’ are the positions after parameter confusion, and i, j, k, p are the positions before parameter
confusion. Original parameter at position i, j, k, p migrates to i’, j', k", p’ creating interleaved scattering
across all dimensions simultaneously, this architecture ensures that even partial parameter leakage reveals
no structural patterns.

In this design, even if an attacker obtains a model with scrambled parameter positions, they cannot
achieve high inference accuracy without the correct decryption key. The obfuscated model remains resistant
to brute-force attacks, effectively preventing the recovery of its original performance. This mechanism
thus provides strong protection for DNN intellectual property, making it difficult for unauthorized users
to exploit the model. Furthermore, since the chaotic sequence used for scrambling is deterministically
generated from fixed initial conditions, it does not need to be transmitted along with the model. Only the
initial parameters are required to regenerate the same sequence during decryption, significantly reducing
communication overhead.

3.2.2 Amplitude Recovery Mask Weights

In order to further improve the security of the encryption parameters, we add a small perturbation to the
selected encryption weight value to further increase the difficulty for attackers to crack. Specifically, the loss
function is recorded as Loss, the weight of the convolution layer [ is recorded as W; = [W}y, W5, Wis,...],
where Wy;,i€(1,2,3,...) is the convolution kernel parameter, the model input is recorded as x, and the
output result is recorded as y, The gradient obtained during back propagation is Eq. (7):

VW;Loss(x, ) =

dLoss(x, ) dLoss(x,7) ] (7)

oW, T oW,
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And calculate the parameter with the largest absolute value of the partial derivative (Eq. (8)):

L , ¥ L , J L , J
‘8 oss(x, y) =max”a oss(x y)"‘a oss(x, y) ,] ®)

oWl oWn oW,
After determining the encrypted weight Wj;, the Amplitude recovery maskper of the weight can be
defined as Eq. (9):

oLoss(x, )

U0 |« a4 - min () ©
Wit

per =ux sign[
where, y is a hyperparameter with a very small value, which is used to control the perturbation per within
a very small range. max(W;) and min (W;) are the maximum and minimum values of the weight of the
encryption layer, respectively. The encryption weight Wj; is updated to (W}, + per), and the unselected
weight value will not be updated. The Crop() function is used to control the newly generated weight within
a reasonable range so that it will not be detected by the attacker due to unreasonable weights. The public
display is as follows (Eq. (10)):

Wi + per, Wi € [Hlelz]
Crop(Wy, + per) = < Anew(W; + per), W, < Hp
Anew(Wj, + per), W > H), (10)

Hj; = min(W;) + & x [max(W;) — min(W;)],
Hjp = max(W;) — & x [max(W;) — min(W;)]

where, ¢ is a hyperparameter, H;; and Hj, are two thresholds that control the range of weights after
perturbation. Their function is to make the encrypted weights within a reasonable range after updating,
and not too large or too small. The function Anew(W;t + per), will perform two steps. In order to ensure
that the original weights can be correctly decrypted, before updating the weights, the perturbation value per
must be updated to per’, and then the weights are updated to W,. If the value of (W;t + per) happens to
be in the interval [ H};, H}, |, the weights are not processed and are directly updated to the encrypted model.
Otherwise, the parameters are updated according to the Anew(W;t + per) function. The definition of the
Anew (Wt + per) function is as follows Eq. (11):

per'=Hjy - Wy, W, <Hjp

W/ = Hj, Wi <H

Anew(Wi; + per) : lt, I It I (1)
per' =Hp—- Wy, Wyi>Hp
Wl,t = Hj,, Wi > Hpp

where, per’ and W}, are the updated perturbation values and weights. per’ = H; — Wy, Wi, < Hjy Recal-
ibrate perturbation to reach lower threshold, W}, = Hy;, Wi, < HCrop() weight to minimum allowable
value. per’ = Hj, — Wy, Wy, > Hj, Adjust perturbation to hit upper threshold, W/, = Hj,, Wy, > H;;Crop()
weight to maximum allowable value.
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3.2.3 Key Generation

