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ABSTRACT: Recognizing road scene context from a single image remains a critical challenge for intelligent
autonomous driving systems, particularly in dynamic and unstructured environments. While recent advancements in
deep learning have significantly enhanced road scene classification, simultaneously achieving high accuracy, computa-
tional efficiency, and adaptability across diverse conditions continues to be difficult. To address these challenges, this
study proposes HybridLSTM, a novel and efficient framework that integrates deep learning-based, object-based, and
handcrafted feature extraction methods within a unified architecture. HybridLSTM is designed to classify four distinct
road scene categories—crosswalk (CW), highway (HW), overpass/tunnel (OP/T), and parking (P)—by leveraging
multiple publicly available datasets, including Places-365, BDD100K, LabelMe, and KITTI, thereby promoting domain
generalization. The framework fuses object-level features extracted using YOLOv5 and VGG19, scene-level global
representations obtained from a modified VGG19, and fine-grained texture features captured through eight handcrafted
descriptors. This hybrid feature fusion enables the model to capture both semantic context and low-level visual cues,
which are critical for robust scene understanding. To model spatial arrangements and latent sequential dependencies
present even in static imagery, the combined features are processed through a Long Short-Term Memory (LSTM)
network, allowing the extraction of discriminative patterns across heterogeneous feature spaces. Extensive experiments
conducted on 2725 annotated road scene images, with an 80:20 training-to-testing split, validate the effectiveness of the
proposed model. HybridLSTM achieves a classification accuracy of 96.3%, a precision of 95.8%, a recall of 96.1%, and an
F1-score of 96.0%, outperforming several existing state-of-the-art methods. These results demonstrate the robustness,
scalability, and generalization capability of HybridLSTM across varying environments and scene complexities. More-
over, the framework is optimized to balance classification performance with computational efficiency, making it highly
suitable for real-time deployment in embedded autonomous driving systems. Future work will focus on extending the
model to multi-class detection within a single frame and optimizing it further for edge-device deployments to reduce
computational overhead in practical applications.
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1 Introduction
The rapid advancement of autonomous vehicles and intelligent transportation systems has underscored

the critical importance of accurate road scene classification. This capability enables vehicles to interpret their
surroundings effectively, ensuring safer navigation and improved decision-making. Road scenes encompass
a diverse array of visual elements—including objects, textures, and environmental features—that must be
identified and analyzed in real time. Traditional methods that rely on single-feature analysis often fall short
in addressing the complexity and variability inherent in these scenarios. Consequently, there is a pressing
need for robust approaches capable of efficiently handling both global and localized details.

Recent advancements in deep learning and computer vision have facilitated the development of hybrid
techniques that integrate multiple feature types for enhanced scene understanding. By combining object-
based features, scene-level global representations, and handcrafted low-level descriptors, these approaches
provide a comprehensive analysis of road scenes. In this context, this study introduces HybridLSTM,
an innovative framework for road scene classification that leverages the strengths of Long Short-Term
Memory (LSTM) networks. HybridLSTM effectively incorporates hybrid features derived from state-of-the-
art models, including YOLOv5 for object detection, VGG19 for both object-level and scene-level information,
as well as various handcrafted descriptors for fine-grained analysis.

The proposed framework is rigorously evaluated on diverse datasets such as Places-365, BDD100K,
LabelMe, and KITTI, demonstrating remarkable cross-domain performance. It achieves a classification
accuracy of 96.3%, precision of 95.8%, recall of 96.1%, and an F1-score of 96.0% across categories like
crosswalks, highways, overpass tunnels, and parking areas, outperforming previous approaches. These
results underscore the potential of hybrid feature integration to advance road scene classification, effectively
addressing the critical challenges faced by contemporary autonomous systems. The insights gained from this
research are invaluable in the pursuit of developing safer and more efficient autonomous vehicle technologies.

1.1 The Motivation for Research
The developing reliance on self-sufficient automobiles and sensible transportation structures needs

accurate street scene class. Despite advancements in laptop imaginative and prescient and deep learning,
challenges persist in achieving reliable classification across diverse and complicated street environments. This
work proposes a hybrid approach combining item detection, deep gaining knowledge of, and handcrafted
functions. The framework aims to offer a comprehensive understanding of street scenes, making sure its
applicability in real-global self-sufficient structures and enhancing safety and performance in transportation.

1.2 The Risk Aspect
The proposed road scene class framework, at the same time as innovative and strong, consists of sure

chance elements that want to be addressed:

• One big risk is the high computational complexity related to the hybrid feature fusion and LSTM-based
temporal modeling, which may lead to long latencies that can hinder real-time performance on resource-
constrained edge devices.
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• One primary chance is the high computational complexity involved in integrating the LSTM community
with many characteristic extraction techniques (handmade, scene-level, and item-level), which may
impair actual-time overall performance in packages involving independent cars.

• Furthermore, because the model relies upon on wonderful datasets like BDD100K, KITTI, and others,
its performance can also go through in conditions with unknown or low-best records, such dim
illumination, converting weather, or occlusions.

• The sensitivity of the system to inaccurate or partial object detection by YOLOv5 poses an additional
danger as it may cause mistakes to spread throughout the classification pipeline.

• Finally, the absence of uniform performance standards for various datasets might make it difficult to
evaluate the system’s resilience and generalizability under a variety of road conditions. Deploying this
technology in actual autonomous systems will require addressing these issues.

1.3 Major Contributions
The work claims the following contributions:

❖ Propose a novel framework for road scene classification by integrating hybrid features with a Long
Short-Term Memory (LSTM) network.

❖ Utilize YOLOv5 for accurate object detection, followed by VGG19 for extracting detailed object-level
features from the detected objects.

❖ Employ a modified VGG19 network for capturing global scene-level features, ensuring comprehensive
representation of the road scene.

❖ Incorporate handcrafted descriptors to extract fine-grained details, providing complementary informa-
tion to deep learning-based features.

❖ Demonstrate the effectiveness of the proposed hybrid approach in classifying road scenes into four
distinct categories: crosswalk, highway, over tunnel, and parking.
The article has been conducted as follows: Review of Section 2 is related to recent state-of-the-art

classification. Section 3 has a detail of material and methods including information about the dataset and
proposed Visual Classification System (VCS). Section 4 presents the results and discussion, focusing on the
analysis of the system suggested in four categories of road visual classification. Section 5 discusses the system
performance on the real-time road scene frame captured in Nagpur, India. Finally, Section 6 concludes
the article.

2 Survey of Relevant Research
Road Visual Classification has drawn significant attention in recent years, proposing to solve the

challenges generated by complex and diverse visual environments with different methods. The initial
approach was mainly based on the handicapped characteristics, such as descriptive of the composition,
colour, and edge, who, despite their simplicity, often struggled with generalization in different datasets. With
the advent of Deep Learning, the types of global visual features have been widely adopted for VGG, ResNET
and their Quasi-Recurrent Neural Networks (QRNN). In addition, Object Budget Detection models such
as yolo and fast R-CNN are beneficial to identify the main objects in the scenes, helping to help in a better
relevant understanding. Hybrid methods connecting global, object budget-Levels and Crafts have enhanced
complementary information. Recent studies have also found the use of a successive model, such as a long-
term short-term memory (LSTM) network, which enables strong classification in complex views, to model
temporary dependence and related relationships, to model temporary dependence and related relationships.
Inside the scenes. However, such an outline is necessary to effectively integrate these progresses effectively
to achieve high accuracy in various datasets and challenging circumstances, a difference wants to address
this study.
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Scenes on the road and road are rich in detail, representing the abundance of scenes for analysis.
The effectiveness of the automatic Sean Classification System is important for accurate predictions of
labels enhancing automobile safety. Some studies have successfully introduced a strong image classification
framework that effectively distinguishes a wide range of image categories [1,2]. Deep networks constantly
demonstrate exquisite operations and are constantly optimized according to the Object Budget-Centric
ImageNet Classification Standards [3].

Moreover, there is significant potential for further advancements in scene categorization to improve
visual perception. The research featured in [4] has already made notable strides in scene classification and
recognition, employing a dataset of 2.5 million road scenes across 205 categories. Wang et al. [5] introduced
a pedestrian tracking algorithm that leverage sparse models to improve tracking performance in urban
road scenes. The approach demonstrates greater accuracy and stability in dynamic and densely populated
traffic environments. In the field of robotics, broader studies have been conducted for scene classification
like semantic mapping [6,7]. In order to improve classification performance on large-scale datasets utilizing
pre-trained VGG-16 networks, the study suggests a scene picture representation technique that makes use
of foreground, background, and hybrid characteristics [8], and non-mobile objects which include bridges,
underpass tunnels, over bridges, constructions, etc. [9]. In most of the datasets, the scene images in general
do not possess labels but mere object-level attributes provide a general picture of the class labels [10]. About
videos, labels associated with complete clips are available without frame-based annotations. Analysis based
on visual perception is tedious and time-consuming for automotive datasets.

