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ABSTRACT: Wireless Sensor Networks (WSNs) have emerged as crucial tools for real-time environmental monitoring
through distributed sensor nodes (SNs). However, the operational lifespan of WSNs is significantly constrained by
the limited energy resources of SNs. Current energy efficiency strategies, such as clustering, multi-hop routing, and
data aggregation, face challenges, including uneven energy depletion, high computational demands, and suboptimal
cluster head (CH) selection. To address these limitations, this paper proposes a hybrid methodology that optimizes
energy consumption (EC) while maintaining network performance. The proposed approach integrates the Low Energy
Adaptive Clustering Hierarchy with Deterministic (LEACH-D) protocol using an Artificial Neural Network (ANN)
and Bayesian Regularization Algorithm (BRA). LEACH-D improves upon conventional LEACH by ensuring more
uniform energy usage across SNs, mitigating inefficiencies from random CH selection. The ANN further enhances CH
selection and routing processes, effectively reducing data transmission overhead and idle listening. Simulation results
reveal that the LEACH-D-ANN model significantly reduces EC and extends the network’s lifespan compared to existing
protocols. This framework offers a promising solution to the energy efficiency challenges in WSNs, paving the way for
more sustainable and reliable network deployments.

KEYWORDS: Wireless sensor networks (WSNs); machine learning based artificial neural networks (ANNs); energy
consumption (EC); LEACH-D; sensor nodes (SNs); Bayesian Regularization Algorithm (BRA)

1 Introduction
Wireless Sensor Networks (WSNs) are integral in a wide array of applications, ranging from small-

scale implementations in healthcare and residential monitoring to large-scale deployments in environmental
surveillance, education, and military operations, as discussed in [1]. By using distributed Sensor Nodes (SNs),
WSNs facilitate real-time data collection, measurement, and observation explained in [2]. These networks
are particularly valued for their cost-effectiveness and ability to handle large volumes of data in dynamic
environments [3]. An Energy-Aware Low-Latency Routing Data-Driven Model in Mobile Edge Computing
(EALLR) was proposed in [4]. This model introduced an edge node that can perform computation and
data processing close to the data source, thereby reducing latency and bandwidth consumption, optimizing
data transmission paths, and ensuring that messages reach the target nodes quickly and efficiently but it
still has complexity issue. The authors in [5] introduced a Heterogeneous Attribute Reconstruction and
Representation (HARR) learning paradigm to model arbitrary attribute relationships for cluster analysis.
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Meanwhile, Zhang et al. in [6] proposed Belief Shift Clustering (BSC), an evidential extension of mean
shift clustering, leveraging belief functions. BSC classifies objects as noise, precise, or imprecise via belief
shifts and employs credal redistribution for imprecise objects. However, BSC suffers from the uniform
effect, necessitating dynamic meta-cluster reassignment. Liu et al. in [7] analyzed critical density (CD) for
coverage in Camera Sensor Networks (CSNs) with heterogeneous sensors and irregular obstacles. They
formulated occlusion K-coverage and derived the expected sensing region, yet their CD estimation remained
approximate for desired K-coverage ratios due to border effects and occlusion dynamics.

Despite their versatility, WSNs face significant challenges, particularly related to limited bandwidth,
memory, and energy resources. These constraints hinder the ability of SNs to efficiently transmit and store
data [8,9]. As a result, enhancing the network lifetime and minimizing Energy Consumption (EC) are crucial
objectives for improving WSN performance, especially in expansive network setups where recharging node
batteries becomes a logistical challenge as mentioned in [10]. These limitations often lead to network issues
such as high energy depletion, increased latency, and even system failures due to node exhaustion, radio
interference, and high noise levels.

This study addresses key aspects such as CH selection mechanisms, energy efficiency, computational
complexity, scalability, and routing optimization. LEACH [11] and HEED [12] adopt probabilistic CH
selection, yielding moderate energy efficiency but differing in computational complexity, low in LEACH and
high in HEED, while both lacking routing optimization. El-Sayed et al.’s DEEC in [13] employs an energy
driven CH selection strategy, enhancing energy efficiency at the cost of increased computational overhead.
PSO-based clustering [14] leverages metaheuristic techniques, achieving superior energy efficiency yet
incurring substantial computational costs and exhibiting limited scalability. In contrast, LEACH-D employs
deterministic CH selection, ensuring high energy efficiency while maintaining minimal computational
complexity. Furthermore, it exhibits enhanced scalability and incorporates an ANN-based hybrid approach
for optimized routing, making it a compelling choice for energy-efficient, large-scale WSN deployments.

1.1 Motivation
Given the limitations of existing algorithms, there is a need for a more balanced and scalable energy

optimization approach that combines low-complexity clustering, adaptive ANN capabilities, and efficient
EC management to maintain network connectivity and extend the network lifespan. Traditional routing
protocols, such as LEACH, offer effective energy efficiency improvements but may not fully leverage modern
computational techniques like ML and artificial intelligence for intelligent decision-making and optimiza-
tion. To address these challenges, this paper proposes a hybrid approach that combines the LEACH-D
(Low Energy Adaptive Clustering Hierarchy with Deterministic Cluster Head Selection) protocol with an
ANN trained using the Bayesian Regularization Algorithm (BRA). LEACH-D, an enhanced version of the
original LEACH, introduces a deterministic selection process for CHs to ensure more uniform EC across
SNs. Furthermore, the integration of an ANN refines CH selection and routing decisions, minimizing data
transmission overhead and idle listening, thereby optimizing overall network performance. This approach
not only improves energy efficiency but also extends the network lifespan, offering a promising solution for
WSNs facing energy constraints and operational challenges in large-scale deployments.