The composite key in our framework comprises three security elements:

K={a,b,c,d}u{(plt,vit)} u{S;, W;,H;} (12)

Chaotic seeds leL Layer metadata

where, {a,b,c,d}: Initial parameters of the 4D hyperchaotic map ®, protected by AES-256 with 10™
possible combinations (NIST SP 800-22 validated), { (plt,vIt)}: Position-perturbation pairs where plt =
L (i) |1, (j)|I-(k)|1,,(p) denotes the 4D permuted index, and vit = per’ is the amplitude-adjusted per-
turbation from Eq. (11), {S;, W;, H, }: Spatial dimensions of encrypted layer I for decryption alignment
Key Usage Example: For a convolutional layer with S x W x H x C = 3 x 3 x 64 x 128, the key entry corre-
sponding to position (2,1,5,33) would be: K(3,533) = (L:(2) |1, (1) [ 1.(5) |1, (33), 0.127), where 0.127 is
the calibrated perturbation bounded by [Hj;, Hj; |. Authorized users decrypt through:

Woriginar = ARMDecode(W,cryprea — vIt) © @ '(a,b,c,d) (13)

While key transmission relies on established protocols (e.g., TLS 1.3 + RSA-4096), we mitigate
interception risks through:

« Dynamic key rotation: Regenerate {a, b, ¢, d} hourly via PUF (Physically Unclonable Functions)
« Key fragmentation: Distribute K across multiple secure enclaves (SGX/TEE)

The encryption process of the encryption algorithm proposed in this article is shown in Algorithm 2.

Algorithm 2: Encryption

Input: Encrypted layer : L Corresponding weights : W; = [Wy, Wiy, Wis,...], (I € L) Trained DNN
model : F Chaotic System : @

Output: Encrypted DNN model : F

1: function Encryption() /* Core encryption pipeline */

2:x,y,2,w < ©(LayerShape(L)[: 4], a, b, ¢, d) /* Generate chaos sequences */

31,1, 1,1, + argsort(x, y,z,w) /* Get permutation indices by sorting chaotic values */

4:S,W,H « GetArea(L) /* Extract spatial dimensions (S:slice, W:width, H:height) */

5:for i, j, k,p € [range(S.shape[0]),range(S.shape[1]), range(S.shape[2]),range(S.shape[3])] do
6: L, < exchange(L[i, j, k, p], L[1:(i),I,(j), I.(k), I,(p)]) /* Scramble weights */

7: end for

8: for P,,;;4 € W; do /* Process each weight parameter */

9: Parm, keyarm < ARMencode(Py,1i4, key) /* Apply amplitude recovery mask */
10:  Plpy < Crop(Wy, + per,keyarm)

11:  P' < ARMDecode(Pp,)

122 L,« P

13: end for

14: F < L, /* Build final encrypted model */

15: K < [key, (a,b,c,d), (S, W,H)]

16: return F /* Return encrypted model and secret key */

The overall time complexity of the algorithm is O(nlogn) + O(n) + O(m) = O(nlogn + m), domi-
nated by the sorting operation with O(nlogn), while chaotic sequence generation and region computation
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(each O(n)) as well as weight amplitude recovery (O(m)) contribute to the remaining costs. The space
required for generating chaotic sequences is O(n). The GetArea(L) operation returns a region whose size
correlates with the input layer Ls dimensions, assuming the returned region occupies O(n) space. In the
weight scrambling operation, no new arrays are created—it merely swaps the positions of weight elements,
resulting in O(1) space complexity. The amplitude recovery mask also demonstrates O(1) space complexity.
Consequently, the total space complexity is O(n).

