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ABSTRACT: Semantic segmentation has made significant breakthroughs in various application fields, but achieving
both accurate and efficient segmentation with limited computational resources remains a major challenge. To this
end, we propose CGMISeg, an eflicient semantic segmentation architecture based on a context-guided multi-scale
interaction strategy, aiming to significantly reduce computational overhead while maintaining segmentation accuracy.
CGMISeg consists of three core components: context-aware attention modulation, feature reconstruction, and cross-
information fusion. Context-aware attention modulation is carefully designed to capture key contextual information
through channel and spatial attention mechanisms. The feature reconstruction module reconstructs contextual infor-
mation from different scales, modeling key rectangular areas by capturing critical contextual information in both
horizontal and vertical directions, thereby enhancing the focus on foreground features. The cross-information fusion
module aims to fuse the reconstructed high-level features with the original low-level features during upsampling,
promoting multi-scale interaction and enhancing the model’s ability to handle objects at different scales. We extensively
evaluated CGMISeg on ADE20K, Cityscapes, and COCO-Stuff, three widely used datasets benchmarks, and the
experimental results show that CGMISeg exhibits significant advantages in segmentation performance, computational
efficiency, and inference speed, clearly outperforming several mainstream methods, including SegFormer, Feedformer,
and SegNext. Specifically, CGMISeg achieves 42.9% mloU (Mean Intersection over Union) and 15.7 FPS (Frames
Per Second) on the ADE20K dataset with 3.8 GFLOPs (Giga Floating-point Operations Per Second), outperforming
Feedformer and SegNeXt by 3.7% and 1.8% in mIoU, respectively, while also offering reduced computational complexity
and faster inference. CGMISeg strikes an excellent balance between accuracy and efficiency, significantly enhancing
both computational and inference performance while maintaining high precision, showcasing exceptional practical
value and strong potential for widespread applications.

KEYWORDS: Semantic segmentation; context-aware attention modulation; feature reconstruction; cross-information
fusion

1 Introduction

Semantic segmentation is a core task in computer vision and is widely applied in key areas such as
autonomous driving, medical image analysis, and remote sensing monitoring. Early methods for semantic
segmentation primarily relied on traditional algorithms, including grayscale segmentation, thresholding
segmentation, and conditional random fields, among others. However, with ongoing improvements in deep
learning techniques, convolutional neural network (CNN)-based approaches, such as FCN [1], DeeplabV3+
[2], and HRNet [3], have made significant progress in segmentation tasks. More recently, the introduction
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of Transformer-based architectures [4,5] has further boosted segmentation performance. Although progress
has been made, most existing approaches still demand considerable computational resources, which hinders
their deployment in environments with limited hardware capabilities. Thus, achieving efficient segmentation
under such constraints remains a critical challenge.

To address this challenge, recent research has introduced several lightweight, efficient models designed
to reduce computational resource consumption while maintaining high segmentation accuracy. These meth-
ods typically focus on optimizing model architectures, lowering computational complexity, or employing
specific training strategies to enhance inference speed and minimize memory usage. For example, Xu et al.
[6] proposed a three-branch architecture that balances speed and performance, allowing real-time semantic
segmentation. FeedFormer [7] reengineered the transformer decoder by introducing a feature-enhancing
module to replace the self-attention mechanism, achieving high precision and rapid inference. SegNeXt [8]
took advantage of multiscale convolutional features to drive spatial attention, demonstrating that simple and
efficient convolutional encoders remain highly competitive in both performance and speed.

Although existing lightweight models strike a certain balance between efficiency and accuracy, they
fail to fully leverage multi-scale contextual information, limiting their ability to locate foreground objects
and optimize boundaries in complex scenes. Furthermore, the lack of effective deep feature synchronization
and sharing mechanisms results in an insufficient fusion between low-level details and high-level semantic
features, weakening the contextual awareness of multi-scale feature representations and causing boundary-
blurring, particularly in the segmentation of complex edges or irregularly shaped objects. In light of
these constraints, this paper introduces a Context-Guided Multi-Scale Interaction Semantic Segmentation
Network (CGMISeg) to improve segmentation performance while maintaining computational efficiency.
CGMISeg incorporates complex contextual relationships and local attention through channel and spatial
attention mechanisms, while introducing the designed feature reconstruction and cross-information fusion
modules to capture multi-scale contextual dependencies and enable cross-scale interaction. As illustrated
in Fig. I, CGMISeg significantly improves 59 segmentation performance while maintaining low compu-
tational complexity, achieving a better 60 trade-oftf between performance and computational efficiency
compared to existing methods. Our main contributions are as follows:
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Figure 1: Performance and computational complexity comparison on the ADE20K validation set. Compared to
previous methods, our CGMISeg achieves a better balance between performance and computational complexity

1. An efficient context-aware attention modulation is proposed, which dynamically adjusts attention
weights in both spatial and channel dimensions. This module captures salient features at different scales,
enabling the model to focus more effectively on relevant contexts.
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2. A feature reconstruction module is introduced to enhance foreground localization by capturing
contextual dependencies across multiple scales.

3. We propose a novel feature fusion method, cross-information fusion, which integrates refined
features from the reconstruction module with low-level features from the backbone, enabling effective
cross-scale interaction.

4. We construct CGMISeg for 2D semantic segmentation tasks. Compared to current methods,
CGMISeg demonstrates superior overall performance, achieving an excellent balance between performance
and computational efficiency.