1.2 Contributions
The key contributions of this research are as follows:

1. A novel hybrid model is proposed, integrating the LEACH-D protocol with an ANN. This hybrid
approach leverages the deterministic CH selection process of LEACH-D and the adaptive decision-
making capabilities of ANN to optimize both routing and clustering in WSNs. The model overcomes the



Comput Mater Contin. 2025;84(3) 5465

limitations of traditional methods, including uneven energy distribution and suboptimal CH selection,
significantly improving EC efficiency.

2. The LEACH-D protocol is enhanced to minimize End-to-End Delay (D) and EC in the network. By
introducing efficient clustering techniques, LEACH-D ensures uniform energy distribution among SNs.
ANN further refines the CH selection and routing decisions, reducing idle listening and minimizing
transmission overhead, which leads to improved network performance and increased operational life-
time.

3. Extensive simulations and performance comparisons with existing protocols were conducted to validate
the proposed hybrid model. The results demonstrate a significant reduction in EC and D while enhancing
network longevity.
When compared to traditional energy-efficient algorithms, the proposed hybrid model demonstrates

superior throughput, reduced EC, and an extended network lifespan. These improvements contribute to
the overall sustainability and reliability of WSNs, making the model a promising solution for large-scale
deployments in real-time applications.

To provide a comprehensive understanding of how our approach compares to existing methodolo-
gies, Section 2 reviews related works on energy-efficient clustering, ML-based optimizations, and routing
strategies for WSNs.

2 Related Work
Efficient energy utilization and network longevity are critical considerations in WSN design. Numerous

studies have focused on enhancing the performance of SNs in WSNs. For example, an improved ACO-
based routing method, considering transmission distance, direction, and the role of ants in the search
process, was proposed in [10,15]. However, this approach is less effective for large-scale networks. Another
routing strategy, which integrates type-2 fuzzy logic with an ACO algorithm, is discussed in [16], but it
adds considerable complexity due to the extensive parameter tuning required in both techniques. Type-2
fuzzy systems require additional computational resources for handling uncertainties in the input variables,
as they involve complex membership functions and processing of numerous fuzzy rules. Combined with
ACO, which performs iterative searches over the solution space using a population of “ants”, this method
incurs significant overhead, especially in large-scale WSNs where processing resources are limited. Power
management remains crucial for energy preservation in SNs, with regular adjustments being common
practice. Han et al. in [17] introduced an adaptive duty cycling algorithm to optimize power usage by
considering data rates and traffic patterns, though it may cause delays in data transmission due to the
consumption of additional processing power and memory.

Data aggregation techniques reduce redundancy by combining sensor data at intermediate nodes before
transmission to the base station (BS). Yet, aggregator nodes often experience accelerated energy depletion,
leading to uneven energy distribution and potential network partitioning. To address this, researchers in
[18] introduced a dynamic data aggregation method that adjusts to network conditions, thereby optimizing
energy usage and minimizing data transmission. In [19], Hussein et al. introduced a compression-based
approach using wavelet transformation to reduce data size in WSNs, thereby lowering EC, though this
method adds computational complexity.

Machine Learning (ML) and Artificial Intelligence (AI) have also shown promise in WSN energy opti-
mization. The study in [20] explored energy-efficient CH rotation and energy-balanced unequal clustering,
using gradient methods to optimize CH distribution. However, frequent CH rotations may induce delays
from route re-establishment, while unequal clustering complicates topology formation. Ding et al. in [21]
proposed an ML-based routing system that dynamically adjusts paths based on historical node energy data.
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Similarly, Choi et al. in [22] developed AI algorithms to intelligently control transmission power and duty
cycles, maximizing energy efficiency. Topology and routing protocols play a pivotal role. A distributed
topology control approach [23] dynamically adjusts transmission power in response to network changes,
reducing EC. A hybrid LEACH-ACO protocol [24] improves energy efficiency but introduces integration
complexity and compatibility challenges. Lin et al. [25] applied social welfare theory to balance energy
during CH selection, though scalability and social dynamics pose challenges. Authors in [26] enhance the
cluster-to-normal ratio protocol by integrating data transmission networks to enable hopping and mitigate
node depletion, addressing energy gaps. However, its reliance on gateway nodes near the base station limits
scalability and lacks rigorous evaluation. Similarly, in another study [27], LEACH-LoRaWAN hybridization
improves IoT energy efficiency but overlooks computational complexity trade-offs. Meanwhile, Ref. [28]
proposed a fuzzy SCH selection method using energy, BS proximity, node density, and communication
quality via range-free localization. While innovative, its static fuzzy rules lack adaptability to dynamic
network environments. Collectively, these studies advance WSN longevity but suffer from narrow evaluation
scopes, insufficient generalizability, or unaddressed real-world constraints like mobility and scalability.

ANN applications in WSN energy optimization are categorized by trained node types. Some systems
transmit raw data to a gateway-connected workstation for off-network processing, simplifying deployment,
as discussed in [29]. Alternatively, a centralized BS simplifies setup by handling data processing, while CHs
are trained for efficient data aggregation, reorganizing the transmission of ANN results to the BS.

Researchers have utilized ANNs to classify farm animal behaviors such as strolling, grazing, lying down,
and standing. Accelerometers attached to SNs on the animals’ necks collect data, which is transmitted to
the BS and then relayed to a workstation for ANN-based classification. This system supports real-time
animal behavior monitoring, enabling early illness detection and enhancing farm productivity. However,
the frequent data sampling generates a high volume of packets, leading to significant energy overhead on
the SNs. Additionally, when animals exhibit group behaviors, the resulting exponential traffic at relay nodes
further escalates EC, as presented in [30].