3.3 Model Decryption

Since the chaotic scrambling method selected is reversible, the decryption process is essentially the
inverse process of encryption. As long as the transmitted key is correct, the original model can be quickly
restored. First, subtract the added Amplitude recovery maskvalue to restore the encrypted weight value, and
then generate the required chaotic sequence based on the initial value of the chaotic sequence, and perform
chaotic scrambling in reverse order to restore the original position of the model and obtain the original DNN
model. The decryption equation is as follows (Eq. (14)):

. =
1l

— —
R

)
/)) (14)
)

S

— —

p

where, i’, j', k', p’ are the positions after parameter confusion, and i, j, k, p are the positions before parameter
confusion. And I, I, I, I, are the inverse sequences of the encrypted chaotic sequence.

4 Experimental Results and Analysis
4.1 Experimental Setup

Our method is evaluated on an NVIDIA GeForce RTX 4060 Laptop GPU with CUDAI12.2 and
CUDNNIL6. The CUDA Toolkit and cuDNN libraries compatible with PyTorchl.13+cull6 are installed,
and PyTorch is configured to support GPU acceleration. In addition, Vscode is installed as a code editor
for Python3.9.13. In this paper, four datasets, namely CIFAR-10 [30], CIFAR-100 [30], Fashion-MNIST [31],
and ImageNet [32], are selected as experimental datasets. First, seven classification networks, namely
EfficientNet [33], MobileNetV2 [34], MobileNetV3 [34], ResNet-18 [35], ResNet-50 [35], Shuffle-Net [36],

and VGG-16 [37], are selected for evaluation on the above four datasets.

4.2 Feature Layer Importance Judgment

This paper introduces a feature layer importance evaluation algorithm to prioritize layers with sig-
nificant influence on model performance, thereby narrowing the encryption scope. In our initial analysis,
we assessed all feature layers including convolutional, pooling, and fully connected layers and observed
that convolutional layers have the most critical impact on overall model accuracy. Subsequent experiments
focused on evaluating the relative importance of each convolutional layer, with the results presented in Fig. 2.
We trained ResNet-18 and VGG-16 on the CIFAR-10 dataset, achieving over 90% classification accuracy. Each
convolutional layer was indexed as i. Where i € (1,2,3,...,n), denotes the total number of convolutional
layers. In total, 19 and 13 convolutional layers were evaluated for ResNet-18 and VGG-16, respectively.
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Figure 2: Analysis of the importance of feature layers

After selecting the layers to be encrypted, the number of encrypted weights is further reduced by
arranging the L1 norm of each layer. The encryption ratio of each layer is set to 0.5% per layer. Different
numbers of layers are selected for encryption according to the importance of the feature layer, and the
performance changes of the model are observed. As shown in Fig. 3, in ResNet-18, only 0.5% of the
parameters (184) of a convolutional layer need to be encrypted to reduce the model performance to 61.57%.
Encrypting about 550 parameters of three layers can reduce the model accuracy to 19.59%, accounting for
0.016% and 0.049% of the total parameters, respectively. For the VGG-16 network, only 84 parameters of
one layer need to be encrypted to reduce the model accuracy to 65.34%, and about 6600 parameters of three
layers need to be encrypted to reduce the model accuracy to 43.95%, accounting for 0.0006% and 0.049% of
the total parameters, respectively.

4.3 Encryption Effects

Based on the above methodology, the encryption layer ratio § = i/n is set to 0.8, and the encryption ratio
within each selected layer is set to 0.01. All subsequent experiments adopt these fixed parameters. Table 1
summarizes the encryption results across four datasets, where seven classification networks are evaluated per
dataset. For each model, we report the original accuracy, the accuracy after encryption, and the accuracy after
decryption. Notably, for datasets with 10 categories such as CIFAR-10 and Fashion-MNIST, the encrypted
model accuracy drops to approximately 10.00%, close to random guessing. For CIFAR-100 and ImageNet-
200 (a subset with 200 classes), encryption accuracy falls to around 1.00% and 0.50%, respectively—also near
the expected random baseline. These results demonstrate that the proposed method is highly stable across
various datasets and architectures, exhibiting strong robustness.
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Figure 3: Selection of encryption feature layers initial accuracy represents the original accuracy of the model, accuracy
after encryption represents the accuracy of the model after encryption, and acceptable accuracy after encryption
represents the acceptable degree of accuracy reduction after encryption

