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ABSTRACT: The sinkhole attack is one of the most damaging threats in the Internet of Things (IoT). It deceptively
attracts neighboring nodes and initiates malicious activity, often disrupting the network when combined with other
attacks. This study proposes a novel approach, named NADSA, to detect and isolate sinkhole attacks. NADSA is based
on the RPL protocol and consists of two detection phases. In the first phase, the minimum possible hop count between
the sender and receiver is calculated and compared with the sender’s reported hop count. The second phase utilizes the
number of DIO messages to identify suspicious nodes and then applies a fuzzification process using RSSI, ETX, and
distance measurements to confirm the presence of a malicious node. The proposed method is extensively simulated in
highly lossy and sparse network environments with varying numbers of nodes. The results demonstrate that NADSA
achieves high efficiency, with PDRs of 68%, 70%, and 73%; E2EDs of 81, 72, and 60 ms; TPRs of 89%, 83%, and 80%;
and FPRs of 24%, 28%, and 33%. NADSA outperforms existing methods in challenging network conditions, where
traditional approaches typically degrade in effectiveness.
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1 Introduction
The Internet of Things (IoT) is a transformative technology that facilitates connectivity among numer-

ous physical objects across diverse domains, including smart healthcare, transportation, cities, grids, and
homes [1]. Fig. 1 illustrates a generalized IoT architecture encompassing smart transportation, homes,
and communities, where smart devices communicate via gateway nodes over the Internet [2,3]. These
applications are essential for modern societies, providing remote monitoring and control of smart devices.

In resource-constrained environments, sensor nodes connect using IPv6 over Low-Power Wireless
Personal Area Networks (6LoWPAN) [4,5], which allows each node to maintain its own IPv6 address.
As a standard protocol for enabling IPv6 communication on wireless networks, 6LoWPAN is integral to
realizing IoT.
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Figure 1: IoT Architecture [6]

The Routing Protocol for Low-Power and Lossy Networks (RPL) is the standardized IPv6 routing
protocol designed for IoT networks. It builds a Destination-Oriented Directed Acyclic Graph (DODAG)
rooted at a sink node, which is connected to the Internet via a gateway. RPL uses four ICMPv6 control
messages—DODAG Information Object (DIO), Destination Advertisement Object (DAO), DAO Acknowl-
edgment (DAO-ACK), and DODAG Information Solicitation (DIS)—to construct and maintain routing
paths [6]. Fig. 2 illustrates an example of an RPL DODAG with three nodes and a gateway. These control
messages enable nodes to select the optimal parent and establish efficient routes.

While IoT offers substantial benefits, it also introduces distinct security challenges compared to
traditional networks [7–9]. Attacks such as blackhole, selective forwarding, wormhole, Sybil, and particularly
sinkhole attacks pose significant threats to the integrity of IoT networks [1].

Among these, the sinkhole attack is especially dangerous in wireless networks. In this attack, a malicious
node deceptively advertises a low hop count to attract network traffic, subsequently dropping, delaying, or
modifying packets [10,11]. Fig. 3 illustrates a typical sinkhole attack scenario.

Detecting sinkhole attacks in highly lossy and sparse networks remains a significant research challenge,
as most existing methods are optimized for high-density deployments and perform poorly under such
adverse conditions. This study addresses this gap by proposing NADSA (Novel Approach for Detection of
Sinkhole Attacks), a lightweight and efficient method based on the RPL protocol that effectively detects and
isolates sinkhole nodes in sparse and lossy IoT environments.
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Figure 2: The formation of RPL DODAG [7]

Figure 3: Sinkhole Attack Scenario [12]

To validate the proposed approach, NADSA is simulated under various scenarios using the Contiki-NG
(Cooja) simulator and evaluated using key performance metrics. The main contributions of this paper are as
follows:

• Introduction of NADSA, a security enhancement mechanism for IoT networks.
• Targeted detection of sinkhole attacks using a combination of DIO count, Expected Transmission Count

(ETX), Received Signal Strength Indicator (RSSI), and distance measurement, specifically designed for
sparse and lossy environments.

• Demonstration of effective sinkhole node isolation to enhance network resilience.
• Provision of mathematical analysis to support the proposed model.
• Implementation and evaluation of NADSA through real-world simulations.
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• Comparative benchmarking of NADSA against existing approaches, demonstrating superior perfor-
mance in terms of Packet Delivery Ratio (PDR), End-to-End Delay (E2ED), True Positive Rate (TPR),
and False Positive Rate (FPR).

The remainder of this paper is organized as follows: Section 2 reviews related literature. Section 3 details
the proposed approach. Section 4 presents the simulation results and discussion. Section 5 outlines future
research directions. Finally, Section 6 concludes the paper.