In another study, researchers suggested in [31], a WSN integrated with an ANN was used for early
forest fire detection, utilizing environmental data such as temperature, light, and smoke and analyzed by a
pre-trained ANN at the BS. To mitigate data ambiguity and associated risks, the authors opted against data
aggregation techniques. The system achieved an accuracy rate exceeding 93% in identifying fire incidents
within 20 s and accurately determined the fire’s growth direction. However, twenty sec detection time,
affected by the noisy data from SNs, poses issues. While improving sensor accuracy could shorten detection
times, it would also increase EC.

To improve both responsiveness and energy efficiency in forest fire detection, a clustered WSN structure
was proposed in [32]. This system employs in-network processing techniques, as detailed in [33,34], to
forecast fire outbreaks. SNs collect environmental data, such as wind speed, temperature, smoke, and
humidity, which is transmitted to their CHs. The CHs then use ANNs to compute a weather index from
this data. This index is relayed to a manager node via the BS, enabling real-time assessment of forest fire
risk and emergency reporting. The in-network processing approach minimizes communication overhead
and conserves energy but requires specialized CHs to manage increased data traffic and execute complex
ANN computations.

In [35], authors proposed two methods: Reduced k-means with ANN (RkM-ANN) and Delay Bound
Reduced k-means with ANN (DBRkM-ANN). RkM-ANN reduces latency by optimizing Mobile Sink (MS)
paths using Rendezvous Points (RPs), while DBRkM-ANN designs paths with delay constraints to meet
specified delay limits. Both approaches utilize a weight function and k-means clustering for RP selection,
improving network efficiency and coverage. Yet, these methods can impose computational overhead due
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to clustering processes and delay-bound calculations, which could limit their practical efficiency in WSNs
requiring immediate responses and minimal processing delays.

Existing methods reduce WSN energy use but often introduce complexity, overhead, or trade-offs
between efficiency and responsiveness. In contrast, our hybrid model integrates deterministic clustering with
adaptive ML to optimize CH selection and routing, addressing these challenges in large-scale deployments.

3 Suggested Energy Consumption and Delay Model
WSNs consist of SNs, communication modules, power sources, and application-specific components

that enable data collection and transmission, particularly in remote environments. However, WSNs face
significant challenges, including high EC and latency, which hinder their performance and efficiency [36,37].
The development innovative methodologies s therefore essential to accurately evaluate and address these EC
and delay factors, ultimately improving network reliability and long-term sustainability.

3.1 Development of Wireless EC Model for WSN
EC management in WSNs is a critical challenge, especially with the increasing number of devices

and sensors leading to a significant rise in EC. Poor energy management of nodes can result in higher
maintenance costs and increased system latency, both of which have substantial financial implications. To
mitigate this issue, it is essential to deploy energy-efficient devices, optimize network topologies for reduced
energy usage, and implement advanced energy management protocols. Integrating wireless EC models can
improve energy management by accurately estimating EC across different transmission methods. A wireless
EC model for evaluating SNs EC is discussed in [38], identifying three primary energy-consuming activities:
data processing, interaction, and communication, with the latter being the most energy-intensive. The EC
for transmitting l-bits of data over a distance d is calculated using the following formula.

ET X (l , d) =
⎧⎪⎪⎨⎪⎪⎩

l × Eel ec + l × ε fs × d2 i f d ≤ d0

l × Eel ec + l × εm p × d4 i f d > d0
(1)

E(l ,d) = l × Eel ec (2)

where Eel ec represents the energy used by the transmitter or receiver, and d0 is the lowest measurable path.
The threshold distance is calculated using the equation provided in (3).

d0 =
√ ε fs

εm p
(3)

In this context, amplification energy in the free space model is denoted as ε f s , and in the multipath
model as εm p, with values dependent on the transmitter’s amplifier model. The energy utilized by a SN
receiving l-bits can be expressed as:

ER (l) = l × Eel ec (4)

Thus, the formula for calculating the total EC of CHs and MCHs per transmission round is given as:

E = ER (l) × (NCH + NMCH) + Eag + ET(l , d) (5)

here, NCH and NMCH denote the number of CHs and MCHs in the current round, respectively. Eag denotes
the energy utilized by each CH for aggregating data from member nodes, calculated by the formula:

Eag = n × ER (l) (6)
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3.2 Development of Delay Model for WSN
WSNs face several critical challenges, including network congestion, data overload, and suboptimal data

management, which collectively contribute to increased latency in both data transmission and processing. To
mitigate these delays, optimizing network architecture, integrating edge computing, reducing data volume,
and employing efficient transmission algorithms are crucial. These strategies enhance WSN performance,
especially in remote areas. A delay model as formulated in [39] is utilized to assess transmission performance,
outlining the timing for SN activities such as cluster formation, data transmission, and processing. EC per
round T(r) is calculated using the following equation:

T (r) = Ttrans (r) + Tcl uster (r) + TBS (r) (7)

Tcl uster (r) as defined in [40] represents the time taken by a node to form a cluster in round r,
Nmax _c l uster indicates the higher number of cluster members, and τcl uster denotes the cluster time formation
coefficient.

Tcl uster (r) = Nmax _c l uster ∗ τc l uster (8)

Ttrans (r) as formulated in [41] denotes allocated time for data transmission in round r, with Ttrans as
the transmission time coefficient.