In the real world, automobiles are provided with a variety of sensors, radars, and geographical position-
ing systems, to acquire real-time on-road traffic conditions [11,12]. Path following and driving decisions rely
on the high-level semantic information of the vehicle’s current geographical coordinates. Such intelligent
systems accelerate a car on an open highway, slow down approaching a school or medical centre, stop at a red
signal, adopt an antiskid mechanism during rains and snowy paths, make use of fog lights during the foggy
atmosphere, de-accelerate the vehicle for drivers’ drowsiness and drunk conditions, etc. [13,14]. Researchers
proposed various methods to reduce traffic accidents and driver stress through better object detection and
classification. Bachute and Subhedar [15] explored machine learning architectures for autonomous vehicles,
while Al-refai et al. [16] applied Yolov3 to detect real-time road objects. Qaddoura and colleagues [17,18]
emphasized the forecast of traffic characteristics for safer navigation. Kajiwara [19] focused on monitoring
driver status using physiological data, and Shen et al. [20] introduced convolutionary chart networks for
pedestrian detection. These approaches highlight the need for quick and accurate scene analysis to improve
autonomous decision-making systems.

Initially, PASCAL VOC competition was regarded as the image classification benchmark dataset and
the systems introduced in [21,22] based on low-level local features were regarded as the best approaches. The
authors used a non-linear machine-learned classifier such as SVM. A Gaussian mixture model was fitted
aggregating the local descriptor features encoded with statistics through spatial Fisher vectors and SVM
[23,24]. It was in 2012, that the use of AlexNet [25] based on CNN outperformed the work on the ImageNet
dataset. The image classification accuracy was improved later with the next generation deep networks such
as GoogleNet [26], VGGNet [27], and ResNet [28], which considered the depth of the networks as a crucial
parameter for the success of classification.

In earlier work used in traffic scene classification, objects in the scenes were of importance and object-
based features, their probabilities were used to classify scenes [29]. Along with objects, scene semantics
segmentation labels were also used to distinguish classes that included pedestrians, road layouts, and
obstacles in front of the vehicles [30]. Traffic scenes were understood using the semantic labels in [31,32]
where CNN was trained on scene images acquired at a location under different lighting conditions and
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weather. Zou et al. [33] proposed a deep neural network-based lane detection model that improves accuracy
in crowded road situations. Its sensitivity to occluded and unstructured environments is problematic,
requiring more generalized road scene classification techniques.

To address the aforementioned issue, scene images from four distinct datasets were analyzed, catego-
rized into four classes: parking, highways, overpass tunnels, and crosswalks. To increase the complexity of the
scene classification task, the tunnel and overpass categories were merged into a single class. Additionally, the
road scene images taken into consideration included scenes with diverse types of weather and atmospheric
conditions, including day, night, rain, snow, etc. Four distinct datasets were used to gather the images:
BDD100K, LabelMe, KITTI, and Places365. Wang et al. [34] proposed a pre-visualization detection and
classification structure that founds visual and laser data using deep learning for unstructured scenes.
The method enhances the accuracy of perception in complex off-road environments through multimodal
resource integration. Recent advances in understanding the road scene leveraged deep learning for improved
classification and segmentation. Zhou et al. [35] introduced a deep learning structure that significantly
improved the interpretation of the road scene through hierarchical resource extraction. Guo et al. [36]
proposed a rexnet care model that addressed class imbalance questions in long-tailed road scenes data sets,
reaching higher accuracy through attention mechanisms. Prykhodchenko and Skruch [37] have developed a
learning approach to various tasks capable of simultaneously predicting the kind of scene, time and climate,
thus expanding the contextual awareness of classification systems.

The authors in [38] classified the static road scene objects accurately using an improved deep-learning
network based on the PointNet++ network. They found that the existing PointNet++ network suffered
insufficient feature learning and poor accuracy. They introduced LO-Net to extract significant objects from
the images acquired using the LiDAR system. They optimized the network by incorporating three different
modules that included GraphConv, Unit module, and the J-PSPP. They were used to combine various feature-
learning techniques in a layer-wise optimized network. They obtained better classification accuracy on three
distinct datasets that included the ModelNet 40, and 10 datasets and the Sydney Urban Objects. However,
their framework obtained 98.5% accuracy over the Road9 dataset images. They concluded that their proposed
framework exhibits generalization capabilities and showed effectiveness and robustness. However, their
framework was complex.

Gurkan Dogan and Burhan Ergen [39] worked on object segmentation from traffic scenes using CNN.
They introduced a new module called the attention atrous feature pooling and placed it between the encoder
and the decoder which served to acquire multiscale details and add attentional features for objects of various
dimensions. They claimed that their module assisted in more effective learning over the CamVid dataset.
They showed that their model obtained an average IoU concerning others approximately 2% higher. Arindam
Chaudhari [40] addressed the issues regarding the accurate segmentation of vehicles from the traffic scenes.
The author focused on the difficulties of high and low-density traffic, background with clutter, and occlusions.
The article also considered the shadow and illumination issues. The vehicles were segmented using the
Faster-RCNN deep learning network via four steps that included adaptive background minimization, subnet
operation, initial refinement, and the topological active networks. The author found that the new framework
using the Faster RCNN improved the segmentation accuracy.

Du et al. [41] contributed by launching the Toronto-RDMK database and proposing RDMKNET, a
robust model for rating and segmentation of road marking, advancing the availability of large-scale noted
data for smart transport systems. Majd Alqarqaz et al. [42] developed an intelligent object classification
module for autonomous vehicles to classify 7 different objects. They focused on the early detection of the
objects using machine learning and conducted research over different datasets. The scene images were
taken from two datasets including the Udacity and the BDD100K. They pre-processed data by removing
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the missing values and duplicate entries and carried data partitioning in an 80:20 ratio for training and
testing purposes. Six machine learning algorithms were applied, and the performance was measured in terms
of five performance metrics including classification accuracy, precision, recall, G-mean, and the F1-score.
The object classification module suggested by them obtained poor results concerning the precision whereas
other parameters were good. To increase the segmentation and detection accuracy, a hybrid strategy that
included characteristics from two object identification models—YOLO and Fast RCNN—was employed [43].
To enhance segmentation and classification, they made advantage of YOLO’s capabilities in conjunction with
Fast RCNN’s region of interest. Additionally, they eliminated the region proposal network and trained the
network on 10,000 pictures, which shortened the processing time of Fast RCNN. The accuracy they achieved
was 5–7% higher than that of the YOLO network alone.

Khan and Basalamah [44] introduced a deep learning structure of various branches for classification of
terrestrial scenes using satellite images. Its approach improves the accuracy of the classification, effectively
capturing several space resources in various network branches. The faster RCNN network was modified
to extract local semantic features by adding residual attention structure [45], while an enhanced Inception
network was used to extract global features. The ELU function and Leaky ReLU are used in the latter network
to learn the convolution kernel’s redundancy. To further achieve the scene categorization, both attributes
were combined. The author created their dataset in order to categorize scenarios for autonomous vehicles.
In this work, heterogeneous road agents are not considered. Narlawar and Pete [46] proposed a method for
occluded face recognition by applying contrast correction and edge-preserving enhancement techniques,
leading to the extraction of optimum features from the CelebA dataset.

Table 1 below shows the comparative analysis of techniques for road scene classification in autonomous
driving.

Table 1: Comparative analysis of techniques for road scene classification in autonomous driving

Authors name &
Ref. No.

Techniques used Dataset Major findings Limitation

Pal K, Yadav P,
Katal N [47]

Deep learning, CNN,
Urban Road detection

Urban road
datasets

Proposed deep learning framework for
road detection using CNN models in

urban road scenarios.

Does not specify detailed
performance metrics.

Narayanan A,
Dwivedi I, Dariush

B [48]

Space-time coherence,
Dynamic traffic

classification

BDD100K,
KITTI

Introduces dynamic classification for
traffic scenes, enhancing classification

accuracy with temporal context.

Performance details not
fully specified.

Chen PR, Hang
HM, Chan SW, Lin

JJ [49]

CNN, Road scene
segmentation

Custom urban
road datasets

Proposes DSNet, a CNN model for urban
road scene segmentation, improving

detection in city environments.

Lacks real-time
application testing.

Lyu Y, Bai L,
Huang X [50]

CNN, LSTM for
segmentation and

classification

KITTI,
Cityscapes

Integrates CNN with LSTM for robust
road scene segmentation, improving

classification for autonomous driving.

No performance
comparison with other

models.
Guo J et al. [51] Multi-task deep learning

framework
Various

autonomous
driving datasets

Proposes a unified multi-task learning
model combining segmentation,

detection, and depth estimation for road
scene understanding.

Increased model
complexity and resource

demands.

Zhao H, Qi X, Jia J
[52]

CNN, multi-scale
context aggregation

Cityscapes,
ADE20K

Introduces multi-scale context aggregation
for better segmentation and classification

of road scenes.

Limited focus on traffic
complexity.

Li Y et al. [53] Deep learning-based
hybrid framework

Real-time road
scenes in

autonomous
vehicles

Proposes a hybrid object detection and
recognition system integrating different

deep learning models for enhanced
accuracy.

May face latency issues in
real-time deployments.

Bulo RS, Porzi L,
Kontschieder P

[54]

Deep convolutional
networks, Real-time

understanding

KITTI,
BDD100K

Uses deep CNNs for real-time road scene
understanding, improving detection speed

for autonomous vehicles.

Real-time constraints in
complex environments.

(Continued)
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Table 1 (continued)

Authors name &
Ref. No.