2 Related Works
The authors in [13] proposed a strategy based on Received Signal Strength Indicator (RSSI). This method

measures the signal strength of all nodes during network deployment and forwards key information to the
sink node. Based on this data, the sink constructs a virtual geographical topology graph. Subsequent RSSI
values are compared to the original measurements to detect signal changes; if significant deviations are found,
the sinkhole attack is identified and mitigated. While this method effectively detects sinkhole and wormhole
attacks, its implementation incurs considerable cost.

Raza et al. [14] developed SVELTE, an Intrusion Detection System (IDS) capable of detecting routing
attacks such as sinkhole and selective forwarding. SVELTE comprises three components: 6LoWPAN Mapper
(6Mapper), which collects IPv6 routing protocol data and reconstructs the network topology; a data analysis
module that detects malicious behavior; and a mini-firewall to block unwanted traffic. While SVELTE detects
sinkhole attacks with minimal false alarms and low overhead, it has been reported to suffer from a high false
positive rate, resulting in inefficient resource usage [15].

The authors in [16] introduced INTI, a trust- and fame-based system combined with watchdog
mechanisms. Nodes are arranged hierarchically into leaders, associates, or members, with roles subject to
change. Each node monitors its superior by evaluating past and incoming traffic. Upon detecting an attack,
it broadcasts an alert and disconnects the malicious node. Although INTI demonstrates a high detection
rate and low false positives, it is primarily suited for mobile networks and lacks evaluation on low-capacity
nodes [17].

InDReS [15] is another IDS designed to detect sinkhole attacks. It evaluates whether a node’s current
rank has increased by the minimum rank increment and whether its parent node’s rank is within an
acceptable range. If discrepancies are found, the suspicious node is isolated and the network is alerted.
Compared to INTI, InDReS shows superior performance in Quality of Service (QoS) metrics like energy
consumption, throughput, packet drop ratio, and overhead. However, it still suffers from high false positives
and energy depletion.

In [11], the authors proposed a method to detect sinkhole attacks in hierarchical wireless sensor
networks. The network is divided into clusters, each managed by a cluster head responsible for detection. The
process involves two phases: identifying the attacker and classifying the type of sinkhole attack (e.g., message
delay, drop, or modification). Malicious nodes are blacklisted, and their cluster members are notified. This
method has low computation and communication overhead, making it suitable for resource-constrained
environments. However, the computation cost remains high.

The Secure-RPL (SRPL) protocol proposed in [18] enhances the RPL protocol by scanning node
behavior to detect suspicious rank values. It uses a threshold function and hash chain authentication to detect
sinkhole attacks. Although SRPL effectively detects such attacks, applying the threshold function to all nodes
results in increased overhead and a packet loss rate of approximately 22%–23%.

To reduce this overhead, SecTrust-RPL [19] was introduced. It protects against rank and Sybil attacks by
evaluating the trustworthiness of neighboring nodes using both direct and recommended trust values. Nodes
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with higher trust values are selected for routing, while those with lower values are classified as selfish or
malicious. Although the protocol improves routing performance, it introduces latency and does not address
uncertainty in trust recommendations.

Qureshi et al. [20] presented a two-phase framework for detecting sinkhole, version number, blackhole,
and Hello-flood attacks in RPL networks. The first phase establishes detection thresholds for each attack type,
and the second performs the actual detection. Performance evaluations show the framework is effective for
IPv6-based routing in lossy IoT networks.

In [21], the authors proposed SoS-RPL, a model for sinkhole attack detection consisting of two main
components. The first component calculates node rate and rank based on distance measurements. The
second component analyzes node behavior using the Average Packet Transmission RREQ (APT-RREQ) to
identify misbehavior and isolate malicious nodes. However, the model struggles with message overhead and
does not accommodate mobility. Additionally, it only detects malicious parent nodes, leaving child node
attacks unresolved.

Almusaylim et al. [22] proposed SRPL-RP, a secure RPL-based routing protocol for detecting and
isolating rank and version number attacks. It identifies malicious behavior using rank comparisons and attack
status tables, and mitigates threats through blacklisting and alert mechanisms. Simulation results show that
SRPL-RP enhances packet delivery, detection accuracy, and reduces control message overhead.

RFTRUST [23] adopts a trust-based approach for RPL-based IoT networks using Random Forest (RF)
and Subjective Logic (SL) to identify sinkhole attacks. This model improves detection accuracy and enhances
network performance. Its main limitation lies in the assumption that nodes can monitor the forwarding
behavior of their neighbors.

Kumar et al. [24] proposed TIDSRPL, a trust-based enhancement to RPL aimed at detecting sinkhole,
selective forwarding, and Sybil attacks in Low-Power and Lossy Networks (LLNs). TIDSRPL outperforms
the standard MRHOF-RPL protocol in terms of packet loss and network stability. However, its reliance on
centralized trust evaluation introduces a single point of failure and scalability challenges.

The reviewed literature demonstrates various techniques for enhancing network security and detecting
sinkhole attacks. While these approaches offer promising results under standard network conditions, many
struggle under adverse scenarios, such as sparse or highly lossy environments.