Table 1: Encryption effects of different networks

Dataset Type Efficient MobileV2 MobileV3 Res-18 Res-50 Shuffle VGG-16

Original ~ 94.34%  95.13% 95.09%  95.09% 96.44% 96.26% 91.04%

Cifar-10 Encryption  9.92% 10.85% 10.59%  10.00% 10.00% 9.98%  13.43%
Restored  94.34%  95.13% 95.09%  95.09% 96.44% 96.26% 91.04%

Original ~ 84.18%  81.37% 81.55%  80.59% 82.75% 82.86% 80.26%

Cifar-100 Encryption  0.87% 0.98% 0.88% 1.00% 1.00% 1.03%  121%
Restored  84.18%  81.36% 81.55%  80.59% 82.75% 82.86% 80.26%

Original ~ 94.57%  92.68% 92.91%  92.33% 91.56% 90.48% 92.05%
Fashion-MNIST Encryption 10.12% 10.03% 9.86%  10.52% 10.00% 10.00% 10.49%
Restored  94.56%  92.68% 92.92%  92.33% 91.56% 90.48% 86.68%

Original ~ 94.51%  86.02% 89.1%  84.31% 89.18% 86.85% 82.54%

Imagenet Encryption  0.52% 0.50% 0.45% 0.76% 0.43% 0.53%  0.39%
Restored  94.51%  86.02% 89.11%  84.31% 89.18% 86.85% 82.54%

Furthermore, due to the reversibility of the proposed encryption scheme, model performance after
decryption is nearly identical to the original. As shown in Table 1, the fluctuation in accuracy is typically
within 0.01%, with only a few exceptional cases (highlighted in bold) showing minimal deviation. This
indicates that the scheme introduces negligible performance loss, making it suitable for most DNNs unless
extreme precision is required. Additionally, Table 2 reports the storage overhead of encrypted model files. The
file sizes before and after encryption remain nearly unchanged, confirming the method’s lightweight design.
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Table 2: The storage space occupied by the model weights before and after encryption

Shuffle MobileV2 MobileV3 Res-18 Res-50 Efficient VGG-16

Original (KB) 208038 8972 16659 43755 92218 21194 524626
Encryption (KB) 208041 8973 16660 43756 92219 21195 524628
Extra storage (%) 0.0014 0.0111 0.0601 0.0029  0.0011 0.0047 0.0004

4.4 Model Decryption Time

For a user-oriented network model, service response time is a criterion for measuring user experience.
Therefore, the encryption algorithm should have a high decryption efficiency while protecting the intellectual
property rights of the model owner to ensure a good user experience. Table 3 shows the decryption time
of some encrypted feature layers of three networks, ResNet-18, VGG-16, and MobileNetV2, respectively,
under the CIFAR-100 and CIFAR-10 datasets, as well as the accuracy changes of the encrypted model at this
layer. The encryption ratio of the CIFAR-100 dataset used by ResNet-18 is set to 3%. It can be seen that the
decryption model takes very little time, all within 1 second, but it is worth noting that the decryption time
is affected by many factors such as the hardware conditions of the test device and the operating status of
the device, and is also affected by the number of encrypted weights of the model. In different scenarios, the
decryption time will vary. The accuracy of the model after encryption remains at a low level. After decryption,
the model accuracy is basically not lost, which can well meet the various service needs of users.