Techniques used Dataset Major findings Limitation

Hu Y et al. [55] Hybrid CNN-RNN,
Attention-based

learning

Simulated sEMG
gesture datasets
(conceptually

aligned with road
scene tasks)

Demonstrates robust performance in
spatiotemporal classification through

CNN-RNN hybrid models and attention
mechanisms.

High computational cost
due to hybrid
architecture.

Zhu F et al. [56] Improved U-Net for
semantic segmentation

Urban street
scene images

Proposes an improved U-Net for semantic
segmentation, achieving high precision in

road scene understanding.

Accuracy drops in cases
of occlusion and severe

lighting variation.
Zhang Y et al. [57] AGF-Net (Adaptive

Global Feature Fusion
Network)

Remote-sensing
datasets

Introduces a global feature fusion
mechanism to enhance road extraction,

boosting accuracy and robustness.

Fusion complexity may
affect scalability.

Dolatyabi P, Regan
J, Khodayar M [58]

Hybrid deep learning
models, Review study

KITTI,
BDD100K,

Cityscapes (cited
datasets)

Comprehensive review highlighting the
evolution and effectiveness of hybrid

models in traffic scene understanding.

Lacks experimental
validations of discussed

models.

Wang Y et al. [59] Multi-modal image
fusion using multiple

filters (MFF)

Simulated and
public road scene

datasets

Enhances scene understanding by
integrating multiple sensor inputs

(camera, LiDAR) through deep learning
filters.

Longer processing times
due to high data fusion

complexity.

Fan R et al. [60] Lightweight hybrid
network for scene

parsing

KITTI,
Cityscapes

Provides a decade-long analysis of road
scene parsing and proposes a lightweight
yet accurate framework for autonomous

driving.

Suffers performance loss
in highly dynamic road

conditions.

Kaur J, Singh W
[61]

Review of object
detection tools and

datasets

Multiple image
datasets (KITTI,

COCO, etc.)

Provides a structured comparison of tools
and techniques used in image-based

object detection.

Lacks implementation
results for direct

performance
comparison.

In their investigation of artificial intelligence algorithms’ potential to improve decision-making in a
variety of fields, Khekare et al. [62] highlighted the algorithms’ suitability for challenging categorization tasks.
Their research demonstrates the efficacy of AI-powered multi-criteria decision-making methods, which are
consistent with the feature fusion and classification approaches used in the categorization of traffic scenes. For
increased accuracy in autonomous systems, the usage of hybrid models, like LSTM with multi-scale feature
representation, is supported by the integration of machine learning and deep learning techniques covered
in their work. Bishop and Nasrabadi [63] launched the theoretical bases for modern machine learning,
focusing on probabilistic models and classification techniques. Its principles were crucial to facing real-
world challenges, such as the understanding of the road scene. Pande et al. [64] applied machine learning
combining heterogeneous resources (texture, color, structure) for an effective rating of the road scene.

Table 1 existing research on road scene classification using deep learning techniques, as summarized
in the comparative analysis, highlights significant progress in integrating CNNs, LSTMs, hybrid models,
and multi-modal fusion to enhance road scene understanding for autonomous driving. However, several
research gaps remain. Most studies focus on improving accuracy but lack real-time application testing,
particularly under dynamic and complex traffic scenarios. Additionally, while hybrid models and feature
fusion techniques show promise, they often incur high computational costs, limiting their scalability
and application in real-time systems. Moreover, many methods struggle with performance in challenging
environments, such as low-light conditions, highly cluttered scenes, or unexpected road scenarios. There is
a need for more robust, computationally efficient models capable of operating under various environmental
conditions and without compromising accuracy. Furthermore, the absence of a standardized performance
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benchmark across datasets hinders direct comparisons and reproducibility of results. Addressing these gaps
could lead to more reliable and practical systems for autonomous vehicle applications.

3 Materials and Methods
In this research a new traffic classifier is proposed. It uses feature extraction techniques combined with

short-term memory (LSTM) networks for accurate scene recognition. Input street scene images from sources
such as location-365, BDD100K, LabelMe and Kitti are subjected to pre-processing and enhancements
such as multiplexing. Normalization, and transformations such as climbing, scaling, and flipping, object
identification are performed using yolov5 to extract, object-level boundaries and properties. While global
features are available on the revised VGG19 model, eight manual processors are also used to achieve the
best possible detail. The extracted features are combined to create a detailed description, which is then used
by LSTM-based classifiers for modelling and classification, respectively. The proposed method effectively
divides traffic areas into four categories: intersections, roads, tunnels, and parking lots, which provides
comparison accuracy and robustness for considering both within and across intersections. Fig. 1 shows the
road scene classification framework.

Figure 1: Road scene classification framework: feature fusion and temporal modelling

3.1 Dataset Description
The datasets used in this research Places-365 (https://paperswithcode.com/dataset/places365

(accessed on 01 January 2025)) [65], BDD100K (https://www.kaggle.com/datasets/solesensei/solesensei_
bdd100k (accessed on 01 January 2025)) [66], LabelMe (https://www.kaggle.com/datasets/dschettler8845/
labelme-12-50k (accessed on 01 January 2025)) [67], and KITTI (https://www.kaggle.com/datasets/
klemenko/kitti-dataset (accessed on 01 January 2025)) [68]—are widely recognized in computer vision

https://paperswithcode.com/dataset/places365
https://www.kaggle.com/datasets/solesensei/solesensei_bdd100k
https://www.kaggle.com/datasets/dschettler8845/labelme-12-50k
https://www.kaggle.com/datasets/klemenko/kitti-dataset
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and autonomous driving research. Places-365 is a large-scale dataset containing over 1.8 million images
across 365 scene categories, designed for scene recognition tasks. It provides diverse outdoor and indoor
environments, making it suitable for training models to understand complex scene contexts. BDD100K
(Berkeley DeepDrive) is another extensive dataset, featuring 100,000 annotated images and videos captured
under diverse weather and lighting conditions. It is mainly tailored for independent using research,
imparting annotations for item detection, lane markings, and drivable regions, which are vital for avenue
scene evaluation.

The label is a dataset that allows users to not its OT with images with polygons, which can be very
customized for Object Budget Check and Separation Tasks. It contains a variety of outdoor and indoor scenes,
which contribute to the variety of training data. Finally, Kitty is a benchmark dataset for autonomous driving,
providing specific OT notations for tasks such as high-resolution images, leader data and Object Budget
Detection, Tracking and Sean understanding. Collected from real world driving views, kitty is widely used to
evaluate the influence of algorithms in autonomous vehicle applications. Together, these datasets provide a
comprehensive and varied set of images, which enables strong training and evaluation of the proposed route
visual classification structure.

Images in various databases vary in size and lighting. This makes categorization more difficult and
calls for a more complete feature collection at both the fine and coarse levels. Additionally, for better class
correlation, the items in the scene must be found. In light of these factors, the suggested study uses deep
networks to extract features at the local and coarse levels, including handmade and blind features. In order
to achieve more accurate scene categorization, the characteristics are finally concatenated. Fig. 2a,b below
displays a selection of example images from all datasets that fall into various categories.

(a)

(b)

Figure 2: (a) Images from two categories for scene classification. A crosswalk, and Highway (b) Images from two
categories for scene classification. An overpass/tunnel and parking

The samples relating to four distinct categories were separated manually and included crosswalks (CW),
highways (HW), over tunnels (OP/T), and parking (P). The goal is to make the situation more complicated
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and test the suggested categorization scenario in the most adverse circumstances. Table 2 below shows the
four classes and respective number of samples considered for the proposed work. The complexity due to
diversity relating to source datasets, distinct levels of illumination conditions, and the traffic scenarios were
captured in the presence of rain and night conditions. Fig. 3 below depicts some images before preprocessing
from the datasets. Fig. 4 lists the pertinent items that need to be identified from the scene but are not
important for the class in which they fall in relation to other objects. The primary items in Fig. 3, according
to the categories to which they belong, are more difficult to identify than in Fig. 2. To increase complexity, a
selection of images that fall under multiple categories was purposefully chosen.

Table 2: Scene categories and samples

Class Name of the class Number of images
1 CW 700
2 HW 700
3 OP/T 625
4 P 700

(a) Crosswalk with road-side parking (b) Over bridge and roadside parking

(c) Highway and over bridge (d) Crosswalk at night

(e) Parking at night (f) Roadside and Parking Lot

Figure 3: Sample images from all four categories. (a) Crosswalk. (b) Roadside Parking. (c) A Highway/over bridge. (d)
Crosswalk. (e) Roadside Parking. (f) Parking lot



Comput Mater Contin. 2025;84(3) 5947

(a) Non-Significant Crosswalk (b) Highway under Over Pass

(c) Non-Significant Over Pass (d) Parking at night

Figure 4: Non-Significant Features in Images. (a) Missing crosswalk (b) Highway going beneath an overpass (c) Side
pillars indicating an overpass (d) Unknown roadside parking on the right side

3.2 Enhancing Data Quality: Preprocessing and Augmentation Methods
This section describes the processes used to prepare and training high quality efficient models for images

of entrance road scenes. This involves normalizing pixel values and compressing images in the same size to
ensure consistency during the collection. Data growth techniques are used to improve the variety of training
data and the ability of a model to normalize the range of real-world conditions, including rotation, scale
and inversion. To increase the accuracy and elasticity of the road’s visual classification structure, these pre-
processing and growth processes are essential. They ensure that the model can manage a change in lighting,
perspective and object orientation.