Ttrans (r) = d ∗ Ttrans (9)

TBS (r) represents the time the BS spends processing data in round r, where Nthr is the BS processing
power threshold and NBS is the data processed by the BS in round r. The coefficient τBSL applies when
NBS > Nthr , and τBSS is used when NBS ≤ Nthr .

TBS (r) =
⎧⎪⎪⎨⎪⎪⎩

NBS − Nthr × τBSL + Nthr × τBSS , NBS > Nthr

NBS × τBSs , NBS ≤ Nthr
(10)

4 Analysis of Cluster Based LEACH-D Algorithm Approach
In [42], the authors introduced a clustering algorithm to improve WSN performance and reduce

sensor EC. The approach involves organizing SNs into clusters, with each cluster managed by a CH that
intermediates between the nodes and the BS. CHs aggregate data from neighboring nodes and transmit
it to the BS, reducing the direct communication load on individual nodes and thus minimizing EC and
transmission latency. Table 1 summarizes selected LEACH-based protocols that represent the broader class
of hierarchical clustering approaches in WSNs. The listed protocols were chosen based on their foundational
role in the evolution of LEACH variants, and relevance to the problem of energy-efficient CH selection. It
highlights critical drawbacks, such as poor scalability, static clustering limitations, and lack of energy-aware
decision-making that motivated the development of our proposed hybrid LEACH-D model.

Table 1: Existing LEACH-based protocols

Existing LEACH-based protocols Drawbacks
LEACH [43] Communication cost is high.

LEACH-C [44] Low-energy nodes could be selected for CHs
selection and not recommended for large

network.

(Continued)
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Table 1 (continued)

Existing LEACH-based protocols Drawbacks

Q-LEACH [45] Only used in fixed cluster formation.
Addition or removal of nodes is not possible.

LEACH-M [46] They quickly shift positions between clusters.
V-LEACH [47] If CH energy depletes, the network becomes

disconnected.
CQ-LEACH [48] Balanced energy distribution and network,

coverage challenges in large-scale networks.
NR-LEACH [49] Neighbor nodes’ remaining energy is not

considered.
I-LEACH [50] Applied only on small networks.

The selection of LEACH-D as the foundation for our proposed hybrid model is justified by its distinct
advantages in energy efficiency, scalability, deterministic clustering, and computational simplicity. Table 2
summarizes some of the advantages of LEACH-D protocol, we compare it with other commonly used
clustering protocols for motivation.

Table 2: Comparison of LEACH-D with other clustering protocols

Protocol CH selection Energy
efficiency

Computational
complexity Scalability Routing

optimization
LEACH [11] Probabilistic Moderate Low Moderate No
HEED [12] Probabilistic Moderate High Moderate No
DEEC [13] Energy-Based Moderate High Moderate No

PSO-Based [14] Metaheuristic High Very high Low No
LEACH-D [51] Deterministic High Low High Yes (Hybrid

with ANN)

This comparison demonstrates that LEACH-D strikes the best balance between energy efficiency, low
complexity, and scalability, making it the optimal choice for real-time, energy-constrained WSN applications.

4.1 Development Clustering and Data Transmission Process for WSN
This paper presents LEACH-D, an enhanced version of the original LEACH protocol. Unlike its

predecessor, which failed to consider optimal CH positioning, resulting in premature energy depletion of
CHs located far from the BS, LEACH-D introduces an additional CH clustering phase. This secondary phase,
executed after initial CH selection, designates certain CHs as relay nodes to optimize data aggregation and
transmission between CHs.

Initially, LEACH-D employs the same selection formula as the traditional LEACH algorithm, expressed
as:

P (n) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h

1 − h × (r ×mod ( 1
h
)

, n ∈ G

0, el se

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(11)
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In the next rounds, LEACH-D applies the following selection formula

P (n) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h

1 − h × (r ×mod ( 1
h
)
× Ei_current

Eav g
, n ∈ G

0, el se

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(12)

In this network framework, “h” indicates the possibility of a regular node becoming a CH or MCH.
The variable “r” represents the current round, while n signifies the expected CH for that round. “G” refers
to nodes that have not served as CHs in the previous “ 1

h ” rounds. “Eav g” is the average network energy at
the initial stage, calculated as the total remaining energy over the number of active nodes, and “Ei_current”
indicates the current energy of node i.

In subsequent rounds, threshold estimation decreases the probability of selecting a node with lesser
residual energy as CH by considering the ratio Ei_current

Eav g
.

4.1.1 Cluster Procedure
During the initial clustering phase of the sensor network, each node is randomly assigned a value

between 0 and 1. Nodes with values below the threshold P(n) are designated as CHs. These CHs manage data
aggregation within their clusters and broadcast “cluster formation request” messages, detailing their location
and energy levels. Regular nodes select a CH based on signal power and proximity, and then send a “consent”
message to the chosen CH, including their ID, position, and remaining energy.

In subsequent rounds, CHs are randomly reassigned, and those with values below the threshold P(n) are
designated as MCHs. MCHs initiate cluster formation by broadcasting “cluster formation request” messages
to gather data from all CHs. Further CHs evaluate signal strength and path to create connections, sending a
“consent” message to the selected MCH to finalize the cluster. Nodes receiving multiple requests choose the
cluster with the highest remaining energy. Algorithm 1 explains the pseudo code for LEACH-D clustering
methodology. The algorithm begins with deploying a set of SNs and a BS. The BS broadcasts its location,
allowing each SN to calculate its distance to the BS using Euclidean distance. In the first phase, nodes self-
select as CHs based on a threshold function T(n). In the second phase, MCHs are chosen among the CHs
based on a new random assignment and threshold evaluation. The function concludes once the clustering
and MCH assignments are finalized, establishing an efficient dual-level cluster structure.