In this study, we propose a novel two-phase method for detecting sinkhole attacks. The first phase
analyzes hop counts, while the second uses a combination of DIO counts, RSSI, ETX, and distance metrics
within a fuzzification process. This approach improves accuracy and robustness over existing methods
by applying diverse detection techniques tailored for sparse and lossy networks. A summary of selected
approaches is presented in Table 1.

Table 1: The summary of some solutions to secure IoT

S# Reference Year Attack type Limitation Advantage of proposed
method

1 [13] 2009 Sinkhole attack and Wormhole
attack

Costly Low complexity

2 [14] 2013 Spoofed or altered information,
Selective forwarding attack, and

Sinkhole attack

High false positives, and high
false detection rate

High accuracy on lossy and
sparse network

3 [16] 2015 Sinkhole attack Low false positive rate High false positive rate
4 [15] 2016 Sinkhole attack High false positive alerts and

high energy node depletion
High accuracy on lossy and

sparse network
5 [11] 2016 Sinkhole attack Costly Low complexity

(Continued)
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Table 1 (continued)

S# Reference Year Attack type Limitation Advantage of proposed
method

6 [18] 2016 Sybil attack and Rank attack High packet loss rate on average
between 22%–23%

Low packet loss rate

7 [19] 2019 Sinkhole attack Delay occurs Fast detection time
8 [20] 2020 HELLO Flood attack, Version

number attack, Blackhole
attack, and Sinkhole attack

Evaluated using a small number
of network nodes.

Evaluated with various
numbers of network nodes

9 [21] 2020 Sinkhole attack Malicious parent node can only
be detected by child node

through comparing the rank
value. Malicious child node

cannot be detected.

Child nodes are detected
and isolated.

10 [22] 2020 Rank and Version attacks Requires nodes to monitor
network traffic

No need for monitoring

11 [23] 2021 Sinkhole attack Assumes nodes can monitor
forwarding behavior of neighbors

No need for monitoring

12 [24] 2025 Sinkhole, Selective Forwarding,
and Sybil attacks

Centralized Distributed

3 Proposed Work
6LoWPAN network is a lossy and wireless network which involves resource constrained nodes with a

unique IPv6 address, and often uses RPL as a routing protocol. In the present study, the authors have designed
and implemented NADSA and sinkhole attacks to test this novel approach.
NADSA

NADSA is a method that primarily focuses on detecting sinkhole attacks. This novel approach consists
of two phases. The first phase achieves the minimum possible hop count and compares it with the node’s hop
count. If any suspicious activity is detected, it identifies the sinkhole attack and disrupts the DIO. The second
phase measures the number of DIO messages sent by both the sender and the receiver. In this study, the DIO
count is important because, in the attack scenario, it is assumed that the malicious node increases the number
of transmitted DIO messages. Therefore, the DIO count is also utilized for attack detection. Next, the method
uses RSSI, ETX, and distance measurements for fuzzification. These parameters were chosen because, given
the highly unstable and sparse network conditions considered in the scenario, it is necessary to use metrics
related to channel state (such as ETX and RSSI). If the proposed method detects any suspicious behavior, it
then identifies the sinkhole attacks. The phases are as follows:

1. The main idea of the first phase to detect the existence of sinkhole attacks is that: a malicious node
advertises a tempting rank and hop count. In this phase, when a DIO message is delivered to a node,
first the node calculates R which is the distance between a sender and a root node through Eq. (1):

R = RSSI(d0) − 10n log10 (
d
d0
) + Xσ (1)

where RSSI(d0) is the reference signal strength at distance d0, n is the path loss exponent, d is the
transmitter-receiver distance, d0 is the reference distance, and Xσ represents shadowing noise. Then it
calculates M, that is the minimum possible hop count between the root and the receiver, through Eq. (2):

M = ⌈R/T⌉ (2)

where T is the transmission range of each node in the network.
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Finally, it compares the hop count of the sender (S) with M. If it is less than M, the sender is a
malicious node.

2. The main idea of the second phase is that: every node has a counter (Cr) and a counter list of their
neighbours (Cs). When a node sends a DIO message, its Cr will be increased by one. When a node
receives a DIO, the counter of the sender on the node’s counter list of its neighbours (Cs) will be increased
by 1 as well. When a node receives a DIO message, it compares D and differentiates between Cr and Cs ,
using Eq. (3). If Cr is less than Cs , the sender is a malicious node.

