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ABSTRACT: Neural machine translation (NMT) has been widely applied to high-resource language pairs, but its
dependence on large-scale data results in poor performance in low-resource scenarios. In this paper, we propose a
transfer-learning-based approach called shared space transfer for zero-resource NMT. Our method leverages a pivot
pre-trained language model (PLM) to create a shared representation space, which is used in both auxiliary source—pivot
(Ms2p) and pivot—target (Mp2t) translation models. Specifically, we exploit pivot PLM to initialize the Ms2p decoder
and Mp2t encoder, while adopting a freezing strategy during the training process. We further propose a feature
converter to mitigate representation space deviations by converting the features from the source encoder into the shared
representation space. The converter is trained using the synthetic source—target parallel corpus. The final Ms2t model
combines the Ms2p encoder, feature converter, and Mp2t decoder. We conduct simulation experiments using English as
the pivot language for German—French, German—Czech, and Turkish—Hindi translations. We finally test our method
on a real zero-resource language pair, Mongolian— Vietnamese with Chinese as the pivot language. Experiment results
show that our method achieves high translation quality, with better Translation Error Rate (TER) and BLEU scores
compared with other pivot-based methods. The step-wise pre-training with our feature converter outperforms baseline
models in terms of COMET scores.

KEYWORDS: Zero-resource machine translation; pivot pre-trained language model; transfer learning; neural machine
translation

1 Introduction

Neural machine translation (NMT) exploits neural networks to automatically produce accurate and
fluent translations between languages. Unlike traditional rule-based or statistical machine translation (SMT)
approaches [1-3], NMT directly models continuous representations of linguistic units from parallel corpora
using neural networks, eliminating reliance on handcrafted linguistic rules and features. This capability has
enabled superior performance [4-6], establishing NMT as the dominant approach in machine translation.
While end-to-end NMT models for high-resource language pairs have demonstrated impressive results for
high-resource language pairs [7,8], their performances heavily depend on the large-scale parallel corpus.
Consequently, data scarcity remains a significant challenge for non-English language pairs [9-11]. To address
this issue, pivot-based NMT (PNMT) has emerged as an effective solution [12,13], leveraging high-resource
“pivot” languages to bridge language pairs with limited or no parallel data, making it suitable for low-resource
and even zero-resource scenarios.

PNMT connects source and target languages lacking parallel corpus through a two-step process.
As shown in Fig. 1, consider German—French translation using English as the pivot, where X, Y, and Z
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represent source, target, and pivot languages, respectively. This process involves pre-training individual
NMT models for both source—pivot (Ms2p) and pivot—target (Mp2t) models using large-scale parallel data.
Ms2p translates the source sentence into a pivot sentence, which further serves as the input for Mp2t to
generate the target sentence. However, pivot models require double decoding operations while the two-step
process can lead to the propagation and amplification of translation errors. Moreover, training models are
challenging due to the inability of optimization operations to propagate gradients when the decoder generates

a pivot hypothesis.
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Figure 1: Schematic example of the pivot-based NMT

To resolve these problems, Cheng et al. [14] introduced a joint training approach with shared pivot
word embedding to enable interaction between Ms2p and Mp2t. Others maximized the likelihood of the
cascading network with a few source-target (s2t) data. The methods underutilize pivot monolingual corpus
and then face optimization challenges. Additionally, Tokarchuk et al. [15] replaced the auto-regressive (AR)
decoder in Ms2p with a non-autoregressive (NA) decoder trained via reinforcement learning (RL). AR
decoder generates target translation word by word, with each step relying on the output of the previous step.
While NA decoders generate translations in a single step to improve speed, they often introduce duplicate
words or omissions, especially in long sentences, resulting in lower accuracy than AR methods. Alternative
strategies involve generating pseudo-parallel source-target data via pivot languages [16,17] and transfer
learning techniques [18,19] that adapt knowledge from different but related tasks or domains to improve
PNMT. Zoph et al. [20] were the first to utilize parameter transfer from high-resource to low-resource
models, and Kim et al. [12] proposed transferring both the Ms2p encoder and Mp2t decoder parameters
for zero-shot translation. However, the cascading pivot language method can lead to parameter doubling
and inference delay, as well as error accumulation. The transfer-based pivot approaches fail to adequately
resolve cross-lingual representation challenges due to the scarcity of parallel has poor performance due to
cross-language representation alignment issues.

