
echT PressScience

Doi:10.32604/cmc.2025.064601

ARTICLE

A Hybrid Deep Learning Pipeline for Wearable Sensors-Based Human Activity
Recognition

Asaad Algarni1, Iqra Aijaz Abro2, Mohammed Alshehri3, Yahya AlQahtani4,
Abdulmonem Alshahrani4 and Hui Liu5,*

1Department of Computer Sciences, Faculty of Computing and Information Technology, Northern Border University, Rafha, 91911,
Saudi Arabia
2Faculty of Computing and AI, Air University, Islamabad, 44000, Pakistan
3Department of Computer Science, King Khalid University, Abha, 61421, Saudi Arabia
4Department of Informatics and Computer Systems, King Khalid University, Abha, 61421, Saudi Arabia
5Cognitive Systems Lab, University of Bremen, Bremen, 28359, Germany
*Corresponding Author: Hui Liu. Email: hui.liu@uni-bremen.de
Received: 19 February 2025; Accepted: 26 May 2025; Published: 30 July 2025

ABSTRACT: Inertial Sensor-based Daily Activity Recognition (IS-DAR) requires adaptable, data-efficient methods
for effective multi-sensor use. This study presents an advanced detection system using body-worn sensors to accurately
recognize activities. A structured pipeline enhances IS-DAR by applying signal preprocessing, feature extraction and
optimization, followed by classification. Before segmentation, a Chebyshev filter removes noise, and Blackman window-
ing improves signal representation. Discriminative features—Gaussian Mixture Model (GMM) with Mel-Frequency
Cepstral Coefficients (MFCC), spectral entropy, quaternion-based features, and Gammatone Cepstral Coefficients
(GCC)—are fused to expand the feature space. Unlike existing approaches, the proposed IS-DAR system uniquely inte-
grates diverse handcrafted features using a novel fusion strategy combined with Bayesian-based optimization, enabling
a more accurate and generalized activity recognition. The key contribution lies in the joint optimization and fusion of
features via Bayesian-based subset selection, resulting in a compact and highly discriminative feature representation.
These features are then fed into a Convolutional Neural Network (CNN) to effectively detect spatial-temporal patterns
in activity signals. Testing on two public datasets—IM-WSHA and ENABL3S—achieved accuracy levels of 93.0% and
92.0%, respectively. The integration of advanced feature extraction methods with fusion and optimization techniques
significantly enhanced detection performance, surpassing traditional methods. The obtained results establish the
effectiveness of the proposed IS-DAR system for deployment in real-world activity recognition applications.
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1 Introduction
Precise tracking of daily human movement is vital for improving healthcare, disability treatment, safety,

and exercise monitoring [1]. Wearable sensor advances enable IS-DAR systems to monitor motion in real
time using accelerometers, gyroscopes, and magnetometers. These sensors provide detailed motion data but
still face challenges in accurately classifying complex activities like walking, jogging, jumping, and falling.
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Existing methods have drawbacks: video-based systems struggle with lighting and occlusion; marker-
based systems require controlled environments; and inertial systems, though portable, often produce noisy
data and generalize poorly. Many studies also rely on limited sensor fusion and basic feature selection,
underusing available data.

This study proposes a robust IS-DAR system using body-mounted inertial sensors and a noise-resistant
signal processing pipeline. Signals are denoised with a sixth-order Chebyshev filter and segmented via
Blackman windows. It extracts and fuses a rich set of features—GMM, MFCC, spectral entropy, quaternion-
based, and GCC—then applies Bayesian feature selection. A CNN classifies the fused input by learning
spatial-temporal patterns.

Tested on the IM-WSHA and ENABL3S datasets, the system achieves 93.0% and 92.0% accuracy,
outperforming traditional methods. Its integration of advanced filtering, feature fusion, and deep learning
enhances recognition accuracy and efficiency. This research delivers six key innovations:

• We present a systematic deep learning framework integrating advanced feature extraction, fusion,
and Bayesian optimization to enhance IS-DAR robustness. This structured approach leverages both
domain-specific handcrafted features and deep learning-based representations for superior classifica-
tion performance.

• While the individual features (MFCC, GCC, spectral entropy, quaternion orientation, and GMM) are
well-known in Human Activity Recognition (HAR) literature, the novelty of this work stems from
the systematic integration and cross-domain fusion of these complementary modalities into a single
feature space, optimized through Bayesian-driven selection. This process ensures that only the most
informative and noise-robust features contribute to classification, mitigating redundancy and enhancing
model generalization.