2 Related Work
2.1 Semantic Segmentation

Semantic segmentation is an intensive prediction task in computer vision, aiming to assign a category
label to each pixel in an image. The pioneering work of FCN [I] demonstrated that end-to-end pixel-
level classification could be achieved using a fully convolutional network, laying the foundation for the
application of deep learning in semantic segmentation. Since then, many methods based on convolutional
neural network (CNN) have improved FCN from various perspectives. For example, Refs. [3,9] expanded
the receptive field by introducing different forms of convolution operations; PSPNet [10] enhanced global
scene understanding by collecting multi-scale semantic information; and researchers developed various
attention modules [11,12] to improve the model’s focus on key features. Recently, transform-based methods
have shown tremendous potential. SETR [13] replaces the traditional FCN encoder-decoder structure with a
transformer architecture, learning to efficiently capture contextual information through global self-attention.
Mask2Former [14] transforms pixel-wise semantic segmentation into mask classification based on the trans-
former architecture. RTFormer [15] and HRFormer [16] have made further advances in optimizing encoder
structures, improving the overall performance of the model. While these approaches have significantly
advanced the field and improved task performance, these methods often come with high computational
complexity and large parameter counts, which may become bottlenecks in practical applications, limiting
their deployment and use on resource-constrained devices.

2.2 Efficient Semantic Segmentation

Efficient semantic segmentation aims to achieve rapid and accurate pixel-level classification in resource-
constrained environments, prioritizing the minimization of computational load, parameter numbers, and
inference time. CNN-based approaches have been widely adopted for efficient semantic segmentation. These
methods often employ specific architectural designs to balance performance and computational cost. For
instance, the BiSeNet series [17,18] utilizes a dual-branch architecture and feature fusion strategies to balance
performance and efficiency. STDCNet [19] proposes an enhanced framework by rethinking the BiSeNet
structure, removing the complex spatial branch and introducing an STDC-guided module to extract multi-
scale information. DFANet [20] reduces parameter numbers through sub-network cascading and multi-scale
feature propagation, while maintaining a sufficiently large receptive field. SegNeXt [8] employs efficient
convolution operators to capture spatial attention, thereby improving segmentation accuracy and optimizing
computational efficiency. In parallel, transformer-based methods have emerged as competitive alternatives in
efficient semantic segmentation. SeaFormer [21] constructs an efficient backbone network for segmentation
by compressing and enhancing an axial transformer, enhancing its cost-effectiveness. SegFormer [22]
integrates a transformer architecture with lightweight multi-layer perceptron (MLP) decoders, avoiding
the need for complex decoder designs while generating powerful feature representations. Feedformer [7]
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optimizes computational efficiency by relocating the encoder module to the position of self-attention
modules within the decoder. Furthermore, some approaches [23,24] achieve efficient semantic segmentation
by reducing learnable parameters and simplifying the training process through pixel-wise clustering or
contrastive learning. However, existing methods still encounter challenges in balancing efficiency and
accuracy. These challenges can be categorized into three primary areas: (1) Multi-branch architecture issues:
Methods like the BiSeNet series, STDCNet, and DFANet enhance receptive fields through multi-branch
designs. While effective in expanding receptive fields, the multi-branch structure introduces computational
and memory overhead. This overhead hinders further model compression and improvements in inference
speed. Furthermore, feature fusion in these architectures faces challenges of semantic inconsistency and scale
variations, potentially leading to redundancy or information loss, thus affecting segmentation performance.
(2) Attention mechanism limitations: Approaches such as SegNeXt, SeaFormer, and SegFormer leverage
lightweight attention mechanisms or Transformers to improve global context understanding. However, the
computational cost associated with these mechanisms remains substantial, especially with high-resolution
inputs. (3) Contextual imbalance: Many methods struggle to simultaneously capture fine-grained local
details and broad global context, which leads to degraded segmentation performance in complex scenes or
with indistinct boundaries. To address these issues, we introduce the Context-Aware Attention Modulation
(CAAM) and Feature Refinement Module (FRM) to effectively exploit multi-scale contextual dependencies.
Furthermore, we propose the Cross Information Fusion Module (CIFM) for efficient cross-layer information
integration. Specifically, addressing the multi-branch structure problem, the CIFM module achieves efficient
information fusion between different layers. By integrating these lightweight modules, our CGMISeg
achieves a balance between performance and computational overhead without requiring extra paths or
complex structures.

3 Proposed Methods

Semantic segmentation aims to partition an image into regions with the same semantic features and
classify each pixel. Formally, for a given input image I ¢ R¥*">3, the objective is to generate a segmentation
map S € {0,1,..., K}V, where K denotes the number of semantic categories and each element S(i, ;)
in the matrix represents the category label of the pixel at position (i, j). We follow a classic encoder-
decoder architecture to achieve this and design a context-guided multi-scale interactive network for efficient
semantic segmentation. This section provides a detailed description of the proposed CGMISeg network
structure. Section 3.1 covers the overall architecture, followed by Sections 3.2 and 3.3 discuss contextual
feature reconstruction and multi-scale feature interaction.