3.2.1 Image Resizing
At the pre-processing stage, image resizing plays a key role in the preparation of data for the model. As

images come from different data sets (Places-365, BDD100K, LabelMe and Kitti), they usually have various
sizes and shapes. Make them consistent, all images are resized to a standard dimension, typically 224 × 224
pixels, which is a common size for models such as VGG19. This step ensures that the model receives uniform
input, making the training process smoother and more efficient.

For example, if an original image has dimensions Wor i g ×Hor i g the resizing process scales it to the target
dimensions Hor i g ×Htar ge t . The scaling factors for width and height are calculated as:

Scal ew =
Wtar ge t

Wor i g
, Scal eH =

Htar ge t

Hor i g
(1)

Sizes are used using techniques such as Bilinear or Bicubic Interpolation, which helps maintain
important details in the images when adjusting their size. For example, if the original image is 800 × 600
pixels, it is scaled below to fit the size of the target. This not only reduces the calculation load but also ensures
that the model images can process quickly. In this study, changing the size of the images reduced their average
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size by about 75%, which significantly increased the training process without losing the required visual
information. This step is crucial to ensure that the model performs well in different types of roads scenes.

3.2.2 Normalization
To ensure that entry images have consistent pixel value ranges, standardization is an essential step

of pre-processing in the architecture of categorizing the suggested road scene. Improving the stability and
effectiveness of the model during training requires this step. Generally, normalization implies normalizing
pixel values to have an average of 0 and a standard deviation of 1 or dimension to a standard interval, such
as [0, 1]. This procedure improves the model’s capacity to generalize in a variety of data sets, including
Places-365, BDD100K, LabelMe and Kitti, as well as decrease the impact of lighting conditions.

For scaling pixel values to the range [0, 1], Eq. (2).

Inormal ized(x , y) = I (x , y) − Imin

Imax − Imin
(2)

where:

• I (x , y) is the original pixel value at location (x , y),
• Imin is the minimum pixel value in the image,
• Imax is the maximum pixel value in the image.

Alternatively, for standardization, Eq. (3) [63]:

Inormal ized(x , y) = I (x , y) − μ
σ

(3)

is a standard statistical normalization (Z-score normalization) method widely used in image processing and
machine learning to standardize pixel intensity values. This technique ensures that the transformed data has
a mean (μ) of zero and a standard deviation (σ) of one, improving model convergence and stability,
where:

• μ is the mean pixel value of the image or dataset,
• σ is the standard deviation of the pixel values.

In this study, normalization was applied to the 2725 images of the road scene after resizing. The average
μ and standard deviation σ were calculated throughout the data set to ensure uniformity. This step reduced
the variation in pixel values by approximately 60%, leading to faster convergence during training and the best
model performance. By normalizing the data, the structure reached better robustness in the classification
of road scenes in categories such as pedestrian range, highway, tunnel and parking, as highlighted by high
precursies of 91% and 94% in intra-domain samples and inter-dune samples, respectively.

3.2.3 Rotation, Scaling and Flipping
Data augmentation techniques like rotation, scaling, and flipping are used to increase the variety

of training data and enhance the model’s generalization. These transformations help simulate real-world
variations in road scene images, ensuring the model learns robust features that remain effective across
different viewpoints, lighting conditions, and perspectives.
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a. Rotation

Rotation helps the model recognize objects and scene layouts from different angles. Images are rotated
by a random angle θ within a predefined range, typically [−15○,+15○] to maintain a natural appearance. The
rotation transformation is mathematically represented in Eq. (4):

[ x′
y′ ] = [

Cosθ − Sinθ
Sinθ Cosθ ] [

x
y ] (4)

where:

• (x , y) are the original pixel coordinates,
• (x′, y′) are the new pixel coordinates after rotation,
• θ is the rotation angle in radians.

Applying rotation augmentation improved model robustness by approximately 5% in classification
accuracy when evaluated on varying orientations.

b. Scaling

Scaling adjusts the size of an image by a factor S while preserving its aspect ratio. This augmentation
helps the model manage different object sizes in road scenes. The transformation is expressed Eq. (5):

S′ = Sx .x , S′ = Sy .y, (5)

where:

• Sx, Sy are the scaling factors for width and height,
• Typical scaling values range from 0.8x to 1.2x ensuring that images are neither too small nor too large

for model processing.

c. Flipping

Flipping horizontally mirrors the image along the vertical axis, simulating different driving perspectives,
especially useful for autonomous vehicle applications. The transformation for horizontal flipping is given by:

x′ =W − x , y′ = y (6)

where:

• W is the image width,
• x′ is the new x-coordinate after flipping.

Route, scale and inversion were used to improve the variety of the data set, which decreased excess
adjustment and increased the resilience of the model. These additions helped the model have a better general
performance by 10% to 12%, ensuring that it works well in various scenarios in the road scene.

3.3 Object Detection (YOLOv5)
The Road budget Detection (YOLOv5) module uses the Deep Wanda Education-Based Investigation

Pipeline to detect and identify Objects Budgets in the road visual image. It uses CSPDARKNET 53 backbones
to process input images for feature extraction and predicts about item class labels, bounding BG Cord Q
coordinates and confidence ratings. To eliminate duplicate detection based on the Union Over Union (IUU),
Bounding B Boxes is updated using non-maximum suppression (NMS). The YOLOv5 Object produces
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a buzz-level characteristics, such as class probability and spatial coordinates, which are then used for
convenience extraction and classification. Average precision (MAP), precision-recall matrix and estimate
motion are used to evaluate the influence of the module, which guarantees a specific and real-time item
recognition for the understanding of the road scene.

3.3.1 YOLOv5 Detection Pipeline
The YOLOv5 object detection module follows these key steps:

a. Input Processing

• The input image is resized to a fixed dimension (640 × 640) for uniform processing.
• Normalization is applied to scale pixel values to the range [0, 1].
• The image is then passed through a convolutional backbone for feature extraction.

b. Backbone (Feature Extraction)

YOLOv5 employs a CSPDarkNet53 backbone, which utilizes a combination of cross-stage partial net-
works (CSPNet) and DarkNet53 to improve feature extraction while reducing computational cost (Eq. (7)).

F′ = CSPDarkNet(I) (7)

where:

• I is the input image,
• F′ represents the extracted feature maps.

3.3.2 Bounding Box Prediction in YOLOv5
YOLOv5 predicts four bounding box coordinates (x , y, w , h) confidence score, and class probabilities.

The bounding box regression is formulated as in Eqs. (8)–(11):

x′ = σ(tx) + Cx (8)
y′ = σ(ty) + Cy (9)
w′ = Pw etw (10)
h′ = Ph eth (11)

where:

• (Cx , Cy) are the centre coordinates of the grid cell,
• (Pw , Ph) are the anchor box dimensions,
• (tx , ty , tw , th) are the predicted offsets,
• σ (.) is the sigmoid activation function to constrain center coordinates between 0 and 1.

3.3.3 Object Confidence Score
YOLOv5 outputs a confidence score that indicates whether a bounding box contains an object. This

confidence score is given by Eq. (12):

C = P (ob ject) ×max P(c∣ob ject) (12)

where:
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• P (ob ject) is the probability of an object being present,
• P (c∣ob ject) the conditional probability of class c.
• The highest-class probability is chosen.

3.3.4 Non-Maximum Suppression (NMS)
Remove redundant bounding boxes and keep only the most confident predictions, YOLOv5 uses Non-

Maximum Suppression (NMS):

a. Compute Intersection over Union (IoU):

The IoU between two bounding boxes B1 and B2 is (Eq. (13)):

IoU = B1 ∩ B2
B1 ∪ B2

(13)

b. Suppress Lower Confidence Detections:

If IoU > threshold (e.g., 0.5), the box with lower confidence is discarded.

3.3.5 Final Object-Level Features
After detection, YOLOv5 extracts object-level features, including:

• Bounding box coordinates (x , y, w , h)
• Confidence scores
• Class labels (e.g., car, pedestrian, traffic sign)

These features are passed to the feature extraction and classification modules for further processing.

3.4 Feature Extraction in Novel Road Scene Classification Using Hybrid Features and LSTM Networks
For the proposed road scene classification framework to differentiate between different driving settings,

including parking lots, highways, tunnels, and crosswalks, feature extraction is essential. Because real-world
road sceneries are so complex, this module combines hand-crafted descriptors with deep learning-based
item and scene characteristics to capture both fine-grained and semantic information. Sequence modelling of
temporal context is made possible by the retrieved features, which are used as input for the Long Short-Term
Memory (LSTM) network to enhance classification performance.

Fig. 5 represents the process of rating HybridLSTM-based road scenes, detailing how various resource
extraction techniques are integrated for a precise classification. The process begins with the entry of an image
of the road scene, which is processed through three parallel resource extraction methods: Yolov5 for object
detection, VGG19 for global resource extraction at the scene level and craft resource extraction to capture
local granulation local details. These methods ensure that high level contextual information and detailed
scene elements are considered.