• Although all utilized features have precedent in prior works, our contribution lies in the cross-modal
feature synergy achieved via Bayesian Optimization-driven selection and fusion, offering a compact and
high-utility representation that directly enhances CNN-based classification.

• A comparative analysis compares Bayesian Optimization for discriminative feature selection and
hyper-parameter tuning to traditional methods such as Principal Component Analysis (PCA) and
Singular Value Decomposition (SVD). The results show Bayesian Optimization’s better ability to choose
discriminatory features and optimize classification performance.

• Our research enhances deep learning-based IS-DAR by maximizing the collaboration of feature fusion
and Bayesian Optimization in a CNN classifier. Model robustness to sensor variability and noise is greatly
enhanced by this systematic approach.

• Intensive experimentation over the IM-WSHA and ENABL3S datasets establishes the efficacy of our
system through state-of-the-art recognition accuracy. Comparative studies on newer HAR models affirm
the superiority of our approach, establishing it as more practically viable and computationally efficient.

This paper is structured as follows: Section 2 presents the datasets; Section 3 discusses related
work; Section 4 describes the planned methodology; Section 5 provides details of the experimental
setup; Section 6 presents experimental results; and Section 7 concludes with future directions.
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2 Datasets Description

2.1 IM-WSHA
Real-time daily activities were recorded using three inertial measurement units (IMUs) which were

positioned on the chest the thigh along with the wrist for data collection on the IM-WSHA dataset [2]. This
dataset contains data about the kinematic and static movement activities of ten subjects who performed their
actions in a smart home setting. Roughly two hundred everyday activities were recorded which included
phone conversation, vacuum cleaning, watching TV, using computer, reading books, ironing, walking,
exercise, cooking, drinking, and brushing hair.

2.2 ENABL3S
The ENABL3S dataset involved motion capture sensors that included four IMUs on both wrists and

shanks as well as four Electromyography (EMG) sensors attached to biceps and thighs. Fifteen participants
carried out repeated five daily activities as part of the collection process. The recorded activities include
standing still, squatting and standing up, jumping, raising right hand, and jogging.

3 Literature Review
Different methods exist for recognizing daily activities which utilize video-based sensors, body-worn

markers and inertial measurement units (IMUs). This section reviews current methodologies from the three
categories by analyzing their advantages and disadvantages for activity recognition:

3.1 Video-Based Activity Recognition
Ko et al. [3] built a video-based Human Activity Recognition (HAR) system that utilizes angle inclina-

tion and a keypoint descriptor network to identify movement direction. It performed well on lightweight
devices, while issues such as pose variability, motion complexity, and occlusion persist. Kang and Wildes [4]
came up with a strategy to identify biological activity by processing both positional and oscillatory motion in
videos. Its system separated humans from non-human movements well in controlled environments, though
dynamic backgrounds caused it to fail and demand high-quality video feed. Hassan et al. [5] developed a
HAR system that integrates DenseNet121 for feature extraction and optimized Long Short-Term Memory
(LSTM) to identify patterns over time. Although it surpassed current models in benchmark databases, it
underscored the challenge of modeling dependencies on time and emphasized the importance of generic
HAR systems. Jatesiktat et al. [6] applied deep learning to classify walking and running through postural
features improved by using temporal filtering to deal with transitioning motion. Although promising in sport
and rehabilitation, its application in complicated scenarios requires further examination. Finally, Kamble and
Bichkar [7] built a two-tier HAR system involving the Hidden Markov Model (HMM) for rough modeling of
activities and the Support Vector Machine (SVM) for detailed identification. They enhanced similar action
identification but still had problems like noise, occlusion, and interference between different subjects.

3.2 Body-Worn Marker-Based Activity Recognition
Khan et al. [8] developed a marker-based motion tracking system for home rehabilitation, enabling real-

time joint movement analysis. It improved therapeutic decisions by precisely monitoring joint location and
rotation, though it required accurate marker placement and was limited to rehab contexts. Wickramarachchi
[9] proposed a system with a 6D skeletal model to detect abnormal gait using raw marker data and multilayer
perceptron classifiers. It achieved high accuracy but focused solely on pathological gait detection. Mekruk-
savanich et al. [10] combined CNN and LSTM models to classify exercise activities using data from both
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IMUs and MOCAP markers. Both sensors delivered similar accuracy, supporting their interchangeability,
though the system required high-quality input and was specific to exercise recognition. Wang et al. [11]
validated the Opti_Knee system for tracking knee kinematics during walking and flexion-extension tasks.
Its output closely matched biplanar fluoroscopy, making it useful for clinical gait analysis, despite some
accuracy loss from skin movement artifacts. Niemann et al. [12] introduced a marker-based HAR system
for logistics, integrating motion data with environmental context for better classification. While effective, it
depended on precise marker placement and controlled conditions. Lastly, Lee and Park [13] offered a low-
cost alternative using wearable skin markers (WSMs) detectable by standard webcams. Ideal for home use,
the system reduced equipment needs but was sensitive to lighting and camera setup.