Recent results explore LLMs for machine translation [21-23], capitalizing on their generative and
multilingual capabilities. Prompt engineering [24,25] or in-context learning (ICL) [26,27] can enhance
LLM performance for low-resource languages (LRL). Zhu et al. [28] proposed a Language-Aware Neuron
Detecting and Routing framework (LANDeRMT) to selectively fine-tune neurons for translation tasks, while
Pan et al. [29] built a PrObability-driven Meta-graph Prompter (POMP) to dynamically sample multiple
translation paths using auxiliary languages. However, LLMs remain limited for LRL due to their pretraining
bias toward high-resource languages.

In this paper, we propose a pivot-based transfer learning [30,31] framework for zero-resource NMT,
unifying source, and target language representations via a pivot language space defined by a pre-trained
language model (PLM). PLMs learn universal language representations from large monolingual corpora
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and can be further fine-tuned for downstream tasks. To align Ms2p and Mp2t with the pivot space, we
initialize both models using pivot PLM and employ parameter freezing during pre-training. To miti-
gate representation space divergence, i.e., the project domain shift [32], we propose a feature converter
that maps Ms2p encoder outputs into a space compatible with the Mp2t decoder. Experiments on four
language pairs of German—French, German—Czech, Turkish—Hindi (using English as the pivot), and
Mongolian—Vietnamese (using Chinese as a pivot) demonstrate that the present method can improve
translation performance without parallel data. The main contributions of this work are as follows:

«  We proposed a systematic framework that unifies Ms2p and Mp2t representation via PLM-defined pivot
space for zero-resource NMT.

«  We proposed a feature converter to eliminate the divergence between the source language representation
space and the target language representation space.

«  We validate the proposed method across four zero-resource language pairs, outperforming existing
pivot-based methods in translation quality and efficiency.

2 Background and Motivation

NMT [33,34] is a data-driven approach that utilizes neural networks for translation tasks. In contrast,
pivot-based NMT addresses low-resource scenarios by leveraging a third “pivot” language to bridge language
pairs with limited parallel data. This approach mitigates the challenge of translating directly between
languages with scarce bilingual corpora, instead using pivot as an intermediary to enhance translation quality.
In what follows, we briefly introduce concepts of pivot-based NMT.

2.1 Pivot-Based Translation

Pivot-based NMT addresses data scarcity between language pairs using a pivot language. Pivot language
is typically chosen based on its substantial parallel corpora with both source and target languages. Define
s and t to denote a source sentence and the corresponding target sentence, respectively. Denote an NMT
model as P (t|s; 05 ), where 6,_,; denotes one set of parameters. Typically, this model can be trained using
parallel corpus D ; = {< s, t >} by maximizing likelihood estimation:

b, - arg max{ > logP (i m} 0

<s,t>€D;;

The traditional method often yields poor translation quality when dealing with low-resource language
pairs. Intuitively, if there are abundant parallel corpora of source-pivot and pivot-target available for training
separate models, one can translate the source sentence to the target sentence through the pivot sentence.
Denote p as the intermediate sentence in pivot language. The NMT model for source—target, with pivot
language as its connection, can be represented as:

P (t|5:05-p, 0pst) = D P (t]ps 0pst) P (s O5-p) )
p

where P (t| D Qp_,t) and P ( plss 05_,p) are probabilities of target and pivot sentence conditional on pivot and
source sentence, respectively. This leverages pivot language to facilitate source—target translation. According
to high-resource models, the pivot-based methods can be divided into three categories.

Direct Pivot Translation. The procedure contains two steps. First, the source sentence will be translated
into a pivot sentence, which is further translated into the target in the second step. It has not trained individual
NMT models for translation between source and target languages directly. This method depends on the
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reliability of high-quality translation models (Ms2p and Mp2t) but requires twice decoding. Although it
increases translation time, this method has good performance in zero-shot language translation.

Data Augmentation Translation. The general data augmentation method is to synthesize parallel data
by translating pivot sentences to either source sentences [35] or target sentences [36]. The synthesized data
can then be used as a training corpus to train source—target NMT model. The quality and quantity of parallel
corpora determine the performance of the translation model.

Model Transfer Training. It involves leveraging the learned knowledge from high-resource models
to improve low-resource or zero-resource translation using transfer learning [37,38]. Transfer learning
introduced by [20] is initially used in the context of pivot-based NMT. The low-resource model will be
initialized with parameters of a high-resource model and then fine-tuned to adapt to the specific task. This
can improve the performance of NMT models suffering from parallel data scarcity.