Extracted resources are then fused to create a comprehensive representation of the road scene, which
is subsequently processed by the HybridLSTM classifier for final classification. This approach allows greater
accuracy and robustness in distinguishing between various road scenes categories (for example, pedestrian
range, highway, tunnel, parking). The structured combination of handcrafted-based handcrafted resources
ensures effective classification, maintaining computational efficiency, making it a viable solution for real-time
autonomous perception systems.
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Figure 5: HybridLSTM-based road scene classification pipeline

3.4.1 Object-Level Feature Extraction Using YOLOv5 and VGG19
Using YOLOv5 and VGG19, the framework captures information particular to objects in images. The

CNN Bounding box predictions are used by YOLOv5 to identify and locate things connected to roads, such
as cars, people, and road signs. VGG19 processes observed objects using its convolutional layers to extract
deep object-level characteristics. The resulting feature vector F0 is mathematically expressedin Eq. (14):

F0 = VGG19 (YOLOV5(I)) (14)

where I is the input image, and F0 is a 4096-dimensional representation of object-level characteristics.

3.4.2 Scene-Level Global Feature Extraction Using Modified VGG19
Contextual awareness is necessary for scene categorization, whereas object-level characteristics con-

centrate on individual pieces. Pooling layers are adjusted for improved spatial resolution in order to capture
global scene information using a modified VGG19 architecture. The extracted global feature vector Fg is
obtained as Eq. (15):

Fg = VGG19mod(I) (15)

where Fg is a 2048-dimensional representation of the entire road scene.
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3.4.3 Low-Level Handcrafted Feature Descriptors
The framework includes eight manually created feature descriptors that capture structural, textural, and

color-based properties in order to further improve the categorization process:
The Histogram of Oriented Gradients (HOG) records shape and edge data.
Variations in texture are encoded via Local Binary Patterns (LBP).
Histograms of color (CH): Shows how colors are distributed.
Gabor filters are used to extract characteristics of spatial frequency. The handcrafted feature vector Fh

is defined as Eq. (16):

Fh = [HOG (I) , LBP (I) , CH (I) , Gabor(I)] (16)

resulting in an 8-dimensional feature representation.

3.4.4 Feature Fusion and Final Representation
When object-level, scene-level, and handmade feature vectors are concatenated, the final feature

representation F is created in Eq. (17):

F = [F0, FG , Fh] (17)

where:
• F0 ∈ R2048 (Object-level VGG19 features)
• Fg ∈ R2048 (Scene-level global features)
• Fh ∈ R2048 (Handcrafted descriptors)
• The total feature vector has a dimension of 6152.

Capture a variety of road scene features, the Feature Extraction module of the suggested Novel Road
Scene Classification Approach combines handmade and deep learning-based descriptors. A modified VGG19
architecture is used to get scene-level global features, while YOLOv5 is used for object identification and
VGG19 for deep feature representation to extract object-level features. Eight manually created descriptors are
also used to improve fine-grained structural and textural characteristics, such as HOG, LBP, color histograms,
and Gabor filters. Before being supplied into the LSTM network for sequential modelling, these feature
vectors are concatenated to create a hybrid representation with a total dimension of 6152.

The proposed traffic scene classification framework relies on the feature extraction ability of the
distinct descriptors used to extract different levels of features. The authors considered three different feature
extraction modules to extract features from a single traffic scene. This ensured quality features comprising the
overall image details, local information, and details regarding objects or content. Summarily, the proposed
VCS comprises three distinct modules: the local FEM, the global FEM, and the handcrafted FEM. The VCS
framework is shown in Fig. 6.

The purpose of the local female is to detect important objects in the view using the YOLOV5m pre-
informed network. The discovered items are then molded into 32 × 32 dimensions to get similar size
installations. The VGG19 network receives objects in order to extract resources. In order to extract the 512
characteristics from every object, the VGG19 Deep Network is utilized without a higher layer. The YOLOV5m
network connects the resources retrieved from each object in the visual picture by varying the number of
detection items based on the scene content. The 512-vector element will have the maximum number of
things. When object resources are added, it also aids in filling up the vector’s missing values. The YOLOV5m
network-identified items are shown in Fig. 6.
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(a)

(b)

(c)

Figure 6: Bounding Box outcomes derived from the YOLOV5m network. (a) Original Image from the Crosswalk
Category; (b) Cars located in the image by YOLOV5m; (c) Located keyboard, person, and traffic light by YOLOV5m

Algorithm 1 below outlines the procedures for gathering the attributes of objects recognized by the
YOLOV5m network. The algorithm’s “N” value will change for every image since the scene image and the
YOLOV5m network’s capabilities determine how many items are spotted.

Algorithm 1: Object-based feature extraction.
Input—Object Images identified by YOLOV5m network
Output—Resource vector of all objects
N—Number of identified Objects using YOLOV5m
F = (512) zero vector; Array to store the feature vector
For m = 1 to N

Resize the image of the object; 32 × 32
Calculate resources (512) Vector using the VGG19 network

Add resources to F
End

The VGG19 network is used in the global FEM, however the input picture is scaled to 256 × 256 without
the top layer. There are 512 characteristics that were retrieved using the VGG19 network. Thus, the network’s
capability and scene information determine the blind characteristics that are retrieved. This is to guarantee
that the feature set includes areas that are not part of the objects identified by the local FEM. Too many
missing values that rely on the image quality are the only issues with these features.

Although the YOLOV5 and VGG19 networks are used in the two-stage deep network framework to
consider the local characteristics, information loss may occur during the resizing step for the discovered
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items. While items larger than 32 × 32 would lose data, a size of 32 × 32 is thought to enhance the
subtle characteristics of little things. To enhance classification accuracy, local and global characteristics
were supplemented with fine and coarse features. Using descriptors including wavelet-based, matched filter-
based, local binary pattern (LBP)-based, gray level co-occurrence matrix (GLCM)-based, and histogram of
Gaussian (HOG) features, 2310 handmade features were retrieved in total. The following standard features
are extracted from a 128 × 128 grayscale scene image in Fig. 7.

Figure 7: HybridLSTM-based road scene classification framework

The feature set of handmade features consists of features based on wavelets, matching filters, local binary
patterns, gray level co-occurrence matrix, and Gaussian histogram. Edge-based features are obtained using a
3 × 3 kernel whose centre element value = 8 while the neighbours have value = −1. A 2D filter using the kernel
was used over the 128 × 128 dimension grayscale image and the coefficients of the filter were summed along
both axis (axis = 0 and axis = 1) and concatenated to obtain a 128 + 128 = 256 element vector thus detailing
the edge information from the input image. Another edge informative filter using the ‘Sobel’ operator was
used with the value of sigma = [0.5,1,1.5,2], length of the filter L = [9,11,13,15] (length in Y-direction), and
12 orientations from 0 to 165 at an offset of 15 to obtain 32 elements in the features. Using two such edge
operators, minimum loss due to edge miss was ensured.

Wavelet-based characteristics were derived from the vertical and diagonal coefficients in terms of
magnitude and energy using six distinct mother wavelets [‘bior3.1’, ‘bior3.5’, ‘bior3.7’, ‘db3’, ‘sym3’, and ‘haar’].
The absolute and the square values of the vertical coefficients and the diagonal coefficients are summed
up separately to measure the magnitude and energy of both components. These two measures provide the
information concentration in both directions. The effect due to the horizontal component was ignored since
the measure was nearer to the vertical details. Using six mother wavelets with two measures resulted in 24
values contributing to the feature set. The Gray Level Co-occurrence Matrix was used to quantify the overall
scene picture contrast, energy, homogeneity, correlation, ASM, and dissimilarity. To improve the classifier’s
performance, global-level indicators pertaining to six parameters were employed.
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An LBP descriptor with a radius of three was used to extract fine features from the grayscale picture. A
256-element feature vector was created by concatenating the texture pattern that the LBP descriptor produced
after it had been summed along rows and columns. An LBP picture based on a 3 × 3 patch was used to
enhance more delicate details. After utilizing the centre pixel to threshold, the 3 × 3 neighbourhood and
adhering to a single read-out pattern [out of 55 significant patterns], a textured image was produced. By
averaging values throughout a 5 × 5 window, the textural image’s dimensions were decreased to a 26 × 26
array. Textural features were added by flattening the 2D data to create a 676-dimension vector.

HOG features of 64 × 64 pixels per cell and nine orientations were obtained, further normalized using
the max-normalization technique, and transformed in the range [0, 255] in order to add a 256-dimension
vector to the feature collection. Lastly, values are averaged in 4 × 4 non-overlapping blocks to reflect the
grayscale image in its original format. The collection of handmade features is therefore expanded to include
a feature vector with dimensions of 6 × 6 = 36. Fig. 8 shows that the handcrafted features with count.
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Figure 8: Handcrafted features with count

A detailed statistical description of the handcrafted features using matching filter, wavelet, and LBP
texture features can be found in [46]. These features improve the blind features that are obtained using
the CNN-based VGG19 network, increasing the class differences and aiding the classifier. The handcrafted
features, object-based local features, and global features are concatenated for classification. The Max-
Normalization was used to normalize the attributes. The problem of missing values in the feature set was
fixed by using the mean values across columns.