Algorithm 1: LEACH-D
Step 1: Deployment of SNs and BS Communication

Input: Set of SNs Si : S1, S2, S3...Sn
Function: Node clustering and initialization of data transmission

Step 2: BS Broadcasting
BS broadcasts it location to all nodes in set S.

Step 3: Distance Calculation
The nodes in set S calculates their distance to BS:

di =
√
(xi − x)2 + (yi − y)2

Step 4: CH Selection
For each SN Si :
Assigning a random number, R, to each node

If Ri < T(n) then
Si becomes CH

(Continued)
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Algorithm 1 (continued)
Step 5: Cluster Formation

The CHs transmit a “request to form a cluster” message to nearby nodes.
The selection process for which cluster to join is determined by other CHs, who evaluate
the power of the received signal and the path between CH.
Once they decide, a “consent” message is transmitted to the appropriate CH

Step 6: MCH Selection
For each CH
Re-assigning a random number R to each CH

If R < T(n) then Si becomes a MCH
Step 7: Inter-Cluster Communication

The MCHs transmit a “request from a cluster” message to nearby nodes.
Upon receiving signals from multiple CHs, other CHs use the power of the signal and
distance as criteria to decide which cluster to join.
They then communicate their decision by sending “consent” signal to the corresponding
MCH

Step 8: End of function

4.1.2 Data Transmission Process
In this phase, MCHs generate and distribute TDMA schedules and distribute TDMA schedules to their

associated CHs. Data transmission follows these schedules, where MCHs communicate with the BS, CHs
communicate aggregated data to MCHs, and SNs gather and send environmental data to their respective
CHs. Fig. 1 illustrates this three-stage communication process.

Figure 1: Architecture of LEACH-D model [40]
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During cluster formation, nodes that fail to receive any “request to form cluster” message within their
transmission range initiate a recovery mechanism by broadcasting an “assistance request” signal. This action
classifies them as Lonely Nodes (LNs). Upon receiving this signal, neighboring standard SNs respond with
messages containing their node ID, remaining energy, cluster head ID, and location. The LNs then evaluate
these responses and send a “consent” message to the SNs that is both closest and has the highest remaining
energy. This iterative process ensures that all LNs are successfully integrated into clusters. By doing so, the
approach promotes an equitable distribution of EC across network SNs, effectively reducing overall EC and
preventing premature depletion of nodes, particularly those located at a greater distance from the BS as
mentioned in [52].

4.2 Suggested Artificial Neural Network Model
ANN represent a specialized subfield of ML within the broader domain of AI. Inspired by the neural net-

works observed in the human brain, ANNs are computer systems in which “neurons” process and transmit
data to nodes in a network. ANNs are used in many different fields, such as data processing, decision-making,
and energy prediction [53]. ANNs comprise of interconnected layers of neurons, each neuron processing
inputs and generating outputs via weighted connections and activation functions. Predictions stem from
patterns and correlations learned through trained data. Supervised and unsupervised are two major learning
paradigms within ANNs.

In this study, a supervised ANN learning architecture [54] is employed within WSNs trained using
Bayesian Regularization algorithm as shown in Fig. 2. A hundred WSNs, each housing a hundred SNs
forming clusters, are investigated. Within each cluster, the CH node with the highest energy level collates
and forwards data to the BS. The ANN parameters used in this research are learning rate, number of hidden
layers, and neuron count per layer were selected based on their effectiveness in capturing the complexity
of the WSN environment. The ANN architecture deployed is a single-layer feed forward neural network,
featuring an input layer, a hidden layer, and an output layer in each cluster.

Figure 2: Supervised learning ANN architecture

The input layer of the network consists of n neurons, each corresponding to a specific feature, with the
output of the ith, ai

(0), directly representing the input feature. In this study, the network architecture includes
100 input neurons and 64 neurons in each hidden layer. The hidden layer, also with n neurons, receives inputs
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from the input layer through weighted connections (wi
(1 j)) and applies an activation function g. a j

(1) will
be the output of the jth neuron in the hidden layer, computed as [55].

a j
(1) = g(

n
∑
i=1
(wi

(1 j) * ai
(0) + b j

(1))) (13)

where wi
(1 j) ∗ ai

(0) + b j
(1) indicates the hidden layer of the jth neuron’s output.

wi
(1 j) shows the ith input feature to the jth neuron’s the weight connecting in the hidden layer. ai

(0)

represents the input layer’s output of the ith neuron. b j
(1) shows the bias term for the jth neuron in the

hidden layer
With “k” neurons (for “k” targets), it processes hidden-layer outputs via weights w j

(2k), biases bk
(2),

and activation h(⋅). The final output yk is:

yk = h
⎛
⎝

m
∑
j=1
(w j

(2k) * a j
(1) + bk

(2))
⎞
⎠

(14)

where w j
(2k): Weight connecting hidden neuron “j” to output neuron “k”. bk

(2): Output-layer bias. h(⋅):
Task-specific activation.

Forward propagation in a neural network computes outputs sequentially from the input layer through
hidden layers to the output layer. During training, the actual output is equated to the expected output (Yk)
to calculate the loss. Using an optimization algorithm, weights and biases are updated to minimize this
loss and enhance network performance. This iterative process, known as back propagation, adjusts network
parameters to learn effective representations and improve prediction accuracy.