3.1 Overall Architecture

The overall structure of CGMISeg is shown in Fig. 2a. The backbone network first extracts features from
each input image, generating feature maps at scales of 1/4, 1/8, 1/16, and 1/32. The feature maps at scales
of 1/8, 1/16, and 1/32 are then fed into the Contextual Feature Reconstruction module, which enhances the
overall understanding of the scene context through context-aware attention modulation and utilizes a feature
reconstruction module to generate reconstructed features that capture multi-scale context as well as axial
global context information. The reconstructed features are subsequently fused with shallow features from
the backbone via the Cross-Information Fusion module, thereby enhancing the model’s ability to capture
fine-grained details and strengthening its overall semantic representation.
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Figure2: (a) The overall architecture of CGIMSeg. (b) Illustration of the proposed context-aware attention modulation.
Features from different stages, denoted as [F,, F3, F4], are fed into the contextual feature reconstruction module to
capture multi-scale contextual information. The reconstructed features are then interactively fused with shallow features
from the backbone network via the CIFM, and the outermost reconstructed feature Fy is ultimately used to generate
the segmentation prediction

3.2 Contextual Feature Reconstruction

In semantic segmentation tasks, contextual information always plays a crucial role. Previous studies
[25,26] have shown that effectively utilizing contextual information can significantly improve segmentation
performance, as it helps the model better understand the scene structure and the relationships between
objects, thereby enhancing the accuracy of target object localization and differentiation. In this study, we have
designed a contextual feature reconstruction module to capture global contextual information and enhance
the focus on foreground features. This module consists of two core components: Context-Aware Attention
Modulation (CAAM) and the Feature Reconstruction Module (FRM).

3.2.1 Context-Aware Attention Modulation

Given that the features extracted by the backbone network have strong locality, lack global under-
standing of the scene context and effective modeling of relationships between local features, we introduce
Context-Aware Attention Modulation (CAAM) to enhance feature representation in both channel and spatial
dimensions. In Fig. 2b, we present the specific design of CAAM. Specifically, for the four stages of features
F; e REXWixCi ywhere i e {1,2,3,4}, extracted by the encoder through stepwise downsampling, we discard
F, and select [F,, F5, F4] as input. In CAAM, the input features are processed through two parallel branches.
In the first branch, spatially adaptive average and max pooling are employed to distill the most informative
spatial features from the input. Each pooled feature is then projected through a 1 x 1 convolution into a
lower-dimensional space:

/ _ . )
Fyyg,i = Proj (AAP(F))) 0
Fr,nax,i = PI‘Oj(AMP(F,'))

where i € {2,3,4}, AAP and AMP represent adaptive average pooling and adaptive max pooling operations,
respectively. Proj is a linear transformation implemented by a 1 x 1 convolution, which aims to reduce the
channel dimension of the input features to 1/r of the original channel size. Following common channel
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attention settings [27,28], we set the reduction factor r to 16 to reduce both computational parameters
and complexity.

Subsequently, the features are passed through a ReLU activation function and then restored to the
original channel dimension via another 1 x 1 convolution. The two restored feature maps are then summed
and passed through a Sigmoid activation function to compute the importance weight of each channel:

a m.

a =0 (C; (ReLU (F’Vg,i)) +Cy (ReLU (Fpayi))) )

where C; and C, represent two independent 1x 1 convolutions, and ¢ denotes the Sigmoid activation
function.

In the second branch, global contextual information is extracted by applying both average pooling
and max pooling across the channel dimension of the input features. The resulting feature maps are
concatenated along the channel dimension and passed through a 7 x 7 convolution, which enhances local
context awareness and adjusts the channel dimension to match that of the original input. Finally, we apply a
Sigmoid activation function to generate the spatial attention weights:

B = 0(Cru7([CAP(F;), CMP(F;)])) 3)

where CMP and CAP represent the max and average pooling operations performed along the channel
dimension, respectively.

After obtaining the channel attention weight « and spatial attention weight f3, the context features are
computed as:

Ff=a@F, @B +F (4)

where © represents element-wise multiplication under the broadcasting mechanism.

3.2.2 Feature Reconstruction Module

After applying context-aware attention modulation, we obtain the contextual features Ff € RH:*WixCi,

where i € {2,3,4}. Subsequently, we introduce a Feature Reconstruction Module (FRM), which not only
captures multi-scale contextual information and enhances attention to foreground features but also adopts
a lightweight design to address the constraints of limited computational resources. Fig. 3 depicts a graphical
representation of FRM.

Specifically, adaptive average pooling is initially used on the low-level features F5 and Fj, resizing them
to align with the resolution of the high-level feature Fy:

Ff/ = AAP(F;,output_size), i=2,3 (5)

where output_size represents the resolution of the feature Fj, denoted as Hy x W;. Then, FZC’, F3C', and Fy
are fed into the feature reconstruction module. These three different-level features are mapped to a higher-
dimensional space through a channel embedding operation. Within this high-dimensional space, the two
low-level features are first aggregated through summation and then activated to produce attention weights,
which guide the integration with high-level features. This fusion process provides more spatial details to the
high-level features, compensating for their lower resolution and lack of detail, thereby enabling the model to
accurately identify object contours and details. The computation process can be expressed by the following
formulas:

(F ,F5,F) — CE(.) - (F,, F3, Fy)
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- 1 - -
F,=F0 gReLU6(F2 +F3) (6)

where CE(.) denotes the operation of mapping the channel dimension to a higher-dimensional space. Then,
a 1x 1 convolution is employed to restore Fj to its initial channel dimension. For the adjusted features,
horizontal average pooling P, and vertical average pooling P, are applied to capture global context from
both directions, resulting in horizontal and vertical vectors. These two vectors are then combined through
broadcasting to generate an integrated feature F;. Under the influence of the broadcasting mechanism,
the foreground features of the horizontal and vertical vectors are fused, forming a rectangular perception
area that enhances the focus on the foreground features. The following formulas illustrate the computation
process:

Fil = COHlel(Fé)

7
Ff = Py(FY) @ Py (FY) 7

Then, F; is processed through a 3 x 3 convolution to extract richer local details. Batch normalization
and a multi-layer perceptron (MLP) are then applied to refine the features further. The final reconstructed
feature FR is obtained by incorporating a residual connection, defined as:

FR = MLP(BN(Convs,;(F}))) + F: (8)

where Fp is the reconstructed feature output by FRM, and MLP refers to a multilayer perceptron consisting
of two layers of 1 x 1 convolutions.

Channel Embedding ]

Y

Figure 3: Illustration of the feature reconstruction module (FRM)

3.3 Multi-Scale Feature Interactive

In the contextual feature reconstruction module, we obtain the reconstructed feature Fy through
context-aware attention modulation and the feature reconstruction module. At this stage, the reconstructed
feature is more focused on foreground features under the guidance of contextual information, better reflect-
ing global semantic information. However, directly using this feature for subsequent decoding operations
may lead to a loss of foreground feature details or insufficient local information. To further enhance the
model’s capability, fusing features from different scales is crucial. In light of this, we propose a Cross-
Information Fusion Module (CIFM) to facilitate multi-scale feature interaction. The module first performs
an initial cross-scale fusion by aligning and adding high-level and low-level features. Subsequently, it extracts
local details and global contextual information through separate local and global branches. Next, the local
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and global features are fused again, and the contribution of low-level and high-level features is dynamically
adjusted based on a spatial importance map, ultimately generating the fused feature. In this section, we will
detail the design of CIFM and explain how it transforms the reconstructed feature into a pixel-level output
containing semantic information.

3.3.1 Cross-Information Fusion Module

The cross-information fusion module is designed to enable effective interaction between features from
neighboring stages. As shown in Fig. 4, the module fuses features from high-level and low-level scales.
Precisely, we first adjust the high-level features to the same dimensions as the low-level features through
convolution and upsampling. Then, the high-level features are directly added to the low-level features for
initial feature fusion:

F;, = Up(Conviy; (Fp))

/ %)
Fi=F +F,
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Figure 4: Illustration of the proposed cross-information fusion module (CIFM)

Subsequently, the initial fused feature F; undergoes al x 1 convolution for channel embedding, adjusting
the number of channels to twice its original value to enhance the feature representation ability. The
adjusted feature Fj is then fed into the global and local branches to capture global information and local
details, respectively.

In the local branch, the input feature first undergoes a channel shuffle operation, which divides the
feature into multiple groups along the channel dimension. Each group is then processed with depthwise
separable convolutions to mix and fuse intragroup channel information. After that, a 3 x 3 convolution
extracts local features and restores the number of channels to match F;. The computation of the local branch
is formulated as:

Fiocal = ConV3><3(CS(FI)) (10)

where Fj,,; is the output feature of the local branch, and CS represents the channel shuffle operation.

In the global branch, for the input features, three separate 3 x 3 depthwise separable convolutions
are used to generate the Q, K, and V matrices, respectively. The attention map is computed through the
interaction between Q and K, and then normalized by Softmax to produce the attention distribution, which
is used to weight the information in the V matrix. The result is then combined with the feature F; via residual
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connection, and the original channel dimension is restored usinga 1 x 1 convolution. The output of the global
branch is defined as:

KT
Fqiopal = Convyyg (V-Softmax(Qy )) +FI' 11)
where Fgj,441 denotes the output feature of the global branch, and y is a learnable scaling parameter used to
adjust the magnitude of matrix multiplication.

After obtaining the outputs from both local and global branches, the two features are summed to obtain
the secondary fused feature Fs. Subsequently, the resulting secondary fused feature Fg is concatenated with
the initial fused feature F; along the channel dimension. Then, a channel shuffle operation is applied to
interleave and reorder the channels of both features, followed by a 7 x 7 grouped convolution to extract
inter-channel contextual relationships while restoring the channel dimension to match that of Fs. Finally, a
Sigmoid activation function is employed to generate the spatial importance map. The specific computational
formula is as follows:

W = 0(GCrx7(CS([F1, Fs]))) (12)

where o denotes the Sigmoid activation function, and GC;.; represents the 7 x 7 grouped convolution
operation.

After obtaining the spatial importance map, we dynamically adjust the contributions of F; and F, based
on the spatial importance map, thereby better balancing the fusion of local details and global semantic
information. Finally, the final fused feature can be computed as follows:

Fiusea=Fs+ W -Fi+(1- W) -F, (13)

where Fy,.q denotes the final fused feature output by CIFM, and W serves as the weight coefficient that
enables adaptive adjustment of the fusion ratio between low-level and high-level features at different spatial
locations, thereby optimizing the feature fusion performance.