3.5 Feature Fusion and Combined Representation Module
To provide a strong multi-scale representation for road scene classification, the Feature Fusion and

Combined Representation module must integrate many feature types, including object-level, scene-level, and
handmade descriptors. Combining these characteristics improves the model’s capacity to correctly categorize
road scenes in a variety of environmental circumstances.

3.5.1 Object-Level Features (YOLOv5 & VGG19)
Object-based feature extraction plays a critical role in detecting and recognizing key components of a

road scene.
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• YOLOv5-Based Object Detection

- YOLOv5 extracts bounding boxes and object-centric attributes, representing them as a feature vector
Fob j defined as Eq. (18):

Fob j = (B1 , B2, . . . BN) (18)

where Bi represents the bounding box coordinates, confidence scores, and class probabilities.

- The detected objects (e.g., vehicles, pedestrians, lane markings) contribute significantly to the semantic
context of the scene.

• VGG19-Based Object-Level Features

- A pre-trained VGG19 model extracts deep spatial features from convolutional layers, denoted as Eq. (19):

FVGG = CNN(VGG19, I) (19)

where I is the input image.

3.5.2 Scene-Level Features (Modified VGG19)
Scene-level features help capture global contextual information from images, essential for distinguishing

between different road environments.

- A modified VGG19 model extracts deep scene-level features, denoted as Eq. (20):

Fscene = CNNmod i f i ed(VGG19, I) (20)

- These features emphasize background elements such as highways, tunnels, and crosswalks.

3.5.3 Handcrafted Low-Level Descriptors
To complement deep learning features, eight handcrafted descriptors capture fine-grained visual details:

- Extracts gradient-based edge information, computed as Eq. (21):

HOG (I) = ∑
x , y

G (x , y) .θ(x , y) (21)

where G (x , y) represents gradient magnitude, and θ (x , y) denotes gradient orientation.

3.5.4 Multi-Scale Feature Representation (MSFR)
In the categorization of the road scene, the representation of resources at various scales (MSFR)

is essential because it allows the model to collect data in various granularities. This module combines
handmade, scene level and object level to improve the robustness of the classification. The system can increase
the accuracy of recognition using a variety of resource extraction strategies to better understand local and
global standards in the road scene images. Proposed structure extracts appear from Yolov5, VGG19 and
handcrafted descriptors before combining them using a resource fusion strategy at various scales. Resources
extracted from the three sources are concatenated to create a hybrid resource vector at various scales
(Eq. (22)):

Fhybr id = [Fob j , Fscene , Fhand cra f ted] (22)
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where:

• Fob j represents object-level features from YOLOv5 & VGG19,
• Fscene denotes global scene features from modified VGG19,
• Fhand cra f ted consists of handcrafted descriptors.

The rating of the road scene is quite improved using the resource representation technique at various
scales (MSFR). The model successfully captures local and global standards, combining handcrafted descrip-
tors of fine granulation (HOG & LBP), object-based resources (YOLOv5), and deep scene level resources
(VGG19). The performance of the upper classification is achieved further optimizing representation by
reducing fusion and dimensionality of resources.

3.6 Model Creation and Classification
To properly identify the road scenes, the LSTM module and classification uses a combination of scene,

object and handmade characteristics. Before being inserted into a short-term memory network (LSTM)
to describe temporal dependencies, resources extracted from YOLOv5, VGG19, and handmade descriptors
(HOG, LBP, etc.) are merged to form a complete appeal representation. By employing forget, input, and
output gates to update its hidden state in response to consecutive feature inputs, the LSTM generates a
more refined feature representation. Crosswalk, highway, tunnel, and parking road scene categories are given
probability ratings using a fully connected layer with a SoftMax classifier.

3.6.1 Long Short-Term Memory (LSTM) Model
An LSTM unit consists of three gates—forget gate, input gate, and output gate—that regulate informa-

tion flow through time. The following equations describe the LSTM operations:

a. Forget Gate: Determines which information from the previous state should be forgotten (Eq. (23)).

ft = σ(Wf . [ht−1 − xt] + b f ) (23)

where:

• ft is the forget gate activation,
• Wf and b f are the weight matrix and bias,
• ht−1 is the previous hidden state,
• xt is the current input, and
• σ is the sigmoid activation function.

b. Input Gate: Decides which added information is added to the cell state (Eq. (24)).

it = σ(Wi . [ht−1 − xt] + bi) (24)

where it is the input gate.

c. Output Gate: Controls the final output of the LSTM unit (Eq. (25)).

ot = σ(Wo . [ht−1 − xt] + bo) (25)

where ot is the input gate
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3.6.2 Road Scene Classification Using LSTM
A fully connected (FC) layer uses the SoftMax function to translate the hidden state ht to class

probabilities after the LSTM has processed the sequential features. A SoftMax classifier is applied to predict
one of the four classes (Eq. (26)):

P (y = c∣x) = eWc ht

Σ j eWj ht
(26)

where:

• P (y = c∣x) is the probability of a scene category c,
• Wc is the weight vector for class c,
• eWc ht ensures numerical stability.

3.6.3 Loss Function in Road Scene Classification
A loss function is used to quantify the difference between the predicted and actual class labels in the

road scene categorization task. It guides the optimization process by changing the model weights to minimize
classification errors. When employing Long Short-Term Memory (LSTM) networks for sequence modelling
and a hybrid feature fusion technique, a suitable loss function guarantees efficient learning. To optimize the
model, the categorical cross-entropy loss in Eq. (27) is employed:

L = −
N
∑
i=1

yi log( ŷi) (27)

where yi is the actual label and ŷi is the predicted probability.
For classifying multi-class road scenes, the categorical cross-entropy loss function works best. By

effectively penalizing inaccurate forecasts, it directs the LSTM model toward better generalization. For
applications involving autonomous driving, it guarantees quick convergence and excellent classification
accuracy when paired with the Adam optimizer.

3.6.4 Model Evaluation Metrics
The following metrics are used to assess the YOLOv5 module’s efficacy:
Mean Average Precision (mAP): Measures detection accuracy (Eq. (28)).

mAP = 1
N

N
∑
i=1

APi (28)

• Precision and Recall: (Eqs. (29) and (30))

Precision = TP
TP + FP

(29)

Recal l = TP
TP + FN

(30)

• Inference Speed: Measures detection time per image.
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4 Results and Discussion
The proposed road scene classification framework is evaluated on a dataset of 2725 images using

YOLOv5, VGG19, and handcrafted descriptors. The model is trained using an 80:20 training-to-testing ratio
and a multi-scale feature representation. Performance metrics like precision, recall, F1-score, and confusion
matrices confirm the robustness of the approach. The feature fusion strategy enhances classification accuracy,
demonstrating the superiority of integrating deep and handcrafted features.

Using an i5 processor, 16 GB of RAM, 512 GB of SSD, Python 3.9, and a Windows 11 environment, the
suggested VCS was created. The samples used for testing and training were divided in an 80:20% ratio. The
LSTM network trained and tested the samples using the settings listed in Table 3. An LSTM layer and three
Dense layers are utilized to build the sequential network that is used to categorize four types of roads scenes.
A Dropout layer comes after the initial Dense layer to help prevent overfitting. This network layer architecture
is utilized for VCS classification (see Fig. 9 below).

Table 3: Model architecture details

Parameters Value
Batch size 10

Epoch 1000
Activation linear
Optimizer RMSprop

Number of Neurons—LSTM 1000
First dense layer neurons 100

Dropout layer factor 0.5
Second dense layer neurons 20

Last dense layer neurons 1

Figure 9: Sequential LSTM Network for scene classification
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A random state is used to separate the training data, and the training-test sequence is repeated 10 times
to obtain an averaged classification accuracy. Experiments were conducted by combining a minimum of
two to four classes to assess the impact of sample variations across different categories and their effects on
training, validation, and testing.

As shown in Tables 4 [64] and 5, the CW and OP/T classes exhibit strong similarities, as many images in
the dataset contain pedestrian crossings and viaducts. The classification results presented in Table 5 evaluate
all class combinations in terms of precision, highlighting accuracy when three classes were considered. Fig. 10
[64] illustrates scenes with slow cross-tracks or minimal strip patterns correlated with track markings.
Additionally, as seen in Fig. 11 [64], sections of the visual content show significant similarities, contributing
to a reduction in classification accuracy.

Table 4: Binary class performance analysis

Class 1 Class 2 Training accuracy (%) Testing accuracy (%)
Crosswalk (CW) Highway (HW) 100 98.22
Crosswalk (CW) Overpass/Tunnel (OP/T) 98 91.87
Crosswalk (CW) Parking (P) 100 99.81
Highway (HW) Overpass/Tunnel (OP/T) 100 96.54
Highway (HW) Parking (P) 100 99.11

Overpass/Tunnel (OP/T) Parking (P) 100 93.74

Table 5: Three class performance

Class 1 Class 2 Class 3 Accuracy—
Training

Accuracy—
Test

Crosswalk (CW) Highway (HW) Overpass/Tunnel (OP/T) 99.78 84.71
Crosswalk (CW) Highway (HW) Parking (P) 99.79 89.45
Crosswalk (CW) Overpass/Tunnel (OP/T) Parking (P) 99.92 83.00
Highway (HW) Overpass/Tunnel (OP/T) Parking (P) 99.95 88

Figure 10: Visual examples of closely related road scenes: Crosswalks (CW) appearing near Overpass (OP), Crosswalks
within Tunnel (T), and misidentified lane markings resembling Crosswalks in Tunnel environments
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(a) (b) (c)

Figure 11: Overlapping Road Scene Elements: Crosswalk and Parking, Crosswalk under Tunnel, and Crosswalk on
Highway with Adjacent Parking

Fig. 12 depicts one of the training sequences for the LSTM network. When run for 1000 epochs, the
training loss is lower.