3.3 Inertial Sensor-Based Activity Recognition
Khan et al. [14] developed a wearable inertial sensor system using accelerometers and gyroscopes for

activity and localization recognition. Their LSTM-based model, supported by noise filtering and feature
extraction, outperformed existing methods across multiple datasets. Du et al. [15], a fuzzy-logic-based HAR
system was introduced for hip exoskeletons, using onboard inertial sensors to detect hip joint angle extremes.
It achieved 92.46% accuracy in intrasubject tests and 93.16% in intersubject validation, all without needing
extra sensors. Sarcevic [16] used inertial data with a feature aggregation and genetic algorithm optimization
approach, enhancing recognition speed and accuracy via dimensionality reduction. Shin et al. [17] designed a
GMM-based locomotion recognition system using IMUs to classify five terrain types. It accurately captured
walking conditions and linked performance to gait speed and rhythm, supporting robotic exoskeleton intent
detection. Nouriani et al. [18] built a real-time HAR system with a chest-mounted IMU to monitor postural
transitions, especially useful for Parkinson’s patients. However, its effectiveness was limited by rigid sensor
placement and user-specific motion transfer requirements. Celik et al. [19] proposed a CNN model that
turned time-series inertial data into images to improve recognition in neurological populations. Although it
handled class imbalance and dataset size issues, it was subject to lengthy training periods and had difficulty in
generalizing across a limited pool of participants. Finally, Trabelsi et al. [20] compared deep learning models
on six public databases. They obtained the best performance in a wavelet transforms–2D CNN combination,
although performance was reduced on datasets such as WISDM and PAMAP2, highlighting the difficulty in
generalizing HAR systems across varying setups.

4 Proposed System Methodology
The system that is proposed employs a hybrid method that blends hand-designed feature extraction

and deep learning-based categorization by six consecutive stages. Preprocessing raw data from the IM-
WSHA and ENABL3S databases is carried out using a Chebyshev filter followed by segmentation using a
Blackman window. Features such as GMM, MFCC, GCC, spectral entropy, and quaternion-oriented features
are independently extracted, then fused into a single representation. Bayesian Optimization selects relevant
features and tunes hyperparameters. A Convolutional Neural Network (CNN) processes optimized features
to capture spatial-temporal dependencies. This hybrid framework, integrating both handcrafted and learned
features, improves generalization and robustness. Classification results are evaluated to verify performance,
with all features computed in parallel and fused before classification, as shown in Fig. 1.
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Figure 1: A comprehensive overview of the proposed IS-DAR system

4.1 Preprocessing
Before feature extraction, sixth-order Type I Chebyshev filtering methods are traditionally used to

preprocess sensor data to increase the quality of the signals. These filters were selected based on their
steep roll-off of the gains that efficiently reject high-frequency noise and maintain the important signal
components. They also ensure that there is a predictable gain level in the passband, ensuring that there is
little distortion in the passband to preserve the quality of the extracted features [14]. An imposed passband
ripple of 0.5 dB safeguarded the biomedical signals without squandering too much power on high-frequency
noise. Independent filtering was used for individual sensor channels to optimize the quality of the signals
before further processing. Filtering by this method also reduces the effects of environmental interference
and motion artifacts, ensuring that important motion characteristics are preserved in their true form for
successful classification [21]. Sixth-order Type I Chebyshev filtering frequency response can be expressed by
this mathematical equation:

∣H ( f )∣ = 1√
1+ ∈2 T2

6 (
f
fc
)

(1)

where H(f) is the filter gain at frequency f, ∈ represents the ripple factor, T6 is the sixth order chebyshev
polynomial, and f c shows the cutoff frequency. Fig. 2 demonstrates the effects of the preprocessing procedure
by contrasting raw and filtered signals. Filtering greatly enhances the quality of signals, making it possible for
follow-up processing stages to use them as clean and stable data. Through this, the system attains improved
classification performance and consistency in recognizing activities.
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Figure 2: Comparison of raw and filtered signals using a sixth-order Chebyshev Type I filter for noise suppression in
(a) IM-WSHA and (b) ENABL3S datasets