3.3.2 Feature Aggregation

Following the contextual feature reconstruction, the reconstructed deep features FX are obtained. We
then employ the proposed cross-information fusion module (CIFM) to aggregate the reconstructed features
with the shallow features from the backbone network, constructing a feature pyramid network. CIFM fuses
information from different scales by inputting the reconstructed deep features and the shallow features from
the previous stage of the backbone network for feature fusion, transmitting global semantic information
from the deep layers to the shallow layers. Meanwhile, the output of CIFM serves as the reconstructed
features for the next stage. The computation process is as follows:

F{ = CIFM(F;, F(,yy), =23 (14)

In the upsampling feature aggregation stage, we still do not consider the shallowest feature F; extracted
by the backbone network. This is because the shallowest features typically have higher spatial resolution but
are weak in semantic information. Therefore, directly using them for cross-scale feature fusion may introduce
noise or overfitting risks to the final prediction results. Instead, we prioritize using intermediate and deep
features with richer semantic information, which have aggregated substantial context and help improve the
model’s segmentation accuracy. Finally, we use the highest-resolution reconstructed feature FX to compute
the final prediction. FX undergoes information fusion through feature embedding and a depthwise separable
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convolution. The fused features are then processed through a classification convolution and upsampling
operation to generate the final segmentation map. The computation process is expressed as follows:

M = Up (ClassConv (DWconv (CE(E})))) (15)

where CE(.) is the same as above, representing channel embedding, which adjusts the number of channels
using a 1 x 1 convolution layer. DWconv represents the 1 x 1 depthwise separable convolution. ClassConv is
the classification convolution, whose output channel number corresponds to the number of segmentation
classes. Up represents the upsampling operation. M represents the predicted segmentation mask, which is
used during training to compare with the ground truth mask in order to calculate the loss and guide the
model’s optimization. The calculation formula is as follows:

1 1 H W
Ltrain:EZHX WZZXCE(MU) Yl]) (16)

i=1 j=1

where B represents the number of images in the training batch, /.. is the cross-entropy loss, with Y denoting
the ground-truth annotations.

4 Experiments
4.1 Experimental Setup

Datasets. We performed extensive experiments on three widely used segmentation datasets—ADE20K
[29], Cityscapes [30], and COCO-Stuft [31]-to assess the performance of our CGMISeg. ADE20K contains
over 20,000 images from various environments, covering 150 categories, including 100 object categories
and 50 background categories. Cityscapes is a segmentation dataset for urban scenes, containing 5000
finely annotated images across 19 categories. COCO-Stuft is built upon the COCO dataset, with pixel-level
annotations for 164K images, and includes 172 categories.

Implementation Details. We implemented the code based on the publicly available mmsegmen-
tation library [32] and used EfficientFormerV2 [33] as the encoder backbone. The model variants
CGMISeg-T, CGMISeg-B, and CGMISeg-L correspond to EfficientFormerV2-S1, EfficientFormerV2-S2, and
EfficientFormerV2-L, respectively. We employed the AdamW optimizer and a Poly learning rate adjustment
strategy during training. The feature embedding dimension for CGMISeg-T is 128, while for CGMISeg-B
and CGMISeg-L, it is 256. For training, we adopt dataset-specific hyperparameter configurations. On the
ADE20K dataset, the learning rate is set to 0.00012, with input images resized to 512 x 512, a batch size of
16, and weight decay of 0.05. The model is trained for a total of 160,000 iterations. For Cityscapes, we use a
learning rate of 0.0007 with image dimensions of 1024 x 1024, maintaining the same batch size and weight
decay as ADE20K, and training proceeds for 90,000 iterations. On the COCO-Stuff benchmark, the learning
rate is adjusted to 0.0001, the weight decay is set to 0.01, input images are sized at 1024 x 512, and a smaller
batch size of 8 is used. The training on this dataset is conducted over 10,000 iterations.

4.2 Comparisons with the State-of-the-Art Methods

In this section, we compare our method with various state-of-the-art models on the ADE20K,
Cityscapes, and COCO-Stuft. We report the model’s performance in three different variants, namely the
tiny model, the base model, and the large model. The results are presented in Table 1. For the tiny model,
our proposed CGMISeg-T achieves segmentation performance of 42.9% and 41.7% mIoU on ADE20K and
COCO-Stuff, respectively, with only 6.3M parameters and 3.8 GFLOPs of computation. For the base model,
CGMISeg-B improves upon the popular PEM-STDC2, achieving a 0.2% improvement on the ADE20K
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dataset (45.2% vs. 45.0%) and a 0.4% improvement on COCO-Stuff (42.6% vs. 42.2%) compared to SegNeXt-
S. Although CGMISeg-B has a slightly lower segmentation performance of 80.7% compared to SegNeXt-S’s
81.3% on the Cityscapes dataset, CGMISeg-B has fewer parameters and only half the computational cost of
SegNeXt-S. Furthermore, for the large-scale model, CGMISeg-L outperforms the previous methods on all
three datasets, with mIoU scores of 48.1%, 82.3%, and 45.8%, respectively. CGMISeg-L offers better efficiency
in terms of both parameter count and computational cost, with only 27M parameters and computational
costs of 14.4 and 121.2 GFLOPs for two different input sizes, which is significantly lower than other models of
similar scales. These advantages enable CGMISeg-L to achieve high accuracy with improved computational
efficiency and reduced resource consumption, making it ideal for resource-limited applications.