Table 3: Decryption time of different networks

Network Layer name Layer shape  Decryption Encryption Decryption
time (s) accuracy accuracy

ResNet-18 Layerl.0.convl [64, 3,7, 7] 0.24 2.0‘? 80.62/0
(Original accuracy: Layer2.0.convl [128, 64, 3, 3] 0.51 31.0% 80.6%
80.%) Layer2.0.conv2 [128, 128, 3, 3] 0.69 36.3% 80.6%
Layer2.0.downsample.0  [128, 64, 1, 1] 0.11 35.1% 80.6%
Features.[0] [64, 3, 3, 3] 0.01 32.7% 91.0%
VGG-16 (Original Features.[2] [64, 64, 3, 3] 0.21 31.6% 91.0%
accuracy: 91.0%) Features.[5] (128, 64, 3, 3] 0.37 24.2% 91.0%
Features.|[7] (128,128, 3, 3] 0.71 39.3% 91.0%
. Features.0.0 [32, 3, 3, 3] 0.01 15.1% 95.1%
Ori g;’;li\cfjracy: Features.1.0 32,1,3,3] 0.01 15.8% 95.1%
95.1%) Features.2.0 [96,16,1,1] 0.02 24.6% 95.1%
Features.3.1 [144,1, 3, 3] 0.02 26.3% 95.1%

4.5 Parameter Distribution Analysis Attacks

The attacker can infer which weights are encrypted based on the weight distribution of the model or the
variance of the model weights. For this reason, this paper adds an adversarial perturbation to the encrypted
weights so that the weight distribution and variance of the encrypted model remain basically unchanged. As
shown in Fig. 4, this is an encrypted convolutional layer from ResNet-18 and VGG-16. The two figures on the
left are the weight distributions of ResNet-18 and VGG-16 before encryption, and the two figures on the right
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are the weight distributions of ResNet-18 and VGG-16 after encryption. The two vertical lines represent the
mean and variance of the model, respectively. It can be seen that the mean and variance changes before and
after encryption are both in the range of 107°. These experimental results show that the encrypted weights
are invisible to attackers, and it is difficult for attackers to determine the location of the encrypted layer and
the encrypted weights by analyzing the abnormality of the weights, that is, it is difficult to detect anomalies
for these encrypted layers by analyzing weight changes.
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Figure 4: Weight distribution histogram mean represents the mean of the model weights, and variance represents the
variance of the model weights

4.6 Model Fine-Tuning Attack
4.6.1 Fine-Tuning with Limited Data

Since the encryption model can be obtained from the IoT system by all devices, an attacker can fine-
tune the encryption model to invalidate the encryption and thus obtain the services of the original model. In
the experiment, ShuftleNet, MobileNetV2, and MobileNetV3 use the CIFAR-10 dataset, while EfficientNet,
ResNet-18, ResNet-50, and VGG-16 use the CIFAR-100 dataset for testing. 10% of the data in the test sets of
the two datasets are selected for model fine-tuning attacks, and the remaining 90% of the data in the test
sets are used as validation sets. The learning rate Ir is set to 0.00001 to evaluate the change in the inference
accuracy of the model when it is fine-tuned. The results are shown in Table 4. From the results, even after
100 epochs of reasoning, the reasoning accuracy of the fine-tuned encrypted model remains at a low level.
Among the three models fine-tuned on CIFAR-10, only MobileNetV2 has a reasoning accuracy of 28.24%,
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while the accuracy of ShuffleNet and MobileNetV3 is only 11.47% and 14.82%, respectively. It is very close to
the random selection accuracy of CIFAR-10 of 10%. The highest accuracy of the four networks on CIFAR-
100 is only 18.31%, and the four models of ShuffleNet, EfficientNet, ResNet-50, and VGG-16 have already
achieved the best fine-tuning accuracy before reaching 100 epochs, which means that even if the number of
epochs continues to increase, the accuracy of the model will not be improved, which further illustrates the
robustness of the encrypted model to fine-tuning attacks. Since the training cost of the entire original model
is high and the attacker cannot have the private dataset of the model owner, fine-tuning the encrypted model
with a small dataset cannot obtain the original accuracy of the model. Fine-tuning the model with a large
dataset is equivalent to retraining the model, the fine-tuning attack loses its meaning.