4.2 Windowing
The Blackman windowing technique was applied to segment sensor data by smoothing transitions at

segment edges, reducing spectral leakage and improving frequency-domain precision. This function was
applied across all sensor channels before feature extraction to preserve essential motion characteristics.
Mathematically, the Blackman window is defined as:

Wk = 0.42 − 0.5 cos( 2πk
M − 1

) + 0.08 cos( 4πk
M − 1

) (2)

where Wk is the window function at sample k, M is the total number of samples in a window, and k
ranges from 0 to M − 1. A fixed window size, determined by activity duration, was used with overlap to
maintain continuity between segments. Each data point was weighted using the corresponding window
coefficient, producing a smoothed signal. As shown in Fig. 3, distinct window segments are visualized with
different colors.

Figure 3: Windowed signal segments using Blackman windows to enhance feature extraction for (a) IM-WSHA and

(b) ENABL3S datasets
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4.3 Feature Extraction
The proposed system extracts several key features from inertial sensor data following the Black-

man windowing process. The extracted feature set includes GMM coefficients, MFCC, spectral entropy,
quaternion-oriented features, and GCC. These qualities encompass both the time-frequency domain features
and the motion patterns in space that are critical for the correct identification of activities. These features
were chosen based on the following rationale: GMM coefficients describe motion distribution, enabling
the system to recognize variability among activities that involve similar motion. MFCC extracts frequency-
domain features that are critical in recognizing activities by spectral patterns. Spectral entropy describes
the complexity of signals that is useful in differentiating between dynamic and static activities. Quaternion-
based features assist in retaining 3D orientation and rotational dynamics, which are important in correctly
identifying activities where complex body motions exist. Lastly, GCC improves the frequency description
to make it less susceptible to activities that involve coordinated motion across several sensor channels. The
following subsections describe the extraction of the features and evaluation of these in the proposed system.

4.3.1 Gaussian Mixture Model Coefficients
The Gaussian Mixture Model (GMM) was applied to extract statistical features of preprocessed inertial

sensor data, i.e., cluster means, weight vectors, and covariance matrices (N = 3). These parameters represent
distributions of activity signals and depict changes in important movements. Mean vectors are estimated
through Maximum Likelihood Estimation, weight vectors are optimized in terms of maximizing probability,
and covariance is used to reflect dispersion of signals in order to differentiate activities. The GMM formulas
are:

μi =
1

M

M
∑
j=1

x j, wi =
1
N

M
∑
j=1

P (x j ∣i) ,∑
i

1
M

M
∑
j=1
(x j − μi)2 (3)

where x j represents the sensor signal sensor, P(x j ∣i) represents the posterior probability for cluster i, M is
the number of samples, and N is the number of GMM components. GMM was applied to accelerometer,
gyroscope, and magnetometer signals (X, Y, Z axes) from all placements. Extracted values were normalized
for consistency across datasets. As shown in Fig. 4, GMM components visualize the statistical distribution
of activity features, improving classification reliability by capturing signal mean and variance.

Figure 4: Visualization of GMM coefficients—means, weights, and covariances—illustrating distributional variations
in (a) IM-WSHA and (b) ENABL3S datasets
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4.3.2 Mel Frequency Cepstral Coefficients
Mel-Frequency Cepstral Coefficients (MFCCs) were extracted from inertial sensor data (accelerometer,

gyroscope, magnetometer) to capture motion-relevant frequency features while minimizing signal noise.
MFCCs transform raw signals into compact, discriminative features suitable for activity recognition.

Two extraction methods were applied: the first computed MFCCs individually across general IMU
sensor channels, saving results as CSV files and visualizing them using heatmaps. The second processed
structured IMU data by aggregating MFCCs across predefined channels into a unified format for classifica-
tion. Both followed a common pipeline: Blackman windowing→ FFT→Mel-filtering→ log scaling→DCT.
The kth MFCC is computed as:

Ck =
N
∑
n=1

log (En) cos(πk (n − 0.5)
N

) (4)

here En represents the Mel-filtered energy of the nth frequency bin, and N is the total number of Mel-filters
applied. Thirteen MFCCs were extracted from each sensor axis (ax, ay, az, gx, gy, gz, mx, my, mz) and used
for classification.