Table 1: Comparison with state-of-the-art methods is performed on the ADE20K, cityscapes, and COCO-Stuft
benchmarks. The computational cost in GFLOPs is measured using input resolutions of 512 x 512 for ADE20K and
COCO-Stuff, and 2048 x 1024 for cityscapes

Model Backbone Params (M) ADE20K Cityscapes COCO-Stuff
GFLOPs mIOU GFLOPs mIOU GFLOPs mIOU
DeepLabV3+ [2] MobileNetV2 15.4 69.4 34.0 - - - -
Segformer-B0 [22] MiT-B0 3.8 8.4 374 125.5 76.2 8.4 35.6
FeedFormer-B0 [7] MiT-B0 4.5 7.8 39.2 107.4 77.9 - -
SegNeXt-T [8] MSCAN-T 4.3 6.6 41.1 50.5 79.8 6.6 38.7
CGMISeg-T EFV2-§1 6.3 3.8 42.9 32.8 79.8 3.8 41.7
HRFormer-S [16] MobileNetV2 13.5 109.5 44.0 835.7 80.0 109.5 379
Segformer-Bl [22] MiT-B1 13.7 15.9 42.2 243.7 78.5 159 40.2
SegNeXt-S [8] MSCAN-S 13.9 15.9 443 124.6 81.3 15.9 42.2
FeedFormer-LVT [7] LVT 4.60 10.0 41.0 124.6 78.6 - -
PEM-STDC2 [34] STDC2 21.0 19.3 45.0 118.0 79.0 - -
CGMISeg-B EFV2-S2 13.3 72 45.2 62.2 80.7 13.3 42.6
Segformer-B2 [22 MiT-B2 27.5 62.4 46.5 7171 81.0 62.4 44.6
LRFormer-T [35] LR-Former 13.0 17.0 46.7 122.0 80.7 17.0 439
Mask2Former [14] Swin-T 47.0 74.0 47.7 - 82.1 - -
FeedFormer-B2 [7] MiT-B2 29.1 42.7 48.0 522.7 8L.5 - -
PEM-R50 [34] ResNet50 35.6 46.9 45.5 240.0 79.9 - -
CGMISeg-L EFV2-L 27.0 14.4 48.1 121.2 82.3 13.3 45.8

In addition to comparisons in segmentation performance, parameter count, and computational com-
plexity, we also focus on the inference speed and latency of the proposed lightweight model CGMISeg-T
to evaluate its practical potential for deployment on resource-constrained devices. As shown in Table 2,
without using any dedicated software or hardware acceleration, CGMISeg-T achieves an inference latency
of 34.9 ms and an inference speed of 15.7 FPS when processing 512 x 512 images on a single RTX 2080Ti
GPU, outperforming the other four lightweight methods. Under the same testing conditions, DeepLabV3+,
Segformer-B0, FeedFormer-B0, and SegNeXt-T all exhibit either higher latency or lower frame rates. For
instance, DeepLabV3+ shows an average inference latency of 103.5 ms and a frame rate of 7.2 FPS for the
same input size. Although Segformer-B0, FeedFormer-B0, and SegNeXt-T have slightly fewer parameters
than CGMISeg-T, they still lag behind in inference speed. In contrast, CGMISeg-T maintains competitive
segmentation accuracy while effectively balancing computational resource consumption and inference
efficiency, demonstrating superior inference performance and hardware friendliness. These results verify its
potential for deployment in edge devices and real-time applications.
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Table 2: Comparison with other methods in terms of inference latency and speed

Method Backbone Latency (ms)| Speed (FPS)?t
DeepLabV3+ [2]  MobileNetV2 103.5 7.2
Segformer-B0 [22] MiT-B0 57.0 11.0
FeedFormer-B0 [7] MiT-B0 63.9 9.6
SegNeXt-T [8] MSCAN-T 44.8 13.5
CGMISeg-T EFV2-S1 349 15.7

4.3 Ablation Studies

Effectiveness of the proposed modules. In this section, we conducted ablation experiments to evaluate
the contributions of each component in the proposed method. Table 3 presents the ablation results for the
three main components of CGMISeg: CAAM, FRM, and CIFM. The baseline model, shown in the first row
of the table, does not include any additional components. In this baseline, we replaced CIFM with a direct
upsampling operation of the deep features, followed by element-wise addition to the shallow features, while
omitting both CAAM and FRM. As illustrated in the first row, in the absence of additional modules, the
final prediction is generated by directly upsampling the deepest features and merging them with early-layer
representations, resulting in a segmentation performance of 39.74% mloU. The baseline model has 5.80 M
parameters and a computational complexity of 3.47 GFLOPs. In the second row, after introducing CAAM
for context information extraction, the performance improved by 1.30%. CAAM is lightweight, adding only
0.1 M parameters and less than 0.01 GFLOPs to the baseline model. The third row shows the performance
after adding FRM to the baseline model. FRM reconstructs features from three stages of the encoder, and the
reconstructed features are used for upsampling. This results in a 2.01% performance improvement over the
baseline, demonstrating FRM’s effectiveness in enhancing multi-scale feature fusion and context information
capture. FRM adds only 0.3 M parameters and 0.1 GFLOPs to the baseline, highlighting its balance between
performance gains and computational cost. When both CAAM and FRM are combined, the performance
improves by 2.67% compared to the baseline. Finally, when CAAM, FRM, and CIFM are all introduced, the
model achieves 42.94% mloU, a significant improvement of 3.2% over the baseline, with 6.26 M parameters
and 3.84 GFLOPs. The results indicate that the proposed method yields notable performance gains with
minimal additional model complexity. By incorporating lightweight modules, it effectively balances accuracy
and computational efficiency.