The neuron activation in the ANN is computed using the Swish activation function

A(z) = z
1 + e−z (15)

where z indicates the weighted sum of inputs to the neuron.
The non-monotonic nature of the swish function improves the representation of input data and

facilitates learning through weights.
In our proposed model, we have specifically designed the ANN architecture for optimizing EC and

selecting CHs in WSNs. This customization ensures that the neural network is optimized for addressing the
unique challenges inherent in WSNs, such as stringent energy limitations and dynamic network conditions.
The proposed hybrid LEACH-D-ANN model enables the ANN to dynamically influence routing decisions
and cluster head placements, resulting in enhanced energy efficiency and more robust network performance.

The model incorporates an adaptive learning mechanism, wherein the ANN continuously learns from
and updates its predictions based on real-time network data. This capability allows the network to effectively
adapt to changes in node energy levels, mobility patterns, and other dynamic factors. Unlike conventional
ANN applications focused on classification or clustering, our model utilizes the ANN as a predictive tool for
energy management. By accurately forecasting EC and optimizing node behavior, the proposed approach
expressively increases the operational lifetime of the network. To overcome the EC caused by ANN, we have
used load balancing and data aggregation.

In load balancing, we have distributed ANN computations across multiple nodes to prevent any single
node from being overburdened, thus extending the overall network lifetime. We have preprocess and
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aggregate data at the sensor level before feeding it into the ANN by using data aggregation, which can reduce
the number of required computations.

5 Proposed Work
During first stage, a 100 m × 100 m distributed node network area is created, as shown in Fig. 3. The

number of nodes is varied randomly between 0 and 100, resulting in diverse node proximities. To manage
both condensed and remote nodes, head nodes are established within clusters. Clustering methods facilitate
the management of numerous nodes. Algorithm 2 details the ANN based energy optimization model and
Algorithm 3 explains the ANN based Energy Calculation and Optimization.

Figure 3: Random deployment of SNs in the network

Algorithm 2: ANN based energy optimization
Training the ANN Model:

Step 1: Dataset Collection:
Collect data from each sensor SN, including location, residual energy, distance
from BS, and EC.

Step 2: Normalize the input attributes to preprocess the dataset.
Step 3: Design of ANN model,

the total # of layers ( xi ) = 100
Input neurons per layer (n) = 64.

Step 4: Allocate activation function using Eq. (15)
Step 4: Divide the dataset into training and testing sets
Step 6: Train the ANN model

Setting the weights (wi) and biases (b j) using back propagation and
gradient descent on the training set.

Step 7: Evaluate the trained ANN model’s performance using mean square error
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Algorithm 3: ANN based energy calculation and optimization
Step 1: Deploy the trained ANN model onto each SN.
Step 2: Each SN will periodically assess its features (Remaining energy and distance to the

BS)
Step 3: The measured attributes are then input into the ANN model to calculate EC and

distance to the BS
Step 4: Energy Consumption

If the predicted energy EC > ET , then energy optimization techniques applied.
Step 5: Repeat Steps 2 and 3 periodically or when needed.
Outputs

Most Ideal CHs
Most shortest Routing Paths

This study employs the LEACH clustering algorithm to organize nodes into clusters, with CHs selected
based on residual energy and proximity metrics. Each CH connects directly to the BS, which is positioned
at the network’s centroid. The LEACH-D protocol facilitates route establishment between source and
destination nodes, with data transmission occurring from source nodes to CHs, and then to the BS for
final delivery. Nodes exhibiting energy depletion or failure, which cause latency or packet loss, are detected.
To mitigate these inefficiencies, an ANN is implemented, trained using EC and delay parameters. Nodes
exceeding predefined EC and delay thresholds are identified as non-functional, and adjacent nodes are then
reassigned as relays and incorporated into the transmission path. Fig. 4 illustrates the ANN architecture and
its mean squared error (MSE) performance.

Figure 4: Trained ANN structure
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The proposed model integrates Algorithms 2 and 3 within the core LEACH-D framework. In the initial
phase, LEACH-D is employed to perform baseline clustering, leveraging its strength in reducing energy
consumption through dynamic clustering and distributed control. In the optimization phase, ANN model
is applied to refine the selection of CHs by learning from network behavior patterns. The ANN uses input
parameters such as residual energy, node density, and distance to the BS to make adaptive and intelligent CH
selection decisions.

Additionally, a feedback loop is implemented to continuously update the ANN model using real-
time performance metrics, including energy distribution and packet delivery rate. This dynamic learning
mechanism ensures that the CH selection process evolves based on changing network conditions, leading to
improved energy efficiency and network lifetime.

The rationale for selecting these algorithms lies in their complementary strengths: LEACH-D provides a
reliable and energy-efficient clustering foundation, while ANN enhances decision-making through its ability
to model complex, nonlinear relationships among network parameters. This hybrid integration enables the
system to adapt intelligently and maintain optimal performance in dynamic WSN environments.

The hyperparameter values used in this study for the neural network are a learning rate of 0.001,
200 epochs, and a batch size of 32. These values were selected through an extensive grid search and k-fold
cross-validation approach to optimize performance. The value of k-fold cross-validation in this research
is k = 5, where the dataset was divided into five subsets The learning rate of 0.001 was chosen to balance
convergence speed and stability. The number of epochs was set to 200 based on the convergence behavior of
the loss function, as training beyond this point showed diminishing returns. The batch size was selected as a
trade-off between computational efficiency and generalization.

These parameters were finalized after multiple experimental runs to ensure optimal model gen-
eralization and performance for energy-efficient CH selection and transmission optimization in the
WSN environment.