To extract MFCC features, two implementations were applied to separate IMU datasets. The first
processed individual sensor channels (e.g., accelerometer, gyroscope) independently, saving and visual-
izing MFCCs as heatmaps. The second aggregated MFCCs from structured acceleration, gyroscope, and
magnetometer channels into a unified format. Both used a common pipeline: Blackman windowing, FFT,
Mel-filtering, and DCT. Fig. 5 shows MFCC heatmaps from both datasets. Fig. 5a represents the Walking
activity, with a consistent spectral pattern across time frames from a single IMU channel. Fig. 5b corresponds
to the Jump activity, showing short bursts of high spectral energy across multiple channels. The x-axis
indicates time frames, and the y-axis represents MFCC coefficients. Axis titles have been standardized.
Color intensity reflects spectral energy—higher values indicate stronger frequency components, often
linked to physical motion. These variations reveal patterns useful for classifying activities based on their
frequency characteristics.

Figure 5: Temporal evolution of MFCCs highlighting spectral characteristics in (a) IM-WSHA and (b) ENABL3S
datasets
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4.3.3 Spectral Entropy
Spectral entropy measures the complexity of sensor signals by quantifying how power is distributed

across frequencies. Periodic motions yield low entropy, while irregular movements result in higher values
due to increased randomness. It is computed by estimating the Power Spectral Density (PSD) via the Welch
method, normalizing it to form a probability distribution, and applying Shannon entropy:

Hs = −
M
∑
j=1

P ( f j) log P( f j) (5)

here P( f j) represents the normalized power at frequency f j, and M is the total number of frequency bins.
Entropy was extracted from all inertial channels (ax, ay, az, gx, gy, gz, mx, my, mz) to capture motion
variability, aiding in distinguishing structured from unstructured activities. A visualization of Spectral
Entropy values is displayed in Fig. 6, where different sensor channels show distinct movement complexity
patterns. Specifically, Fig. 6a represents the IM-WSHA dataset, while Fig. 6b corresponds to the ENABL3S
dataset. This comparative representation highlights the variability in spectral entropy across different sensors
in two independent datasets, emphasizing how sensor placement and dataset-specific factors influence
entropy characteristics. The intent behind Fig. 6 is to analyze inter-sensor variability rather than temporal
entropy fluctuations. While spectral entropy over time could reveal phase transitions in movement, this
visualization focuses on sensor-wise entropy distribution, aiding in feature selection and sensor placement
analysis. By integrating Spectral Entropy into the feature set, the system enhances its ability to classify
different activity patterns effectively.

Figure 6: Spectral entropy computed for each sensor in (a) IM-WSHA and (b) ENABL3S datasets, illustrating
variability across sensor channels

4.3.4 Quaternion-Oriented Features
Quaternion-based features provide rotational invariance, making them ideal for 3D inertial sensor data

analysis. Unlike Euler angles, quaternions avoid issues like gimbal lock, offering stable orientation tracking.
The process begins by normalizing accelerometers, gyroscope, and magnetometer readings. Accelerometer
data estimates gravity, while the magnetometer refines orientation using Earth’s magnetic field. These
references compute a quaternion:

Q = w + xi + y j + zk (6)
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where w is the scalar part, and x, y, z are the vector components representing the axis direction of rotation
movement. The sensor unit obtains normalized quaternions through this equation:

Qi =
1
∣∣ai ∣∣
(0, aix , ai y , aiz) (7)

where aix , ai y , aiz represent the normalized components of acceleration. Different sensor positions yield
quaternion values that can be compounded together in an extensive descriptor of orientation. Each sensor
offers an independent quaternion that describes local changes in orientation. To form a coherent presen-
tation, quaternions of various sensors are concatenated without compromising their rotational integrity.
This assembly ensures that motion patterns are well captured, resulting in a better descriptor for activity
recognition. Implementation derives quaternion-based features from sensors located at three distinct points
on the body to provide a better description of movement dynamics. Integration allows the system to
record full-body orientation variations, which minimizes interference or noise and enhances the accuracy
of classification. The operation aligns all quaternion readings in the same reference frame through sensor
fusion strategies to ensure that the resulting orientation descriptor is robust across various activities.

Fig. 7 shows quaternion components derived from two various datasets: Fig. 7a is for the IM-WSHA
dataset, and Fig. 7b is for quaternion values in the ENABL3S dataset. Both subfigures show time-varying
quaternion components obtained for various activities, displaying how orientation changes for differing
movement sequences. Having consistent visualization across datasets makes it easier to interpret, allowing
rotational motion trends to be compared directly.