D = Cr − Cs (3)

Here, whenever the network is running and a node joins lately to the network, a false detection happens.
Due to the lower Cr , a sinkhole attack is detected by mistake. To overcome this problem, the authors
have defined a maximum number of sent DIO (Cmax ) for all the nodes. When the Cmax reaches the
maximum number, then Cr and Cs will be reset. At the end, there is a fuzzy system which consists of
three parameters: RSSI, ETX, and D. According to the value of these parameters, the fuzzy logic system
identifies the existence of a malicious node. Since the fuzzy system is used solely for decision-making
purposes, the defuzzification step is not required. RSSI is a way to estimate the measure of the strength
of a radio signal which a node receives from another node. For example, at a large distance, the signal
is weak; therefore, the RSSI value is considered poor signal strength. Eq. (4) shows RSSI format:

Pr = PtGtGr(λ/4πR)2 (4)

Pt : transmit power. Gr : receiver antenna power gain Gt : transmitter antenna power gain. λ: transmit
signal wavelength. R: distance between a sender and a receiver.
ETX is the expected transmission count for each packet that can be successfully delivered to the desti-
nation. ETX looks for links of higher quality per unit of time. The ETX is obtained in the Eq. (5) [25]:

ET X = 1/(DF ∗ DR) (5)

DF measures the probabilities of delivering a packet to the neighbour. DR measures probabilities of
receiving an acknowledgment packet. D is explained in Section 2.

Figs. 4–6 show the membership functions of RSSI, ETX, and D. In fact, the fuzzy system receives
the input variables of each parameter and uses membership functions to obtain fuzzy values. The fuzzy
value range is defined as low, medium, and high. When the network is in good condition and the sender
is close to the receiver, RSSI is high and ETX is low. D is low whenever Cr and Cs are equal.

Figure 4: Membership functions of RSSI



5388 Comput Mater Contin. 2025;84(3)

Figure 5: Membership functions of ETX

Figure 6: Membership functions of D

Table 2 represents the fuzzy rules that are the combination of the three input fuzzy sets, including
RSSI, ETX, and D. The fuzzy system in the present study involves three inputs, a fuzzy controller, and
one output. The last column in Table 2 shows the output fuzzy variable.

Table 2: The fuzzy rules base

ETX RSSI D Attack
High Low Low TRUE
Med Low Low TRUE
Med Med Low TRUE
Med High Low TRUE
Low Low Low FALSE
Low Med Low FALSE
Low High Low FALSE
Low Low Med FALSE
Low Med Med FALSE
Low High Med FALSE
Low Low High TRUE
Low Med High TRUE

(Continued)
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Table 2 (continued)

ETX RSSI D Attack
Low High High TRUE
Low Med Low TRUE
Low Low Low TRUE
Low Low Med TRUE
Low Med Med TRUE
Low Low High TRUE
Med Low High TRUE
High Low High TRUE
Low Med High TRUE
Med Med High TRUE
High Med High TRUE
Low High High TRUE
Med High High TRUE
High High High TRUE

The pseudo code to detect the sinkhole attack is given in Algorithms 1 and 2. Figs. 7 and 8 show the
process of each algorithm in receiving and sending DIO packets.

Algorithm 1: Pseudo code of every receiving DIO
Input: Cs , Cr , S , RSSI, ET X , D
Output: attack detection or normal DIO Process
1: for every received DIO do
2: Cs + +;
3: attack_ f l ag ← 0;
4: Calculate R;
5: Calculate M;
6: if M > S then
7: attack_ f l ag ← 1;
8: else
9: D ← Cr − Cs ;
10: if D < 0 then
11: attack_ f l ag ← 1;
12: else
13: Fuzzificate RSSI;
14: Fuzzificate ETX;
15: Fuzzificate D;
16: Set attack_flag according to fuzzy rules table;
17: end if
18: end if
19: if attack_flag = 1

(Continued)
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Algorithm 1 (continued)
20: Raise alarm for attack;
21: Drop the DIO;
22: else
23: Normal DIO process;
24: end if
25: end for

Algorithm 2: Pseudo code of every sending DIO
Input: Cr , Cs , Cmax
Output: Update Cr and Cs
1: for each sent DIO do
2: Cr + +;
3: if Cr > Cmax then
4: Cr = 0;
5: for the nodes in neighbors list do
6: Cs = 0;
7: end for
8: end if
9: end for

Algorithms 1 and 2, along with Figs. 7 and 8, illustrate the core operational logic of the proposed NADSA
method for detecting sinkhole attacks. Algorithm 1 and Fig. 7 describe how a node processes each received
DIO message. The procedure begins with incrementing the sender’s DIO count, followed by calculating the
estimated distance (R) and the minimum possible hop count (M). This value is then compared with the
sender’s advertised hop count (S). If the advertised hop count is less than the calculated minimum, the node
is flagged as suspicious. If not, the method computes the difference (D) between the receiver’s own DIO
counter (Cr) and the sender’s counter (Cs). A negative D value suggests inconsistent behavior, indicating a
potential attack. If this check is also passed, the node applies fuzzification based on RSSI, ETX, and D to
assess the risk using fuzzy rules.

Algorithm 2 and Fig. 8 describe how a node handles the sending of DIO messages. Every time a DIO is
sent, the node increments its own counter (Cr). To avoid false positives caused by newly joined nodes, the
algorithm resets both the sender’s counter (Cr) and its neighbors’ counters (Cs) when a maximum threshold
(Cmax ) is reached. This counter synchronization helps maintain the reliability of the detection logic across
the network.