The trained model utilizes 64 neurons for routing, with attributes such as energy and delay fed into the
input layer. The hidden layer comprises 20 neurons, optimizing performance. The output layer, consisting of
54 neurons, identifies and excludes 10 failed nodes out of 64, thereby conserving node energy and enhancing
network lifetime.

Additionally, the computational complexity of the proposed model is analyzed using Big-O notation to
assess scalability. The deterministic CH selection mechanism evaluates all SNs based on predefined criteria,
resulting in a complexity of O(N). The ANN-based energy optimization comprises two phases: training and
inference. The training phase, involving forward propagation through multiple layers, has a complexity of
O(N.L.E), where “L” is the number of layers and “E” represents the number of training epochs. However, since
training occurs offline, it does not impact real-time performance. The inference phase, which periodically
evaluates EC and distance parameters, has a complexity of O(N.L). The hybrid routing mechanism optimizes
data transmission paths among CHs based on ANN predictions, leading to a complexity of O(M), where M
denotes the number of CHs (M ≪ N). Thus, the overall run-time complexity is O(N +M + N.L), ensuring
computational efficiency and scalability. Given that ANN inference is significantly faster than training, the
proposed model maintains low complexity while optimizing energy efficiency, making it well-suited for
large-scale WSN deployments.

6 Experimental Results
This study simulates a network topology comprising 100 static nodes deployed within a 100 m ×

100 m area, with performance evaluated across 1000 independent iterations. The key innovation of this
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research involves the application of LEACH-D-ANN model for CH selection, which employs ML algorithms
to enhance traditional LEACH methodology. The ANN training encompasses CH selection, node location,
distance to the BS, optimal paths between SNs, and residual energy. Results indicate that the suggested
hybrid LEACH-D-ANN model outperforms existing approaches significantly. The energy-efficient routing
method was implemented using MATLAB 2023, selected for its capabilities in mathematical computation
and data analysis. The simulation parameters in Table 3 have been carefully selected, defining the network
configuration, energy model, and communication dynamics. The selected area specifies the deployment
region for the WSN, ensuring a controlled simulation environment. Each SN is initialized with 0.9 J of
energy to evaluate network longevity. The total number of nodes (N = 100) influences cluster formation
and data transmission efficiency. EC parameters include Eel ec = 80 nJ/bit, representing the energy required
for data transmission and reception, Eam p = 0.001301 pJ/bit/m4, which accounts for multipath fading in
long-distance communication, and E f s = 10 pJ/bit/m2, which models free-space energy dissipation for short-
range transmission. The communication range (50–300 m) dictates the maximum distance an SN can
transmit directly, affecting clustering and routing strategies. The distance to the BS (D = 800 m) determines
transmission power requirements, impacting energy efficiency. Lastly, the packet size (L = 5000 bits) defines
the data payload per transmission, influencing bandwidth utilization and network performance. These
parameters are calibrated to realistically simulate a small to medium-sized WSN deployment under typical
environmental and operational conditions. Each parameter was chosen to align with the target application
scenarios and ensure reliable, replicable testing outcomes.

Table 3: List of parameters used for proposed model evaluations

Parameters Values
Area 100 × 100 m2

Ei (Initial Energy) 0.9 J
Number of nodes (N) 100

Eel ec 80 nJ/bit
Eam p 0.001301 pJ/bit/m4

E f s 10 pJ/bit/m2

Communication range of each SN 50–300 m
D (Distance) 800 m

L (Packet size) 5000 bits

The EC in WSN is determined by the energy expended by nodes during communication and data
processing activities. For this study, we adopted the EC model proposed in [38]. Our analysis reveals that
while network EC increased with progress, the rate of increase was mitigated by applying the hybrid LEACH-
D-ANN strategy. The dynamic adjustment of node transmission power, combined with ML-based EC,
enhanced efficiency. Consequently, EC was lower compared to the traditional LEACH approach reported in
previous studies. Fig. 5 illustrates the graphical analysis of network size vs. energy consumption, comparing
LEACH, LEACH-D, LE-KCR [56], DCK-LEACH [57] and the suggested LEACH-D-ANN methodology.
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Figure 5: Analysis of energy consumption vs. network size

Network lifetime is calculated as the time until the first node runs out of energy. In our study, we
compute the network lifetime based on the EC per node. The proposed hybrid LEACH-D-ANN model
is estimated against standard WSN algorithms. Results indicate that the proposed model achieved 50,300
rounds, significantly surpassing traditional LEACH (15,135 rounds), LEACH-D (30,900 rounds), LE-KCR
[56] (28,890 rounds), and DCK-LEACH [57] (27,132 rounds) over a 100-node network. Consequently, the
network lifetime improves with an increasing number of nodes, as illustrated in Fig. 6.

Figure 6: Analysis of network size vs. network lifetime

The PDR signifies the proportion of efficaciously transmitted and received data packets within a
network, relative to the total number of transmitted packets. It was shown to be greater with the hybrid
technique than with the conventional approaches. By adapting routing choices in real time to changing
energy availability, channel characteristics, and network state, the ML-based optimization system increased
the PDR and strengthened WSN’s reliability. Fig. 7 represents the Graphical analysis of Network Size vs PDR.
The results show the improvement of the proposed algorithm.
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Figure 7: Analysis of network size vs PDR

D refers to the time taken for a packet to travel from the source node to the destination (BS) node.
As network node density increases, D generally rises across all algorithms. The proposed hybrid method
demonstrates reduced End-to-End latency compared to existing algorithms. This approach minimizes
packet delay and enhances data transmission efficiency by optimizing routing decisions and reducing power
consumption. Fig. 8 illustrates the graphical analysis of D in WSNs.