Table 4: Changes in model accuracy under fine-tuning attack

Epo Shuffle MobileV2 MobileV3 Res-18 Res-50 Efficient VGG-16

10 9.85% 13.27% 8.62% 550%  7.73% 13.93% 7.47%
20 11.66% 16.28% 9.85% 6.90%  8.55% 16.17% 12.32%
30 11.37% 19.34% 9.57% 7.53%  9.45% 17.62% 13.50%

40 11.37% 21.25% 10.64% 822% 9.64%  18.05% 13.38%
50 11.40% 23.01% 12.06% 8.30% 9.87% 18.15% 13.38%
60 11.16% 24.73% 12.72% 8.60% 9.71% 18.31% 13.37%
70 11.25% 25.47% 13.32% 8.71% 10.05%  18.25% 13.38%
80  11.41% 26.44% 13.32% 890%  9.91% 18.25% 13.37%
90 11.35% 27.35% 14.07% 912%  9.94% 18.01% 13.38%
100  11.47% 28.24% 14.82% 9.20%  9.81% 18.15% 13.37%

4.6.2 Increase the Fine-tuning Ratio

To further verify the model’s resistance to fine-tuning attacks, we assume that the attacker has a large
number of annotated images for fine-tuning the model. Use a larger learning rate, set the learning rate Ir
to 0.001, and set a dataset ratio p, p € (0.2,0.3,0.4,0.5,0.6). Use the same dataset for 100 epochs of attacks.
As shown in Table 5, the model inference accuracy of the 7 networks after 100 epochs of attacks on the
training datasets with different proportions. It can be seen that when p = 0.2, the inference accuracy of several
networks is still below 50%, and even when p = 0.6, the model inference accuracy of the four networks tested
using CIFAR-100 after 100 epochs of attacks is still below 50%, and the model accuracy of the model after 100
epochs of attacks on ShuffleNet is only 57.62%, which is still a big gap compared to the original accuracy of
the model of 96.26%, which fully demonstrates the robustness of the proposed algorithm in resisting model
fine-tuning attacks.

Table 5: Accuracy of model fine-tuning attack under different training ratios

Net p=02 p=03 p=04 p=05 p=0.6
Shuffle 44.50% 50.37% 53.31% 55.96% 57.62%
MobileV2  46.80% 48.22% 52.78% 57.24% 56.60%
MobileV3  37.45% 41.70% 44.75% 48.32% 50.90%
Res-18 30.40% 37.72% 40.13% 40.36% 45.72%
Res-50 29.20% 32.97% 37.58% 38.06% 44.90%

(Continued)
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Table 5 (continued)

Net p=02 p=03 p=04 p=05 p=0.6
Efficient  30.06%  36.18%  42.43%  44.66%  4795%
VGG-16  13.31% 1351%  15.95%  18.60%  19.55%

4.7 Model Pruning Attack

The attacker may prune the encrypted area of the model by pruning the model to obtain the original
accuracy of the model. In this experiment, CIFAR-10 was used to perform pruning attacks on three networks,
EfficientNet, MobileNetV2, and ResNet-18, while MobileNetV2, ResNet-50, and VGG-16 used the CIFAR-
100 dataset. The pruning rate of the model was set from 0.0 to 0.7, where 0.0 represents the accuracy of the
encrypted model and 0.7 represents a pruning rate of 70%. The results are shown in Table 6. Regardless of
the pruning rate, the reasoning accuracy of the encrypted model remains at an extremely low level, close
to the random selection accuracy. When the pruning rate is 0.5, several networks achieve the best pruning
effect. If the pruning rate is further increased, the model reasoning accuracy is even lower. After pruning,
the model reasoning accuracy is even lower than that after encryption. This shows that the model pruning
attack not only does not prune the important weights of the encrypted model, but also prunes some less
important weights that are not encrypted, resulting in a further reduction in the reasoning accuracy of the
model. This shows that the algorithm we proposed does not continuously encrypt a series of adjacent weights,
but selectively encrypts model weights, which can effectively resist model pruning attacks.