In summary, these algorithms and flowcharts ensure that NADSA captures abnormal behavior based
on both hop count inconsistencies and DIO message frequency, while the fuzzy system adds an intelligent
layer of decision-making in uncertain conditions. This dual-phase approach enhances detection accuracy
and adaptability in dynamic, low-power wireless networks.
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Figure 7: The process of receiver node
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Figure 8: The process of sender node

4 Results and Discussion
The proposed NADSA method demonstrates effective detection of sinkhole attacks within RPL-based

IoT environments. This section presents the simulation setup and evaluates the system’s performance across
various metrics.

The evaluation results validate NADSA’s capability to accurately detect sinkhole attacks while preserving
overall network performance. The system achieved high detection accuracy, successfully identifying most
malicious nodes with a low false negative rate. This performance can be attributed to NADSA’s multi-
dimensional approach, which integrates various network indicators—such as DIO message frequency,
Expected Transmission Count (ETX), Received Signal Strength Indicator (RSSI), and physical distance
measurements—to assess anomalies and detect attacks.

From a network performance perspective, NADSA maintained stable operation even under challenging
sparse and lossy conditions. It achieved high packet delivery rates, outperforming several existing approaches
under similar scenarios. Additionally, the method maintained low end-to-end delays, making it suitable
for latency-sensitive IoT applications. These attributes highlight NADSA’s practical value for real-world
deployments where both security and performance are essential.

However, the analysis also revealed some limitations that present opportunities for future enhancement.
While NADSA accurately identified the majority of malicious nodes, it occasionally produced false positives
by misclassifying legitimate nodes as suspicious. Such outcomes are not uncommon in sparse networks,
where variations in signal and routing behavior can resemble attack patterns.

Despite this, NADSA’s two-phase detection mechanism, initially analyzing routing behavior and subse-
quently applying a more detailed, metric-driven assessment, exhibited strong adaptability in environments
where traditional methods often underperform. This layered architecture enhances robustness and enables
NADSA to function effectively in realistic IoT deployments facing sophisticated security threats.
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4.1 Simulation Setup
The authors designed and implemented NADSA1 in Contiki-NG [26], which is a kind of operating

system for IoT. Contiki OS provides an environment to implement and evaluate low power and lossy
networks. RPL is widely used as a routing protocol for resource constraint devices in IoT. NADSA is
essentially designed to detect sinkhole attacks; however, RPL implementation is used to develop NADSA in
Contiki-NG. Cooja [27,28], a simulator working with Contiki, shows realistic results [29]. It is a different
simulation software. Cooja works better with resource-constrained devices [30].

To evaluate NADSA, the authors implemented sinkhole attacks against RPL and ran a topology of 10,
30, and 60 normal nodes with 10% malicious nodes. Table 3 shows the simulation parameters and Fig. 9
illustrates the topology of 10 nodes.

In our experiments, the default TX and RX success ratio was set to 75%. To further investigate the
robustness of the proposed method under varying channel conditions, additional tests were conducted using
TX/RX success ratios of 70% and 80%.

Moreover, the ratio of malicious nodes was fixed at 10%. However, for a more detailed analysis of the
system’s sensitivity to different attack intensities, we also considered scenarios with 5% and 20% malicious
node ratios. The experiments were conducted using networks consisting of 10, 30, and 60 nodes to assess
scalability and performance across different network sizes.

Table 3: Simulation parameters

Network parameters Values
Operating system Contiki-NG

Simulator Cooja
Routing protocol RPL

Topology type Random
Rank metric OF

Mode of operation 1
Mote type Z1
Area size 100 × 100 m2, 300 × 300 m2, 600 × 600 m2

Number of packets sent 1500≈, 4500≈, 9000≈
Packet sent interval 7680 ms

TX success ratio 70%, 75%, 80%
RX success ratio 70%, 75%, 80%

T 50 m
Interference range 150 m

Cmax 20
Type of attack Sinkhole attack

Number of nodes 10, 30, 60
Malicious nodes ratio 5%, 10%, 20%

Simulation time 20 min

1https://github.com/SinkholeAttackDetection/contiki-ng-NADSA (accessed on 18 June 2025).

https://github.com/SinkholeAttackDetection/contiki-ng-NADSA
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Figure 9: The topology of 10 nodes

4.2 Performance Evaluation
The following performance parameters were used to evaluate NADSA and the results were compared

with INTI [16], SoS-RPL [21], and RFTRUST [23] models.

• TPR: This parameter shows the rate of the total number of malicious nodes successfully detected. TPR
is obtained through Eq. (6).

TPR = TP
TP + FN

∗ 100 (6)

True Positive (TP) is the number of malicious nodes accurately detected. False Negative (FN) is the
number of malicious nodes not identified in the system.