Figure 12: Training loss in LSTM

Table 6 summarizes the performance metrics of the proposed road scene classification model, including
accuracy, precision, recall, and F1-score across different datasets and experimental settings. It presents a
comparative analysis of various feature extraction techniques, highlighting the effectiveness of hybrid feature
fusion in improving classification performance. The results indicate that the LSTM-based model, combined
with multi-scale feature representation, achieved superior accuracy, with values exceeding 91% on intra-
domain data and 94% on inter-domain samples. Additionally, the table provides insights into the impact of
different training configurations, highlighting the robustness of the proposed approach across diverse road
scene categories. These findings validate the model’s capability for real-world deployment in autonomous
driving systems.

To evaluate the effectiveness of a road scene classification model, the confusion matrix, shown in Fig. 13,
visualizes the distribution of accurate and wrong predictions over several scene categories. Correctly
categorized occurrences are indicated by diagonal elements, but misclassified examples are highlighted by
off-diagonal components. Low misclassifications between visually similar categories are achieved by the
model, which also achieves excellent classification accuracy. Measures of accuracy, recall, and F1-score bolster
its robustness, indicating its capacity to successfully discern intricate road sceneries.
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Table 6: Model performance metrics for road scene classification

Dataset used Model Accuracy (%) Precision Recall F1-Score Training
time (s)

Places-365 LSTM +Hybrid Features 91.5 0.92 0.91 0.915 320
BDD100K LSTM +Hybrid Features 90.2 0.9 0.89 0.895 310
LabelMe LSTM +Hybrid Features 92 0.93 0.91 0.92 315
KITTI LSTM +Hybrid Features 94.5 0.95 0.94 0.945 330

Combined Dataset LSTM +Hybrid Features 96.3 0.958 0.961 0.960 340

Figure 13: Confusion matrix for road scene classification

Fig. 14 shows the error in classifying the test samples and the mean error due to all test samples. The
actual average prediction error is lower than that shown in the figure. For clarity, the network was trained
for 100 iterations and evaluated. The predicted class targets were rounded to the nearest integer value. This
introduces extra rounding errors. A better performance can be obtained using some predefined threshold
value to approximate the predicted class values. This would necessarily require an extensive experiments
evaluation on the available samples. In reality using the complete 1000 epoch, the average training loss is well
below 0.2 and the average prediction loss found is below 0.1.

After evaluating the network in all four classes, it produced test sample accuracy of 91.72% and
training accuracy of 99.72%. While comparatively few research relies on manual categorization of scene
photos, Table 7 shows that the proposed VCS may be compared with other similarly current approaches.
Average categorization accuracy serves as the basis for the comparison. The comparison demonstrates that
the suggested scene categorization model performs better than the [45] Improved Deep Network. On self-
generated datasets, the model proposed in [45] demonstrated good performance. The BDDK-100 dataset,
which served as the primary source for most images in the dataset, reports an accuracy of 75.99%.
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Figure 14: Average classification error for test samples

Table 7: Classification accuracy-based comparison with competing approaches

Method Number
of classes

Classes Average
accuracy %

Improved DN [45] 5 CW, Gas Station, HW, P, and
Street

75.99

Deep dual-resolution network
(DDRNet) [46]

19 Urban road scene categories 77.4

Proposed work 4 CW, HW, P, and OP/T 91.72
Proposed work (Real-time Road

scene frames)
4 CW, HW, P, and OP/T 94.68

4.1 Discussion
This section highlights the significance of hybrid feature integration, multi-task learning, and temporal

modelling while discussing some current works that advance the field of road scene categorization and
understanding. It publishes how the HybridLSTM model can be enhanced for the accuracy of better visual
classification using techniques such as semantic segmentation, fast R-CNN vehicle tracking and stable item
identification of LO-net. Moreover, deep network-based Methods with visual attention methods in the
strength of the road visual classification in autonomous driving has further improved. In line with the
objectives of the HybridLSTM strategy to enhance road scene understanding in dynamic contexts, these
investigations highlight the need of integrating several feature extraction methods and learning strategies to
better capture both spatial and temporal relationships.

The significance of identifying static items in order to comprehend road settings is demonstrated by Li
et al. (2024) when they introduce Lo-Net, a model that successfully classifies static objects in road sceneries.
The HybridLSTM technique, which integrates spatial and temporal information through LSTM networks, is
in perfect alignment with the accuracy of autonomous scene categorization, which may be further enhanced
by using hybrid resource approaches [38]. Dogan and Ergen (2024) demonstrate that including semantic
segmentation into their model will result in a more reliable classification using a CNN-based segmentation
technique for urban traffic scenarios [39]. According to Chaudhari (2024), the quicker R-CNN is successful in
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monitoring and detecting vehicles, and its combination with its HybridLSTM method can increase accuracy
in challenging traffic scenarios [40].

Alqarqaz et al. (2023) emphasized the necessity of feature extraction for autonomous vehicles, high-
lighting the importance of integrating various methods to enhance model performance [42]. Similarly, Khan
et al. (2023) emphasize the importance of integrating diverse resources to achieve robust classification. Visual
attention mechanisms, as highlighted in their study, can effectively focus on critical regions within road
scenes. Building on this concept, the authors propose incorporating multiple deep learning techniques,
such as CNN and LSTM, to enhance scene understanding in autonomous driving systems. Collectively,
these methods provide a strong foundation for advancing research in this field, contributing to a more
comprehensive and accurate visual assessment of road environments in autonomous vehicles [43]. In
addition, Guo et al. (2023) advocate for a Multi-Task Learning framework that integrates object detection,
road segmentation, and improved lane detection. This framework significantly enhances both the accuracy
and dynamic performance of the HybridLSTM model [51].

The path to this study illuminates the importance of integrating various features, multi-task learning and
temporal modelling to improve visual classification. Your hybrid approach adjusts with a stable and dynamic
Object Budget investigative, semantic split and trends to combine meditation methods. The purpose of this
integration is to increase accuracy in a complex way environment and facilitate real-time understanding.
Comparative analysis (Table 8) compares different way visual classification approaches, highlighting their
convenience extraction methods, models, and temporal analysis capabilities. Traditional methods such
as LO-net and fast R-CNN depend on spatial convenience extraction but lacks temporal awareness,
while multi-task learning and feature fusion networks improve but fail to capture sequential dependence.
RoadsegNET and focus-based CNN-RNN models provide ER feature education but face high calculation
costs and complex training requirements. HybridLSTM, a proposed model, combines CNN-based spatial
convenience extraction with LSTM-based temporal learning, improving the accuracy of classification in
dynamic road scenes.

Table 8: Comparative analysis of road scene classification methods based on feature extraction and temporal modelling
approaches

Method/
Technique

Feature
extraction

Classification
model

Temporal
analysis

Performance Limitations

LO-Net [38] Local and global
object features

CNN-based
classification

No High accuracy
for static
objects

Limited
adaptability to

dynamic
scenes

Faster R-CNN
[39]

Region-based
feature extraction

Deep CNN
with ROI
pooling

No Effective in
detecting
vehicles

Computationally
expensive

Multi-Task
Learning [40]

Hybrid spatial
feature learning

Multi-task
CNN

framework

No Simultaneous
detection and
classification

Requires large
datasets

RoadSegNet
[41]

Deep
learning-based
segmentation

CNN model No Efficient urban
road detection

Lacks
temporal
awareness

(Continued)
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Table 8 (continued)

Method/
Technique

Feature
extraction

Classification
model

Temporal
analysis

Performance Limitations

Attention-
based

CNN-RNN
[42]

Hybrid deep
learning with

attention

CNN-RNN
hybrid model

Yes Improved
sequential

scene
understanding

High training
complexity

Hybrid
Feature Fusion
Network [43]

Multi-modal
feature extraction

Feature fusion
with deep
learning

No Robust
classification
for various

environments

Lacks
sequential
learning

HybridLSTM
(Proposed

Model)

Hybrid CNN and
handcrafted

features

CNN with Long
Short-Term

Memory
(LSTM)

Yes Superior
classification
in dynamic

scenes

Requires
optimized

hyperparame-
ters

The HybridLSTM model effectively combines temporal learning with spatial convenience extraction,
overcomes the drawbacks of earlier methods, and increases the classification accuracy of road scenes in
dynamic environments, as demonstrated by this comparative research. It becomes gradually dependent,
setting it apart from previous approaches and making it more appropriate for real-world autonomous
driving applications.