Figure 7: Quaternion components over samples for (a) IM-WSHA and (b) ENABL3S datasets, illustrating orientation
variations during activities over time

4.3.5 Gammatone Cepstral Coefficients
Gammatone Cepstral Coefficients (GCCs), an advanced variant of MFCCs, improve inertial signal

processing and robustness in dynamic environments. The extraction process starts by segmenting the pre-
processed signal into overlapping frames to preserve temporal continuity. FFT is applied to obtain frequency
representations, followed by spectral energy mapping through 26 Gammatone filters—replacing traditional
triangular filters. A cubic transformation enhances sensitivity to high-frequency components. Then, Discrete



Comput Mater Contin. 2025;84(3) 5889

Cosine Transform (DCT) extracts decorrelated cepstral coefficients as GCC features, computed using:

Cm =
N−1
∑
n=0

Ec [n] cos [πm
N
(n + 1

2
)] (8)

C
′

m = log(1 + ∣Cm ∣) (9)

where Ec = ∣H( f )∣3 captures the cubic energy from the filter output. GCCs were extracted from all IMU
channels (accelerometer, gyroscope, magnetometer), normalized, and visualized as heatmaps to highlight
spectral activity patterns (see Fig. 8a,b). These features enhance class separability and improve recognition
performance, especially during high-frequency, dynamic motions.

Figure 8: GCC bar plots for (a) IM-WSHA and (b) ENABL3S datasets, illustrating frequency band variations over time
frames

4.4 Feature Fusion
Features extracted from inertial sensor data undergo a feature-level fusion using a common column

before optimization for information integration. Different characteristics of human movement become
observable through the combination of extracted features that include MFCC, GCC, spectral entropy,
quaternion-based motion descriptors, and GMM-based features. The combined multicomponent feature
vector maintains spectral and statistical data elements through sequential addition. The combined features
yield better separability through this approach, which benefits the next Bayesian optimization step, which
is to select optimal features and eliminate redundancies from the representation. The proposed method
fuses different features to boost model generalization capabilities which results in better classification per-
formance.

4.5 Bayesian Optimization
The system fuses features and applies Bayesian Optimization for feature selection, enhancing classifi-

cation accuracy. This optimization balances exploration and exploitation, iteratively refining feature subsets
to identify high-performing candidates. By selecting the most discriminative and noise-resilient features,
Bayesian Optimization further reduces the impact of sensor drift and transient motion artifacts, ensuring
that classification performance remains stable even in varying environmental conditions [22]. Bayesian
Optimization was employed to identify an optimal subset of fused features, balancing classification accuracy
with computational efficiency through sequential model-guided evaluations. The optimization goal took the
following form:

θ∗ = arg max
θ∈Θ

f (θ) + λu(θ) (10)
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where f (θ) represents the predictive mean of the objective function, u(θ) is the uncertainty estimate (mod-
eled using Gaussian Processes), and λ is a trade-off parameter between exploration and exploitation. The
objective function was designed to maximize classification performance by selecting the most informative,
non-redundant feature subsets. Bayesian Optimization iteratively evaluates feature combinations, guided by
an acquisition function that prioritizes improvements in recognition accuracy. A batch strategy was used
to assess multiple feature subsets per iteration, enhancing efficiency. The process began with 10 randomly
sampled subsets to explore the search space, followed by 50 iterations using the Expected Improvement (EI)
function with ξ = 0.01. Each iteration evaluated five subsets in parallel to reduce convergence time.

Simultaneously, CNN hyperparameters were optimized: learning rate was drawn from a log-uniform
range [0.0001, 0.01], while batch size, filter count, and kernel size were selected from {32, 64, 128} and
{3, 5, 7}, respectively. This joint optimization produced robust feature-CNN configurations. Fig. 9 shows
a 3D visualization of feature subset trajectories, with color-coded activity classes highlighting the model’s
discriminative performance. The approach effectively balances exploration and exploitation, resulting in
improved classification accuracy and system reliability.

Figure 9: Optimization results for the IM-WSHA dataset, highlighting performance improvements

4.6 Classification
A CNN was used to classify daily life activities by capturing spatial relationships among extracted

features.
Given an input feature map X of size Hin ×Win × Cin , convolution is performed with filters W of size

K × K × Cin × F and bias b of size F. The output feature map Y is computed as:

Ouvw =
K−1
∑
p=0

K−1
∑
q=0

C f−1

∑
r=0

G pqrwFu+p ,v+q ,r + βw (11)

The network uses successive convolutional layers with Rectified Linear Unit (ReLU) activations for non-
linear mapping and batch normalization to accelerate training. Max pooling reduces spatial dimensions while
preserving key features. A fully connected layer follows, with a softmax function converting outputs to a
probability distribution:

σ (y)m =
e ym

∑D
n=1 e ym

(12)
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where ym is the output from the previous layer, and e is Euler’s constant (2.7183). CNN received its
optimization through Bayesian Optimization which adjusted hyper-parameters like learning rate and batch
size together with the number of filters and kernel sizes to achieve better results.