Table 3: Ablation analysis of CAAM, FRM, and CIFM modules

CAAM FRM CIFM mloU GFLOPs Params

39.74 3.47 580 M
41.04 3.47 581 M
41.75 3.57 6.10 M
42.41 3.57 611 M
42.94 3.84 6.26 M

N X X XX

LA X A x
LA X x

The effectiveness of kernel size in contextual feature reconstruction. To evaluate how kernel size
influences contextual feature reconstruction, we conducted a set of experiments exploring its effect on overall
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model performance. First, we explored different kernel sizes for calculating spatial feature attention weights
in the CAAM, as shown in Table 4. Increasing the kernel size initially improved segmentation performance,
with the best performance achieved using a 7 x 7 kernel. Thereafter, further increasing the kernel size
did not significantly improve performance and instead led to a decrease in performance. This may be due
to excessive feature fusion caused by larger kernels, which weakened the ability to capture local features.
Therefore, we ultimately chose a 7 x 7 kernel to process the fused features, enhancing the local contextual
relationships between the features. Additionally, we investigated the effectiveness of kernel size in the feature
reconstruction module. Table 5 shows that the model performed best when a 3 x 3 kernel was used to process
the integrated features F; . Our analysis suggests that the integrated features obtained through broadcasting
already contain global contextual information from horizontal and vertical directions. In this case, using
a 3 x 3 kernel effectively combines this global context with local details while maintaining sensitivity to
local information. Larger kernels tend to introduce excessive redundant information, reducing the ability to
capture fine details and increasing computational overhead. On the other hand, smaller 1 x 1 kernels only
operate along the channel dimension and cannot effectively capture spatial information, resulting in poor
fusion of local details and global context. Therefore, the 3 x 3 kernel is the ideal choice for this structure.

Table 4: Convolution kernel selection for spatial feature attention calculation in context-aware attention modulation

Kernel size mloU (%)
None 41.87
3x3 42.51
5x5 42.83
7 x7 42.94
9x%x9 42.59

Table 5: Convolution kernel selection for processing integrated features in the feature reconstruction module

Kernel size mloU (%)
None 41.27
1x1 42.13
3x3 42.94
5x5 42.68
7 x7 42.61

Comparison of performance under different backbones. To validate the performance of our method
under different backbone networks, we conducted experiments in two aspects. First, we evaluated the
performance of CGMISeg under various lightweight backbone networks to verify the superiority of Efficient-
FormerV?2 as the backbone. As shown in Table 6, we selected backbone networks such as Mix Transformer
(MiT) [22], MobileNetV2 [36], MSCAN [8], STDC2 [19], and EfficientFormerV2 (EFV2) [33], all of which
have similar computational complexity and parameter scale, ensuring a fair comparison of their impact
on the model’s performance. The results show significant differences in segmentation performance under
different backbone networks. When using MiT-Bl as the backbone, CGMISeg achieved a segmentation
performance of 43.24%. In contrast, when using MobileNetV2 and STDC2 as the backbone networks, the
performance of CGMISeg increased to 44.30% and 44.68%, respectively. These results indicate that the
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choice of backbone network plays a key role in determining the final performance of the model. Notably,
EfficientFormerV2-S2 achieved the best performance among the five lightweight backbone networks.
Specifically, when EfficientFormerV2-S2 was used as the backbone, CGMISeg achieved a segmentation
performance of 45.23% with a complexity of only 72 GFLOPs. Compared to the other four backbone
networks, EfficientFormerV2-S2 exhibited significant advantages in both performance and computational
complexity, demonstrating its superiority among several common lightweight backbone networks. Next, we
also compared the performance of CGMISeg with larger-scale backbone networks and further analyzed its
advantages compared to other methods. Table 7 compares the’s performance of CGMISeg with MSCAN-
L and MiT-B5 backbone networks with other advanced methods. It can be seen that, when MSCAN-L
was used as the backbone, CGMISeg outperformed SegNext by 0.86% in terms of performance while
reducing computational complexity by 6.55 GFLOPs. When using MiT-B5 as the backbone, CGMISeg
also performed better than SegFormer and FeedFormer. Its segmentation performance was improved by
1.23% and 1.09% compared to SegFormer and FeedFormer, respectively, while also having lower parameter
counts and computational complexity than these two methods. This indicates that our method improves
accuracy and maintains lower computational resource consumption, offering stronger application potential.