• FPR: This represents the rate of the total number of times that the normal nodes are considered as
malicious nodes. FPR is calculated by Eq. (7).

FPR = FP
FP + TN

∗ 100 (7)

False Positive (FP) is the number of normal nodes detected as malicious nodes. True Negative (TN) is
the number of normal nodes determined as the normal node.

• PDR: This determines the rate of the total number of data packets successfully received at the receiver
to the total data packet sent by the source during simulation. Eq. (8) illustrates the PDR.

PDR = ∑
N
i=1 receivedPacket
∑N

i=1 sentPacket
∗ 100 (8)

In Eq. (8), N stands for the total number of nodes.
• E2ED: It is a required time to send a packet from the sender node to the receiver node. E2ED is calculated

through Eq. (9).



Comput Mater Contin. 2025;84(3) 5395

E2ED =
n
∑
i=1
(T i

proc + T i
trans + T i

pro p + T i
queue) (9)

where T i
proc is processing delay at node i, T i

trans is transmission delay at node i, T i
pro p is propagation

delay at node i, T i
queue is queuing delay at node i, n indicates total nodes in path.

To analyse the performance of NADSA in terms of PDR and E2ED, the proposed method was compared
with the normal RPL scenario, the sinkhole attack scenario, INTI, SoS-RPL, and RFTRUST. In the normal
RPL scenario, the network runs normal RPL routing protocol. In the sinkhole attack scenario, the network
includes normal RPL as well as the sinkhole attack. In NADSA, the network consists of the authors’ proposed
method with the sinkhole attack.

In terms of TPR and FPR, the authors compared the proposed method with INTI, SoS-RPL,
and RFTRUST.

4.2.1 Packet Delivery Rate Analysis
Packet Delivery Rate (PDR) represents the ratio of successfully delivered packets to the total number

of packets sent. This metric was used to evaluate the performance of various methods under extremely lossy
and sparse network conditions.

As shown in Fig. 10, the PDR was compared across the following scenarios: normal RPL, sinkhole attack,
NADSA, RFTRUST, SoS-RPL, and INTI. In a baseline scenario without any attacks, normal RPL achieved
the highest delivery rate of approximately 81% across varying node densities.

Figure 10: Comparisons of PDR for Normal RPL, Sinkhole Attack, NADSA, SoS-RPL, INTI, and RFTRUST

Under attack conditions, the proposed NADSA method outperformed other detection mechanisms by
achieving PDRs of 68%, 70%, and 73% depending on the number of nodes. NADSA’s superior performance
can be attributed to its use of key parameters—such as RSSI and ETX—in a fuzzy logic-based decision
process. These parameters allow the system to effectively differentiate between legitimate packet loss due to
lossy and sparse conditions and malicious packet drops caused by sinkhole attacks.

In contrast, methods such as INTI, SoS-RPL, and RFTRUST showed reduced performance in sparse
environments. These methods rely on denser node deployments to ensure stable communication and
connectivity, which becomes less effective in highly sparse and lossy networks. As a result, their ability to
maintain high PDR under adverse conditions is significantly limited compared to NADSA.
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4.2.2 End-to-End Delay Analysis
End-to-End Delay (E2ED) measures the average time required for a packet to travel from the source

node to the destination node. This metric typically increases in the presence of misbehaving nodes within the
network. One major contributing factor to increased E2ED is packet retransmission, which is more prevalent
in lossy and sparse environments, especially when sinkhole attacks are present.

As illustrated in Fig. 11, the delay performance is compared across the following scenarios: normal RPL,
sinkhole attack, NADSA, INTI, SoS-RPL, and RFTRUST. In the normal RPL scenario, where the routing
protocol operates without any attacks or intrusion detection mechanisms, the average E2ED values are 82,
72, and 60 ms, depending on the number of nodes.

Figure 11: Comparisons of E2ED for Normal RPL, Sinkhole Attack, NADSA, SoS-RPL, INTI, and RFTRUST

In contrast, the sinkhole attack scenario—where malicious nodes are present and no countermeasures
are applied—yields the highest E2ED due to frequent packet drops and retransmissions caused by malicious
routing behavior.

The proposed NADSA method achieves improved delay performance with E2ED values of 91, 81, and
71 ms. While NADSA introduces a slight overhead due to its detection mechanisms, it significantly reduces
unnecessary retransmissions by preventing malicious nodes from being selected as preferred parents in the
routing path. This results in more stable and efficient data forwarding, especially under sparse and lossy
network conditions.

Compared to other methods such as INTI, SoS-RPL, and RFTRUST, NADSA demonstrates bet-
ter adaptability to challenging network environments, ensuring lower delays while maintaining secure
routing operations.