Pivot-based approaches, which address the scarcity of parallel corpora in machine translation, are
susceptible to cascaded translation errors. Specifically, errors in Ms2p propagate to Mp2t. This discrepancy
arises partly due to significant differences in vocabulary and parameter space between the two models, as
parallel data used for training is often loosely correlated or even unrelated.

To enhance pivot-based NMT, one method is to reduce the discrepancy or increase the similarity
between Ms2p and Mp2t. Our approach involves sharing the pivot language representation between Ms2p
and Mp2t. Additionally, we introduce a feature converter to transform features into forms more familiar
to the target decoder. This method aligns representations and features across two models, mitigating the
cascaded translation errors and improving overall translation quality in pivot-based NMT.

2.2 Language Representation Space

Most NMT approaches are based on the Encoder-Decoder framework [39,40] and attention mech-
anism. In this framework, the encoder transforms the input sequence into a continuous representation
sequence, often referred to as feature vectors. These vectors play a crucial role, as they satisfy the distributional
hypothesis and encapsulate textual data in a meaningful way. The decoder then processes these encoded
representations, generating target language output one token at a time. Pivot-based NMT involves using
two independently trained sequence-to-sequence models, namely Ms2p and Mp2t. The main goal is to
obtain target probability distributions by leveraging an intermediate representation of pivot language, given
a source sentence.

We hypothesize that the representation spaces of the source language (German) and pivot language
(English) exhibit similarity when conveying the same semantic meaning. To show this, we selected parallel
sentences in German and English, encoding their words separately using encoders of the trained Ms2p
and Mp2t models. We then extracted the encoded feature vectors and reduced their dimensionality using
locally linear embedding (LLE) and principal component analysis (PCA). Fig. 2 illustrates the distributions
of source and pivot feature vectors after dimensionality reduction. It indicates that the representation spaces
for different languages when expressing identical semantics, demonstrate a measurable degree of similarity.
This suggests the feasibility of establishing a connection between two language pairs by exploiting the pivot
language’s representation space.
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Figure 2: Feature distributions of source language (German) and pivot language (English) after dimensionality
reduction with PCA and LLE. (a) Source and pivot feature distribution after PCA. (b) Source and pivot feature
distribution after LLE

NMTs learn representations of different languages from large-scale corpus, and the vector represen-
tations of sentences with the same semantics across languages exhibit similarities. This similarity enables
the translation of zero-resource language pairs by converting source language representations into pivot
language representations. Kim et al. [12] proposed a linear pivot adapter to adapt the source language
encoder output of Ms2p with the pivot language encoder output of Mp2t. The adapter was trained by
minimizing the distance between these outputs, but it demonstrates limited performance in zero-shot
scenarios. Zhang and Li [19] proposed a transfer-learning-based approach that encourages auxiliary models
to learn representations within the same pivot language space during the pre-training, relying solely on a
parameter freezing mechanism. In contrast to previous works, we pre-defined the representation space such
that the pivot language spaces of Ms2t and Mp2t are similar. And then, we use a transformation method
to achieve the spatial transformer. Specifically, our approach first utilizes PLM to establish a unified pivot
representation space. During pre-training, we enforce adherence to this space by initializing and freezing
the parameters of the Ms2p decoder and Mp2t encoder. Subsequently, we construct the final source-target
translation model using the pre-trained encoder of Ms2p and decoder of Mp2t. To enhance feature migration,
we integrate a feature converter between the final encoder and decoder and fine-tune the model using a
synthetic parallel corpus.

3 Approach

Our focus is on machine translation of zero-resource language pairs, where no parallel corpus is
available during training. The pivot-based approach, which involves a third language (such as English)
provides a versatile solution. However, we propose a shared space transfer method that utilizes abundant
pivot monolingual corpora to train a pivot PLM and uses its parameters to initialize auxiliary Ms2p and
Mp2t models. To enhance the feature migration, we incorporate a feature converter between the final Ms2t
model, consisting of the Ms2p encoder and the Mp2t decoder. The feature converter uses synthetic parallel
corpus for end-to-end training. We will describe our approach in detail in this section.
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3.1 Model Architecture

The simple pivot-based NMT approach underutilizes pivot monolingual corpora and then may intro-
duce model bias due to Ms2p and Mp2t being trained by independent parallel corpora. Intuitively, we define
the representation space of pivot language using PLM and train translation models (Ms2p and Mp2t) within
this representation space. We illustrate our method in Fig. 3, which is divided into three stages. Let S, P, and
T represent the source, pivot, and target languages, respectively.