Table 6: Changes in model accuracy under pruning attack

Pruning rate Efficient MobileV2 Res-18 MobileV3 Res-50 VGG-16

0.0 9.92% 10.15% 10.00% 0.88% 1.00% 1.21%
0.1 9.62% 11.52% 10.18% 0.99% 1.00% 1.24%
0.2 10.34% 11.11% 10.22% 0.88% 1.00% 1.34%
0.3 9.60% 9.82% 10.22% 0.95% 1.00% 1.38%
0.4 10.50% 10.12% 10.52% 0.96% 0.98% 1.08%
0.5 9.86% 10.08% 10.08% 0.99% 0.61% 1.22%
0.6 9.78% 10.14% 10.00% 0.93% 1.00% 1.10%
0.7 9.65% 9.97% 10.00% 0.93% 1.00% 1.17%

4.8 Ablation Experiments

We performed ablation experiments and the results are shown in Table 7. The first row is the accuracy
of the original model, the second row represents the accuracy of the encryption model, and the third row is
the result of our random selection of the same number of weight encryption models.

4.9 Comparison with SOTA Methods

We compare the proposed method with existing active DNN IP protection schemes. As shown
in Table 8, we give the encryption effects of these schemes on Fashion-MNIST and cifar-10. The scheme
proposed by Pyone et al. [16] requires image preprocessing when training and using the model, which
undoubtedly consumes a lot of time, and retraining also consumes a lot of computing resources. The scheme
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proposed by Zhou et al. [23] also requires the full parameters of the cryptographic model, which cannot meet
the needs of commercial applications. For work [21], attackers may find out the information of the model
encryption weights through reverse engineering of the model. The scheme of work [22] not only requires
retraining the model, but also requires the support of hardware equipment, which will also consume a lot
of costs in commercial applications. Compared with previous work, the scheme proposed in this paper not
only does not require retraining the model, but also does not require hardware equipment support, and
decryption only takes a very short time, which can well meet the needs of commercial applications.

Table 7: Ablation experiments

Shuffle MobileV2 MobileV3 Res-18 Res-50 Efficient VGG-16

Original ~ 94.34% 95.13% 95.09% 95.09% 96.44% 96.26%  91.04%
Encryption  9.92% 10.85% 10.59% 10.00%  10.00% 9.98% 13.43%
Random 91.55% 83.21% 76.04%  94.48% 94.86% 93.95%  90.36%

Table 8: Comparison of different methods

Work Dataset Authorized Unauthorized ACCdrop  Require Require
accuracy accuracy additional hardware
training support
Encryption MNIST - - - Yes No
-based [16] cifar-10 92.26% 20.01% 72.25%
NNSplitter module  MNIST 93.71% 11.17% 82.54% Yes No
-based [23] cifar-10 93.07% 11.17% 81.90%
MNIST - - -
Passports-based [21] e 10 90.89% 10.00% 80.89% Yes No
Hardware device MNIST  89.93% 10.05% 79.88% Yes Yes
-based [22] cifar-10 89.54% 9.37% 80.17%
The proposed MNIST 92.33% 10.52% 81.81% No No
method cifar-10 95.09% 10.00% 85.09%

Note: ‘- indicates that the cited work did not conduct the corresponding experiments.

5 Conclusion

This paper presents a Model Active Protection Framework that secures DNN models at the source by
encrypting only a small subset of critical weights. These encrypted weights remain statistically indistinguish-
able from normal values, making their locations hard to detect. The framework ensures efficient decryption
with minimal computational overhead, enabling practical deployment. Experimental results show that, after
encryption, model accuracy drops to near-random levels across seven classification networks and four
benchmark datasets, effectively preventing unauthorized exploitation. Moreover, the scheme demonstrates
strong resistance to common attacks such as model fine-tuning and pruning, underscoring its robustness.
In summary, the proposed method offers a lightweight, resilient, and practical solution for protecting the
integrity and confidentiality of DNN models in real-world scenarios.
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