Bayesian Optimization systematically explored the hyper-parameter space by constructing a proba-
bilistic model of the objective function, which aimed to maximize classification accuracy. The optimization
process iteratively refined the selection of hyper-parameters—such as learning rate, batch size, number of
filters, and kernel sizes—by evaluating their impact on model performance. An acquisition function guided
this process, balancing exploration of new hyper-parameter configurations and exploitation of promising
values. K-fold cross-validation was employed during training, and Bayesian Optimization dynamically
adjusted hyper-parameters based on validation performance, leading to improved accuracy and reduced
overfitting. Table 1 summarizes the CNN architecture and training configuration, with hyperparameters
reflecting the optimal values identified via Bayesian Optimization.

Table 1: CNN architecture and training hyperparameters

Layer Type Parameters Value
Input layer Input features Dimension Hin ×Win × Cin 64 × 64 × 1

Conv layer 1 Conv2D + ReLU kernal size, filters, stride, padding 3 × 3, 64 filters, stride 1, same
Batch normalization Normalization – Applied after Conv Layer 1

Max pooling 1 Pooling Pool size, stride 2 × 2, stride 2
Conv layer 2 Conv2D + ReLU kernal size, filters, stride, padding 3 × 3, 128 filters, stride 1, same

Batch normalization Normalization – Applied after Conv Layer 2
Max pooling 2 Pooling Pool size, stride 2 × 2, stride 2
Flatten layer Flatten – Converts to 1D

Dense Fully connected Number of units 256 units
Dropout Regularization Dropout rate 0.5

Output layer Softmax Number of output classes 11
Training epochs Hypermeters – 50

Learning rate Hyperparameter (log-uniform: [0.0001, 0.01]) 0.001
Batch size Hyperparameter From discrete set {32, 64, 128} 64
Optimizer Training parameter Optimization algorithm Adam

Loss function Training parameter Multi-class classification loss Categorical cross entropy

5 Experimental Setup
Experiments were conducted on a Windows 11 Pro system with an Intel Core i7 (2.40 GHz), using

Python and libraries such as TensorFlow, NumPy, Pandas, and Scikit-learn. An n-fold cross-validation was
applied to evaluate model performance, achieving high accuracy on the IM-WSHA and ENABL3S datasets.
Data acquisition and evaluation methods are detailed in later sections.

6 Experimental Results
We evaluated the proposed IS-DAR using the IM-WSHA and ENABL3S datasets, employing N-fold

cross-validation where each data instance contributed to both training and validation. The confusion
matrices in Fig. 10a,b show the model’s performance, with a mean accuracy of 93.0% on IM-WSHA and
92.0% on ENABL3S, reflecting the model’s generalization ability.
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Figure 10: Confusion matrices showing accuracy for the (a) IM-WSHA (b) and ENABL3S datasets

To further validate the effectiveness of our proposed hybrid pipeline, we compare its classification
accuracy with recent state-of-the-art HAR models. Our method outperforms existing approaches in both
datasets. As shown in Table 4, our method outperforms existing approaches in both datasets. Specifically, on
the ENABL3S dataset, our system achieves 92.0% accuracy, surpassing the CNN-based classification system
(90.93%) and the LDA-based classification system (85.78%) reported in [23]. Similarly, for the IM-WSHA
dataset, our approach achieves 93.0% accuracy, outperforming the RPLB + Stochastic Gradient Descent
system (83.18%) and the RPLB + Adagrad system (81.73%) reported in [24].

6.1 Precision, Recall, and F1 Score for IS-DAR
This study has included precision, recall, and F1-score as evaluation metrics. The IM-WSHA and

ENABL3S datasets’ precision, recall, and F1 score are displayed in Tables 2 and 3, respectively. Finally, Table 4
shows the comparison of proposed system with other state-of-the-art systems over the IM-WSHA and
ENABL3S datasets. The bold text in Tables 2 and Tables 3 indicates the dataset classes, while the bold
numerical values at the end represent the average precision, recall, and F1 score.