Pre-training

NMT
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Figure 3: Shared space transfer method. The dashed line indicates the parameter’s initialization. The present model
shares the representation space during the pre-training and fine-tuning phase by initializing all parameters and freezing
part parameters

We utilize corpora from S and P parallel corpora to train the PLM, which is then used to initialize the
encoder parameters of Ms2p and the decoder parameters of Mp2t during the pre-trained stage. To ensure
that Ms2p and Mp2t remain aligned with the representation space defined by P, we freeze specific parameters
during training. We introduce a feature converter between the encoder outputs of Ms2p and Mp2t during
fine-tuning. The final model of Ms2t, combining the Ms2p encoder, feature converter, and Mp2t decoder,
is fine-tuned using limited synthetic parallel data. The feature converter adapts representations to ensure
compatibility with the target decoder, even when models operate in similar representation spaces.

In experiments, we utilize BART [41] as a pivot language pre-trained language model (PLM), following
a standard Transformer structure [42]. Both Ms2p and Ms2t use Transformers with N = 6 identical layers,
in their encoder/decoder stacks, as shown in Fig. 4. Each encoder layer includes two sub-layers: a multi-
head self-attention mechanism and a position-wise fully connected network. After residual connections
are performed between these sub-layers, layer normalization is followed. Similar to the encoder layer, but
decoder layer with an extra sub-layer that executes multi-head attention on encoded representation.
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Figure 4: Transformer architecture

To predict the next token, the Transformer learns a linear transformation and a SoftMax function that
converts the decoded feature representation to probabilities of token distribution. Additionally, to address
the neglect of location information by attention, the Transformer proposes “position encoding” to encode
position information using sine and cosine functions, which are then added to the input/output embedding.

Directly using the PLM’s encoder/decoder for Ms2p and Mp2t without fine-tuning yields poor trans-
lation performance. Even for identical languages, representation spaces diverge when models are trained
on different data. To mitigate this, we separately train Ms2p and Mp2t on their respective parallel corpora,
further decreasing the discrepancy between the two models. Then, we freeze PLM-initialized parameters
in lower layers (details below) to maintain effective translation in a similar representation space as much
as possible. We finally share pivot vocabulary across models. Guided by findings that lower Transformer
layers capture lexical features while higher layers encode semantics [43], and considering the sensitivity of
cross-attention to pruning [44,45], we adopt the following freezing strategies:

Decoder Ms2p decoder initialized by PLM decoder. The embedding layer and self-attention of the
lowest 3 layers are frozen, remaining parameters, including layer normalization and cross-attention, are
fine-tuned.
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Encoder Mp2t encoder initialized by PLM encoder. The embedding layer and self-attention mecha-
nisms of the lowest 3 layers are frozen, and other parameters including layer normalization are fine-tuned.

This strategy encourages shared representation spaces while accommodating residual discrepancies. The
feature converter bridges these gaps, enabling the target decoder to effectively decode adapted source repre-
sentations.

3.2 Feature Converter

In NMT, feature vectors satisfying the distributional hypothesis to represent textual data is a crucial
aspect, as they encode semantic information about words. The encoder maps source language words into
these feature vectors, which the decoder then translates into the target language’s representation space.

Assuming Ms2p and Mp2t are well-trained models, minimizing deviations between their encoded
features is essential for effective decoding. When the encoding representation for sentences with the same
semantics from the Ms2p encoder is similar to that from the Mp2t encode, the Mp2t decoder can decode
them into target sentences. To achieve this, we propose a feature converter (see F'ig. 5) that transforms the
output of the Ms2p encoder into a representation compatible with the Mp2t decoder. Since both models
share a pivot-language representation space defined by the pre-trained PLM, their spaces exhibit inherent
similarities. Semantic equivalence between languages corresponds to analogous vector positions in these
spaces, enabling direct conversion of source vectors into target representations.

Pivot representation space

Shared

Source representation space O Target representation space
—

QO QOO
SE8EO

Feature Converter

Figure 5: Feature converter with shared pivot space. Source language and target language learn their respective
representation space under the constraint of shared pivot representation space

Shared representation space. During training, Ms2p and Mp2t are trained separately using the freezing
strategy outlined in Section 3.1. Specifically, the encoder and decoder of pivot PLM initialize the encoder of
Mp2t and the decoder of Ms2p. Then, the embedding and the lowest three layers of the Ms2p decoder and
Mp2t encoder were frozen separately during training.

Synthesize parallel data. Synthetic data can be generated by directly translating the pivot sentence to
the target sentence, or training a pivot—source model to back-translate the pivot sentence to the source
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sentence. The former approach can be regarded as a teacher-student method, where the pivot—target model
(teacher) guides the source—target model (student).