4.2.3 True Positive Rate Analysis
True positive rate demonstrates the rate of the correct decisions to test the malicious nodes. Fig. 12

displays that the proposed method achieves 89%, 83%, and 80% true positive rates. Other methods don’t
pay attention to extra lossy and sparse networks and can’t have a high TPR compared with NADSA. The
proposed method uses ETX and RSSI parameters to identify the malicious node, separate attack situations,
and extra lossy and sparse situations. Thus, the TPR of NADSA achieves higher than other methods.

4.2.4 False Positive Rate Analysis
False positive rate (FPR) refers to the proportion of legitimate nodes that are incorrectly identified as

malicious. As illustrated in Fig. 13, the proposed NADSA method achieved FPR values of 24%, 28%, and
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33% across different network sizes. Although these values are relatively high, NADSA still performs better
compared to other approaches.

Figure 12: Comparisons of TPR for NADSA, SoS-RPL, INTI and RFTRUST

Figure 13: Comparisons of FPR for NADSA, SoS-RPL, INTI and RFTRUST

The increased FPR is primarily due to the challenging conditions of an extra lossy and sparse network. In
such environments, normal nodes may occasionally exhibit irregular behavior due to unstable connectivity
or signal degradation, leading to their misclassification as attackers. However, unlike other methods, the
proposed approach includes a re-evaluation mechanism. When a node is suspected of being malicious, it
is not immediately and permanently isolated. Instead, its DIO messages are temporarily discarded, and the
node is given another opportunity to send DIO messages. This allows the system to reassess its behavior
before making a final decision.

This adaptive strategy helps reduce the risk of mistakenly isolating legitimate nodes. As shown in Fig. 13,
NADSA consistently demonstrates a lower FPR compared with INTI, SoS-RPL, and RFTRUST. These
existing methods do not explicitly consider the possibility of extra lossy and sparse network conditions,
which results in higher rates of false detection.

RFTRUST incorporates a metric that can detect sinkhole attacks even under severe network conditions.
However, due to the difficulty in differentiating between actual attacks and normal losses in sparse networks,
its FPR is higher than other models. In contrast, the proposed NADSA approach uses multiple detection
parameters and a two-phase evaluation process, improving accuracy in complex network environments.

4.2.5 Sensitivity Analysis
In fuzzy logic systems, parameter selection is typically based on expert knowledge or engineering

experience. In the proposed approach, a specific set of fuzzy membership functions was carefully designed
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through detailed analysis. To evaluate the robustness of the method and its ability to detect more adaptive
or stealthy attackers—who may gradually alter their behavior—a sensitivity analysis was conducted using
three different sets of fuzzy membership functions: NADSA-M1 (the original configuration), NADSA-M2,
and NADSA-M3. These alternative configurations represent realistic variations in parameter choices that an
engineer might reasonably adopt.

The proposed NADSA method was tested using each of these configurations across networks consisting
of 10, 30, and 60 nodes, to observe the effect of system scale on detection performance. The results, presented
in Table 4, demonstrate that NADSA-M1 consistently achieves the highest detection accuracy in all scenarios.
NADSA-M2 and NADSA-M3 exhibit only minor reductions in performance, indicating that while the
selection of membership functions can impact accuracy, the overall system remains effective even when the
parameters differ from the original design.

Table 4: Effect of membership function on NADSA

Membership Function Number of Nodes TPR
NADSA-M1 10 90%
NADSA-M1 30 84%
NADSA-M1 60 81%
NADSA-M2 10 86%
NADSA-M2 30 80%
NADSA-M2 60 76%
NADSA-M3 10 83%
NADSA-M3 30 78%
NADSA-M3 60 74%

These findings confirm that the proposed NADSA method is resilient to variations in fuzzy logic
parameters. It maintains robust detection capabilities, even under dynamic conditions where attackers may
attempt to evade detection by slowly modifying their network behavior.

In this section, we further assessed NADSA under varying TX/RX success ratios and different
percentages of attackers to test its performance under more realistic and variable conditions.

The impact of the communication channel on the proposed method was evaluated by varying the
TX/RX success ratio, as summarized in Table 5. The results indicate that, since the proposed approach is
specifically designed for lossy and sparse network environments, its performance improves as the TX/RX
success ratio decreases.

Table 5: Effect of TX/RX success ratio on NADSA TPR

TX/RX success ratio TPR
70% 92%
75% 90%
80% 86%

We also analyzed NADSA’s performance with different attacker densities in a network of 30 nodes: 5%,
10%, and 20% malicious nodes. Table 6 presents how the number of attackers affects NADSA’s TPR.
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Table 6: Effect of number of attackers on NADSA TPR

Number of attackers TPR
5% 94%
10% 90%
20% 84%

4.2.6 Stealthy Attack Analysis
In fuzzy logic systems, the decision-making process is influenced by the combination of all input

parameters. When one input remains constant or provides limited information, the system adjusts by placing
greater emphasis on the remaining inputs, as defined in the rule table (Table 2). This characteristic allows
fuzzy-based methods such as NADSA to retain robustness, even when attackers attempt to evade detection
by subtly modifying only a portion of their behavior.