4.1.1 Why HybridLSTM Outperforms Other Methods
HybridLSTM surpasses existing road scenes classification methods, integrating hybrid resource extrac-

tion, temporal modelling and computational efficiency. Unlike models such as faster R-CNN and LO-NET,
which depend only on registration-based resource extraction, HybridLSTM combines CNN-based descrip-
tors (Yolov5, VGG19) and handcrafted descriptors to capture high-level contextual and fine features. This
hybrid approach enhances the model’s ability to distinguish visually similar road scenes, such as pedestrian
bands in tunnel versus highways, improving robustness for occlusions and lighting variations. In addition,
most previous methods, such as roadsegnet and hybrid resource fusion networks, lack temporal analysis,
making them less effective in dynamic environments. HybridLSTM exceeds this limitation by integrating
short-term memory networks (LSTM), allowing sequential dependencies to capture and perform well in
change traffic conditions such as moving vehicles and variable climate.

In addition to accuracy, HybridLSTM reaches a balance between computational efficiency and real-
time performance. Compared to deep-depth deep learning models such as CNN-RNN based on attention,
HybridLSTM optimizes resource selection to reduce unnecessary calculations, maintaining a high classifi-
cation accuracy of 96.3%. In addition, its cross-mastery adaptability, trained in various data sets (BDD100K,
Kitti, Places-365 and LabelMe), ensures generalization for various road environments without extensive
adjustment. These advantages make HybridLSTM a highly effective and scalable solution for real-world
autonomous steering applications, addressing the limitations of existing methods and increasing accuracy,
efficiency and adaptability in complex road scenes.
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4.1.2 Unique Features of HybridLSTM
• Hybrid Feature Extraction: Combines deep learning-based object detection (YOLOv5, VGG19) with

handcrafted descriptors for comprehensive scene understanding.
• Temporal Modelling with LSTM: Captures sequential dependencies, improving classification in

dynamic and changing road environments.
• Computational Efficiency: Optimized feature selection reduces processing overhead compared to other

deep learning models.
• High Classification Accuracy: Achieves 96.3% accuracy, 95.8% precision, 96.1% recall, and 96.0% F1-

score, outperforming other methods.
• Cross-Domain Generalization: Trained on multiple datasets (BDD100K, KITTI, Places-365, LabelMe),

ensuring robustness across diverse road environments.
• Real-World Applicability: Suitable for autonomous driving systems with minimal need for extensive

dataset fine-tuning.

Table 9 shows how well the HybridLSTM model suggested compared to the most advanced methods
currently used for road visual classification. Steps including processing time, F1-score, recall, accuracy,
and accuracy are used to evaluate the influence of each model. The accuracy of Superior F1-Score and
Classification shows how strong HybridLSTM is learning complex visual representations. HybridLSTM
delivers better accuracy and recall than both standard LSTM and traditional CNN-based technologies, which
reduces incorrect taxonomy rate. Moreover, when transformer-based models provide competitive accuracy,
our method is more effective for real-time applications because it is much more calculative complexity
and processing time than HybridLSTM. The effectiveness of HybridLSTM has been confirmed by this
comparative study of HybridLSTM in getting the right trade between accuracy and calculative efficiency.

Table 9: Comparison of HybridLSTM operations with existing models in road visual classification

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) Inference
time (ms)

CNN-based model 85.2 83.7 84.1 83.9 35
ResNet-50 88.5 87.3 86.9 87.1 42
VGG-16 86.9 85.8 85.3 85.5 40

LSTM-based model 89.7 88.5 88.2 88.3 50
Transformer-Based 91.2 90.1 89.8 90 55

HybridLSTM (Proposed) 96.3 95.8 96.1 96.0 47

4.1.3 Mitigating High Computational Costs for Real-World Applications
HybridLSTM integrates object detection, deep learning-based scene feature extraction, and handcrafted

feature analysis, making it computationally intensive. To mitigate this, several optimization strategies can be
implemented:

• Model Pruning and Quantization: Reducing the precision of weights (e.g., using INT8 instead of FP32)
can significantly lower memory usage and computation costs without substantial accuracy loss.

• Knowledge Distillation: Training a smaller, lightweight student model using the knowledge from the
larger HybridLSTM model can retain classification performance while reducing computational over-
head.
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• Efficient Feature Fusion: Instead of fusing high-dimensional feature vectors directly, dimensionality
reduction techniques (e.g., PCA or autoencoders) can be applied to streamline processing.

• Optimized Data Augmentation: Rather than performing complex augmentations at runtime, pre-
processed and augmented datasets can be stored for efficient retrieval, reducing overhead.

• Lightweight Backbone Models: Replacing VGG19 with a more computationally efficient CNN backbone
(such as MobileNetV3 or Efficient Net) can reduce processing time while maintaining accuracy.

By incorporating these strategies, HybridLSTM can be optimized for real-world deployment on embed-
ded systems while maintaining its superior classification accuracy and robustness in diverse road scenes.

5 Performance on Real-Time Road Scene Frames
Although datasets were produced for this work by collecting samples from various benchmark datasets

and real-world scenarios, they were converted using videos captured in different geographical locations
worldwide. Additionally, real-time videos of traffic scenes were obtained from various locations in Nagpur,
Maharashtra, India. The acquisition device used was a Xiaomi Redmi Note 13 5G mobile phone, with 256
GB, 12 GB RAM, and 108 MP resolution with 30 frames per second. The mobile phone was mounted on one
of the side mirrors of the car. The videos were captured during moderate and heavy traffic, and daytime and
night. During the day, the weather was clear without any possibility of clouds or rain. The videos at night
were captured when there was high illumination due to streetlights and lights from vehicles. A total of 17
such real traffic videos were captured with audio for a duration between 40–45 s. Therefore, the number of
frames contained in a single video was approximately not below 1200.

The videos were converted to frames at a lower rate but not fixed. However, the frame rate was not below
10. The colour frames belonging to four classes were manually identified and sorted. Below are some sample
images extracted from the videos. Figs. 15 and 16 show crosswalks at night and daytime. Figs. 17 and 18 show
a highway scene from Nagpur to Wardha, Maharashtra, India.

Figure 15: A real-time road traffic image depicting a crosswalk under a bridge at night
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Figure 16: A real-time image depicting a crosswalk at daytime

Figure 17: A real-time image depicting vehicles on a highway at daytime

Figure 18: A real-time image depicting a highway at daytime

Figs. 19 and 20 depict the road under the metro bridge and tunnel road respectively from the Nagpur
Chhatrapati Shivaji Maharaj Square and Manish Nagar underpass. The last sample image shown in Fig. 21
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belongs to the roadside parking but is not allotted. That is the parking strips are missing but vehicles are
allowed to be parked.

Figure 19: A real-time image depicting a road under a bridge at night

Figure 20: A real-time image depicting a tunnel road at night with high illumination

Figure 21: A real-time image depicting roadside parking (ambiguous) at night
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The missing parking strips, the dimmed crosswalk, the crosswalk-under-bridge multiclass scenario, and
the high illumination are intended to improve the challenges in the road scene images. The count of samples
belonging to each of the categories is listed in Table 10. The maximum samples considered is 59 for the
highway class and the minimum of 10 for the parking lot (ambiguous).

Table 10: The description of sample images obtained from real-time videos

Sr. No. Class Number of samples
1 Crosswalk 50
2 Highway 59
3 Tunnel/Underpass 40
4 Parking Lot 10

Total test samples 159

To analyze the scene classification network’s generalization ability, all previously collected samples
from the benchmark dataset were used to train the classifier. No modifications were made to the classifier
architectures or hyperparameters. Hybrid features were extracted from all 159 real-time acquired road scene
images from videos, normalized using the Max-Normalization algorithm, with the mean considered over
two samples for evaluation.

For Max-Normalization, the training set (2725 samples from four categories) and the testing set (159
samples) were concatenated to compute the maximum value of individual features. The samples were
separated and subjected to compute the mean considering two adjacent feature values to alleviate the size of
the feature vector. The performance of the classifier is shown in Table 9. It is observed that the customized
LSTM network on real-time road scene frames outperforms the other two competing techniques.

6 Conclusion
The HybridLSTM framework introduced in this study offers a novel approach to road scene clas-

sification by effectively integrating deep learning-based, object-based, and handcrafted feature extraction
techniques. This comprehensive fusion enables the model to capture both high-level contextual information
and fine-grained details, leading to superior performance. Specifically, the model achieved a classification
accuracy of 96.3%, precision of 95.8%, recall of 96.1%, and an F1-score of 96.0%, demonstrating its robustness
across diverse road scenarios, including roadside parking, parking under tunnels, dimly lit crosswalks, and
dynamic traffic conditions. Notably, HybridLSTM maintains high classification accuracy while minimizing
computational complexity, making it well-suited for real-time road scene analysis.

However, opportunities for enhancement remain, particularly in addressing underrepresented classes
such as overpass tunnels (OP/T) and improving the detection of specific elements like crosswalks through
transfer learning. Future research directions will focus on improving the temporal modelling of sequential
road scenes to enhance real-time decision-making in dynamic environments. Additionally, lightweight
model adaptations for deployment on edge devices will be explored to reduce computational costs without
compromising accuracy. Another avenue for improvement includes self-supervised and few-shot learn-
ing techniques to enhance classification performance with limited labelled data. Furthermore, extending
HybridLSTM to multi-modal sensor fusion, incorporating LiDAR and radar data, could further improve
robustness in low-visibility conditions. Addressing these challenges will contribute to the development of
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more efficient and reliable autonomous perception systems, strengthening the real-world applicability of
HybridLSTM in intelligent transportation.
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