Figure 8: Analysis of end-to-end delay vs. network size

The Communication Cost is the total energy consumed by all nodes for transmitting and receiving
data, normalized by the total number of packets successfully delivered to the BS. Fig. 9 illustrates the total
communication cost of the network across several approaches. This comparative analysis highlights that the
proposed model achieves the lowest communication cost among the evaluated protocols, demonstrating
superior efficiency and performance.
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Figure 9: Analysis of network communication cost

Fig. 10 shows the time complexity analysis of the proposed model across various approaches, illustrating
that the proposed model demonstrates the most efficient time complexity compared to other protocols.

Figure 10: Analysis of time complexity of vs. number of nodes

Analysis of variance (ANOVA) [58] is a statistical method used to assess whether there are significant
differences among two or more group means. The test result is represented by the F-statistic. Here, we
establish a null hypothesis “H0” assuming equal means across the five algorithms, LEACH, LEACH-D,
LE-KCR, DCK-LEACH and proposed LEACH-D-ANN, stated as H0: μLE ACH = μLE ACH−D = μLE−KCR =
μDCK−LE ACH = μLE ACH−D−AN N . And for unequal means can be represented as, H1: μLE ACH ≠ μLE ACH−D ≠
μLE−KCR ≠ μDCK−LE ACH ≠ μLE ACH−D−AN N . We conducted the ANOVA test on the average EC of sensor nodes
(SNs) for a WSN setup with 100 SNs randomly deployed in a 100 × 100 m2 area and a radius (r) of 65 m.
The significance level was set to α = 0.07. Table 4 presents the ANOVA results, noting that the test included
18 samples.
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Table 4: ANOVA test on average energy consumption. (a) Summary of input; (b) Summary of output; (c) LSD post hoc
analysis

(a)

Groups Count Sum Average Variance

LEACH-D-ANN (Proposed) 18 625.6 34.75 0.58
LEACH-D 18 742.8 41.26 1.61

LEACH 18 854.6 47.47 4.33
LE-KCR 18 925.2 51.4 6.32

DCK-LEACH 18 995.6 5.31 8.15

(b)

Source
of

variation

Sum of square df Mean square F-statistic Prob > F

Groups 1203.6 4 300.9 114.85 1.69057e−13

Error 52.4 20 2.62 —- —-
Total 1256 24 —- —- —-

(c)

Between (I-J) Mean difference (I-J) Standard error Lower bound Upper
bound

LEACH-D-ANN −3.92 0.487 −4.92 −2.93
LEACH-D −4.01 0.496 −5.01 −3.02

LEACH −5.11 0.496 −6.11 −4.12
LE-KCR −6.12 0.498 −7.12 −5.13

DCK-LEACH −7.11 0.496 −8.11 −6.12

In ANOVA, if the calculated F-statistic surpasses the critical F-value, the null hypothesis is rejected.
Here, the F-statistic exceeded the critical value (F>F-critical), leading to null hypothesis rejection, suggesting
significant differences among the five algorithms’ means. This is further supported by a p-value significantly
smaller than the significance level (α = 0.07), confirming that the differences in the EC means are statistically
significant. However, this result does not specify which algorithm performs best.

To address this, a Least Significant Difference (LSD) post hoc test was conducted, computing a 96.5%
Confidence Interval (CI) for mean differences; excluding zero indicates statistical significance. The results
of the LSD analysis, presented in Table 4c, show that the CI for the mean differences does not include zero,
indicating that the proposed algorithm’s average EC is significantly lower than those of LEACH, LEACH-D,
LE-KCR, and DCK-LEACH.
Discussion

In this study, we introduced a hybrid approach that combines the LEACH-D protocol with
ML technique called ANN to enhance the lifetime and energy efficiency of WSNs. Our findings, assessed
across key metrics, show improvements over traditional protocols. The detailed numerical analyses of
suggested parameters in WSN with existing methods are compared in Table 5.
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Table 5: Statistical analysis of proposed parameters in WSNs with existing models

Parameters Network energy
consumption

(Joules)

Network
lifetime

(Rounds)

Packet delivery ratio
(PDR) (%)

End-to-end
delay (D)
(in ms)

LEACH-D-ANN
(Proposed)

26.5 (10%) 50,300 80.12 36.2

LEACH-D 41 (10%) 30,900 49.80 61.5
LEACH 50 (10%) 15,135 38.50 80

LE-KCR [56] 35 (10%) 28,890 58.45 50.5
DCK-LEACH [57] 32.5 (10%) 27,132 64.50 49.7

7 Conclusion
This study presents an energy-efficient optimization framework to enhance WSN longevity by improv-

ing resource management and extending operational durations. Through systematic simulations, the
proposed LEACH-D-ANN model demonstrates effectiveness in dynamically rotating and assigning CHs
to balance energy consumption (EC) across SNs. By integrating the LEACH-D protocol with an ANN,
the hybrid approach optimizes CH selection, placement, and data aggregation while minimizing idle
listening. The model’s effectiveness is quantitatively validated through extensive simulations showing supe-
rior performance in energy management, network lifespan extension, and data throughput improvement,
with statistical significance confirmed via ANOVA and LSD post hoc analysis. These findings establish a
foundation for developing more sophisticated WSN optimization techniques, suggesting promising future
directions including the integration of deep learning or reinforcement learning for adaptive energy man-
agement in dynamic environments, as well as scalability studies for heterogeneous networks. This research
contributes to the advancement of energy-autonomous WSN systems for next-generation IoT applications.
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