To evaluate the effectiveness of the proposed method against such stealthy attacks, a set of experiments
was conducted in which attackers varied their behavior gradually rather than abruptly. The results, presented
in Table 7, show that NADSA is capable of maintaining reliable detection accuracy under these conditions.
This is attributed to the system’s multi-metric approach, which leverages diverse inputs such as RSSI, ETX,
hop count, and DIO frequency. When one or more of these parameters are manipulated by an attacker, the
others can still provide sufficient evidence for anomaly detection.

Table 7: Comparison of normal attack and stealthy attack in TPR metric

Attack Type Number of Nodes TPR
Normal attack 10 90%
Normal attack 30 84%
Normal attack 60 81%
Stealthy attack 10 83%
Stealthy attack 30 78%
Stealthy attack 60 74%

These findings highlight the strength of the proposed method in dealing with more sophisticated
and adaptive threats, making it suitable for real-world deployments where attackers may employ stealth
techniques to avoid detection.

As shown in Table 7, NADSA is evaluated under both the original and stealthy attack scenarios across
different network sizes comprising 10, 30, and 60 nodes. The results indicate that NADSA retains its
effectiveness even under stealthy attack conditions. Specifically, in a network of 10 nodes, the true positive
rate (TPR) was 90% under the original scenario and 83% under the stealthy scenario. For a 30-node network,
the TPR decreased from 84% to 78%, and in the 60-node configuration, it dropped from 80% to 74%.

Although the TPR values are lower in the stealthy scenario, the observed performance degradation
remains moderate. This demonstrates that while adaptive attacker behavior can reduce detection accuracy,
NADSA is still capable of identifying such threats with reasonable reliability. These findings highlight the
resilience of the proposed method in realistic and challenging network environments, where malicious
behavior may be subtle and not immediately apparent.
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4.2.7 Detection Latency Analysis
To assess the applicability of NADSA in time-sensitive intrusion detection scenarios, we measured

its detection latency and compared it with other established methods. Detection latency is defined as the
duration between the initiation of an attack and the system’s successful identification and response to the
malicious activity. This metric is critical in environments where delayed detection can lead to significant
degradation of network performance and security.

As shown in Table 8, the detection times for each method are as follows: NADSA detects attacks in
50 s, while SoS RPL requires 60 s, INTI takes 110 s, and RFTRUST achieves the fastest detection at 40 s.
These results indicate that NADSA performs competitively in terms of latency, offering faster detection than
SoS RPL and INTI, and approaching the responsiveness of RFTRUST. Given its balanced performance in
both detection accuracy and latency, NADSA is well suited for practical deployment in real time intrusion
detection scenarios.

Table 8: Detection Time Comparison of Intrusion Detection Methods

Method Detection time (seconds)
NADSA 50
SoS-RPL 60

INTI 110
RFTRUST 40

5 Future Directions and Improvements
Although NADSA demonstrates strong performance in detecting sinkhole attacks, future research

could focus on enhancing its effectiveness and expanding its applicability. One potential direction is to extend
NADSA to identify other prevalent Internet of Things threats, such as selective forwarding, wormhole, and
Sybil attacks. Developing a more comprehensive detection framework would improve the overall security
of resource constrained networks and increase the robustness of intrusion prevention systems in diverse
operating conditions.

6 Conclusion
The Internet of Things consists of web enabled smart devices that facilitate communication between

physical entities. However, this emerging paradigm introduces significant security challenges, one of which is
the sinkhole attack. This type of attack can severely disrupt network operations, yet it has not been thoroughly
addressed in existing research. Although several intrusion detection methods have been proposed to counter
sinkhole attacks, their effectiveness tends to diminish in networks that are extra lossy and sparse.

In this study, a new method named NADSA was introduced, comprising two stages to identify and
isolate malicious nodes. Simulation results demonstrate that NADSA outperforms existing methods such as
INTI, SoS RPL, and RFTRUST, particularly in challenging network conditions. Specifically, NADSA achieves
better performance in terms of packet delivery rate (68%, 70%, and 73%), end to end delay (81 ms, 72 ms,
and 60 ms), true positive rate (89%, 83%, and 80%), and false positive rate (24%, 28%, and 33%). While the
compared methods perform well in dense networks with low retransmission, their performance deteriorates
in sparse and lossy conditions. NADSA maintains its reliability by leveraging multiple parameters such as
distance measurement, DIO count, expected transmission count, and received signal strength indicator to
detect sinkhole attacks effectively.
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Despite its promising results, NADSA has certain limitations. Although it remains effective against
stealthy or adaptive attackers, its detection accuracy shows a moderate decline in such scenarios. This
suggests that more sophisticated evasion strategies may still pose challenges. Furthermore, as with other
fuzzy based systems, NADSA’s performance is influenced by the design of its membership functions and rule
sets, which may require refinement for deployment in diverse network environments.
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