Table 6: Performance comparison under different backbones settings

Method Backbone  mlIoU GFLOPs Params (M)

CGMISeg MobileNetV2 44.30 65.43 12.95
MiT-B1 43.24 15.23 1717

MSCAN-S 44.87 14.55 12.71

STDC2 44.68 18.43 16.72

EFV2-§82 45.23 7.21 13.28

Table 7: Performance comparison with other methods under the same backbone configuration

Method Backbone mlIoU GFLOPs Params (M)

SegNext ~ MSCAN-L 5101 70.04 48.92
CGMISeg MSCAN-L 5187 63.49 52.73
Segformer MiT-B5 51.83 183.34 84.72

Feedformer  MiT-B5 51.97 187.85 90.17
CGMISeg MiT-B5 53.06 176.32 73.44

4.4 Qualitative Results

To intuitively evaluate the superiority of CGMISeg, visual segmentation results on the ADE20K
and Cityscapes test sets are presented in Figs. 5 and 6, respectively, in comparison with two established
lightweight semantic segmentation networks, Segformer and SegNext. To facilitate detailed comparison, key
regions exhibiting performance variations are highlighted with yellow bounding boxes. Fig. 5 illustrates the
segmentation results on the ADE20K dataset. As shown in the first row, Segformer misidentifies pixels on
the desktop as part of the adjacent sofa. Similarly, SegNext exhibits category confusion in the highlighted
region, misclassifying the floor area. Conversely, CGMISeg avoids these errors, yielding more accurate
segmentation boundaries. In the second and third rows, CGMISeg demonstrates enhanced recognition
accuracy and superior boundary preservation for objects such as baskets, washing machines, and tables
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within the highlighted regions, noticeably outperforming Segformer and SegNext. These results underscore
its robustness and ability to delineate fine-grained details within complex scenes. To further assess the
generalization capabilities of CGMISeg in urban street environments, Fig. 6 presents visual segmentation
results on the Cityscapes dataset. Multiple challenging regions are highlighted. As observed, CGMISeg
exhibits superior performance on targets such as traffic signs, motorcycles, sidewalks, and fences compared
to Segformer and SegNext. For instance, in the first row, Segformer demonstrates misclassification between
grass and sidewalks, incorrectly labeling portions of the sidewalk as grass and misidentifying distant
motorcycles as cars, leading to category confusion. Concurrently, SegNext exhibits blurry segmentation
around the boundaries of traffic signs, failing to accurately capture object contours and compromising the
structural integrity of the scene. In contrast, CGMISeg accurately differentiates between sidewalks and grass
areas while successfully preserving the contours of motorcycles and traffic signs, showcasing enhanced
segmentation precision and improved boundary retention.

Images Segformer-BO SegNext-T CGMISeg-T

Figure 5: Qualitative comparison of CGMISeg-T on the ADE20K dataset

In addition to evaluations on the standard ADE20K and Cityscapes test sets, we further conducted
visual tests of CGMISeg on real-world street view images to assess its generalization capability in complex
real-world scenarios. Fig. 7 presents a comparison of segmentation results among CGMISeg, Segformer, and
Feedformer on multiple real street view images, using model weights trained on the Cityscapes dataset. As
shown in the yellow-highlighted regions, CGMISeg demonstrates higher accuracy and clearer boundary
delineation for key targets such as fences, buildings, roads, and sidewalks compared to the other two methods.
This further validates CGMISeg’s superior structural awareness and category discrimination ability when
faced with realistic and complex environments. Benefiting from its context-aware mechanism and multi-
scale feature fusion strategy, CGMISeg effectively mitigates category confusion in regions with overlapping
semantics, improves boundary completeness, and preserves fine-grained details, demonstrating strong
potential for real-world deployment.



5826 Comput Mater Contin. 2025;84(3)

Segformer-B1 SegNext-S CGMISeg-B

Figure 6: Qualitative comparison of CGMISeg-B on the cityscapes dataset

Images Segformer-B2 Feedformer-B2 CGMISeg-L

Figure 7: Qualitative comparison of CGMISeg-L on real-world street-view images

5 Limitations and Future Work

Although CGMISeg demonstrates notable advances in computational efficiency and lightweight design,
certain limitations warrant further investigation. First, the model’s reliance on GPU (Graphics Processing
Unit) inference presents obstacles for real-time deployment on resource-constrained embedded systems. To
address this, future research will focus on architectural optimizations, specifically employing more efficient
attention mechanisms and post-training quantization methods. Post-training quantization can mitigate
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the GPU dependency by reducing the model's memory footprint and computational demands, thereby
enabling deployment on devices with limited processing capabilities. Second, experiments focus exclusively
on publicly available natural scene datasets. While promising, the model’s generalization capabilities require
further validation across cross-domain applications in medical and geospatial imaging. Furthermore, the
model’s performance degrades under challenging conditions characterized by high inter-class similarity,
significant scale variations, extreme lighting, or heavy occlusions. This is particularly evident in boundary
region delineation and small object segmentation, areas where accuracy requires improvement. Future
work will also explore dynamic computation allocation and conditional execution mechanisms to improve
robustness in these complex scenarios. Finally, while we aim to facilitate real-world deployment, future work
is needed to investigate broader hardware compatibility.

6 Conclusion

In this paper, we propose CGMISeg, a context-guided multi-scale interactive semantic segmentation
network that offers excellent performance for semantic segmentation. CGMISeg consists of three key
modules: CAAM, FRM, and CIFM. Firstly, the CAAM dynamically adjusts attention weights in both spatial
and channel dimensions to capture rich global contextual information. Secondly, FRM enhances the model’s
focus on foreground features through multi-scale contextual information fusion and rectangular region
modeling. Finally, CIFM facilitates efficient multi-scale feature interaction during the upsampling process,
leveraging feature information from each layer of the encoder to optimize boundary details and semantic
consistency. Comprehensive evaluations on three benchmark datasets—ADE20K, Cityscapes, and COCO-
Stuff-demonstrate that CGMISeg delivers outstanding segmentation performance, achieving an optimal
balance between computational cost and segmentation accuracy compared with existing methods.
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