Table 2: Classification report on the IM-WSHA dataset

Classes Precision Recall F1-score
Using computer 0.92 0.91 0.92

Phone
conversation

0.90 0.92 0.91

Vacuum cleaning 0.91 0.94 0.93
Reading book 0.92 0.90 0.91
Watching TV 0.94 0.90 0.92

Ironing 0.96 0.97 0.97
Walking 0.98 0.95 0.96

(Continued)
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Table 2 (continued)

Classes Precision Recall F1-score
Exercise 0.95 0.95 0.95
Cooking 0.93 0.92 0.93
Drinking 0.91 0.92 0.92
Brushing 0.92 0.95 0.94
Average 0.93 0.93 0.93

Table 3: Classification report on the ENABL3S dataset

Classes Precision Recall F1-Score
Stand still 0.93 0.95 0.94

Squat and stand up 0.92 0.91 0.91
Jump 0.91 0.88 0.89

Raise right hand 0.93 0.94 0.94
Jogging 0.91 0.92 0.92
Average 0.92 0.92 0.92

Table 4: Comparisons of the proposed system with other systems

Methods IM-WSHA (%) ENABL3S (%)
CNN [23] – 90.93
LDA [23] – 85.78

RPLB + SGD [24] 83.18 –
RPLB + Adagrad system [24] 81.73 –

Standard HMM [2] 87.15 88.35
Modified HMM-based [2] 92.65 92.50

Proposed system mean accuracy (%) 93.00 92.00

6.2 Computational Complexity and Feature Selection Comparison
Despite its multi-stage design, the proposed method remains efficient—Bayesian Optimization achieves

effective feature selection with low execution time (4.2 s) and memory usage (75 MB), as shown in Table 5.
Compared to PCA, SVD, and IDA, it offers better accuracy while remaining practical for real-world use.

Table 5: Computational complexity comparison of feature selection methods

Feature selection method Computational complexity Execution time (s) Memory usage Accuracy
Bayesian optimization O (n log n) 4.2 75 93.0

PCA O (n2d + d3) 5.8 82 89.7
SVD O (nd2) 6.5 95 88.9
IDA O (n3) 8.1 110 87.3
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7 Conclusion and Future Works
The proposed methodology efficiently detects locomotor movements through inertial sensors with

a robust feature extraction, processing, and classification flow. It uses Chebyshev filtering, Blackman
windowing, and extracts GMM, MFCC, spectral entropy, quaternion, and GCC features. The best features are
shortlisted through Bayesian Optimization followed by classification using a CNN. The system outperforms
the existing approaches on IM-WSHA and ENABL3S datasets, and it is extremely promising for use in
real-time movement monitoring, medical care, and sports.

Although it is true that the process involves costly computations such as feature extraction and
classification, its appropriateness relies on application needs in the real world. When high accuracy and
robustness are more important than low-latency processing—such as diagnostics for medicine, cybersecurity
intrusion detection, or financial fraud detection—the cost of processing is reasonable. Sensor drift is a
potential issue on long-term deployment, although low degradation across a period of time indicates that
the process is stable for extended use.

Although we prioritize performance, interpretability is especially important for applications in health-
care, security, and behavior monitoring. To facilitate this, we use hand-crafted features—spectral entropy,
quaternion descriptors, and GMM statistics—that possess well-understood physical meaning with respect
to body movement. These transparently inform activity signals increase user trust. For greater model
explainability, we will incorporate post-hoc explanation mechanisms such as SHAP and LIME, particularly
to elucidate CNN predictions in uncertain or high-consequence situations.

Even if the model is robust on IM-WSHA and ENABL3S, generalizability across unobserved datasets
as well as different sensor setups is crucial for practical applications. Cross-dataset evaluation, domain
adaptation, and tests with different sensor placements will be part of the next work to evaluate and extend
the portability and flexibility of the model.

Further research will similarly investigate dataset fusion across different sensor placements for
greater system robustness. Transformer-based models integrated with hybrid deep pipelines of mod-
els are predicted to increase accuracy and robustness. Exploration of light-weight architectures such
as MobileNetV3, EfficientNet-Lite, or SqueezeNet should lower computing requirements for embedded
deployment. Attention-based temporal encoders embedded within CNN or LSTM architectures can better
capture long-range dependency modeling. Real-time monitoring of human activities is even more viable by
optimizing the system for smartphone, wearable, or microcontroller edge deployment through the use of
model quantization and hardware-aware neural architecture search. Lastly, integration with self-supervised
learning or semi-supervised learning using multimodal inputs—even physiological signals—can increase
flexibility under limited-label-availability resource-constrained environments.
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