Training feature converter. We directly apply the feature converter between the source encoder and
the target decoder. The feature converter transforms the source language representation space into pivot
language representation space. We froze the encoder and decoder of the final source—target model and used
synthetic parallel corpus to train feature converter via maximizing likelihood estimation.

The final source—target model combines the Ms2p encoder, feature converter, and Mp2t decoder. Due
to linguistic divergences (e.g., syntax, vocabulary, word order), transformations between source and pivot
spaces are not strictly one-to-one. The semantic correspondence between languages often presents non-linear
geometric distortion. The deep network requires techniques (e.g., residual connection) to resolve gradient
vanishing/exploding. This means complex non-linear transformations may introduce uncontrollable seman-
tic drift (e.g., excessive transform destroys language structure). Thus, we employ a two-layer feed-forward
network as the feature converter, with each layer consisting of a linear mapping followed by a ReLU activation
function as:

F(x) = max ((0, Wix + b)) W, + by) 3)

where W) and W, are linear mapping weights and b;, b, are biases. The key to our method is to convert
the source feature vector into the target representation space. This differs from the linear pivot adapter [12],
which is trained independently by minimizing the distance from the source representation to the pivot
representation. In our translation model, we directly end-to-end train the feature converter. In specific
settings, we have found that a non-linear feature converter outperforms a linear feature converter. We
have also observed that deeper feed-forward networks fail to achieve better performance in this context.
Moreover, we use a consistent tokenization scheme that learns from a jointed corpus of the pivot language
when pre-training Ms2p and Mp2t to mitigate the misalignment of sub-word tokenization resulting from
different corpora.

4 Experiments
4.1 Dataset

We evaluated the present method on multiple language pairs, including synthetic zero-resource pairs,
German to French (De—Fr), German to Czech (De—Cs), and Turkish to Hindi (Tr—Hi) with English (En)
as the pivot language, and the real zero-resource language pair, Mongolian to Vietnamese (Mn— Vi) with
Chinese (Ch) as the pivot. These language pairs lack direct source-target parallel data, they do have ample
source-pivot and pivot-target parallel corpora. Data sources included WMT 2018, WMT 2019, and OPUS. For
Mn—Vi, we constructed the test data via Google Translate and professional translators due to limited public
corpora. To train the feature converter and comparative models, we synthesized the source-target parallel
data using pivot—source or pivot—target models. The experiment data statistics are provided in Table 1,
where the ‘syn’ label indicates that the parallel corpus is synthetic.

Table 1: Training data statistics in all experiments

Train Valid Test
De—En 160,293 7283 6750
En—Fr 168,167 7643 4493
De—Fr 53,408 (syn) 2424 (syn) 2896

(Continued)
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Table 1 (continued)

Train Valid Test
De—En 182,957 8316 9106
En—Cs 90,214 4100 5716
De—Cs 42,800 (syn) 2048 (syn) 2359
Tr—En 483,452 27,016 26,985
En—Hi 481,881 26,545 26,705
Tr—Hi 60,235 (syn) 3318 (syn) 2102
Mn—Ch 328,799 18,312 18,263
Ch-Vi 126,332 6910 7021
Mn—Vi 48,723 (syn) 1984 (syn) 1822

Note: The ‘syn’ label indicates that the parallel corpus is synthetic.

Regarding the synthetic parallel data, we adopt the back-translation method from either the
pivot—target or pivot—source model. Table 2 shows the performance of pre-training NMT models. For the
De—Fr and Mn— Vi synthetic parallel data, we utilized En—Fr and Ch—Mn models, which can achieve good
performance both on BLEU and COMET to generate French and Mongolian sentences corresponding to the
De—En and Mn—Ch parallel corpus. For De—Cs and Tr—Hi pairs, we chose En—Cs and En—Tr models
to synthesize the parallel corpora with a lower BLEU but higher COMET. Taking the synthesis of De-Fr
parallel data as an example, we first randomly selected De-En parallel sentences from De—En training and
valid dataset and employed En—Fr NMT to translate En sentences in these pairs into Fr sentences. Finally,
we synthesized the De-Fr parallel corpus by aligning the De and Fr sentences corresponding to the same

En sentences.

Table 2: The performance of pre-training NMT models

BLEU COMET
De—En 34.87 0.78
De—Fr (syn) En—De 33.57 0.73
En—Fr 39.71 0.79
De—En 33.04 0.73
De—Cs (syn) En—De 28.54 0.69
En—Cs 17.07 0.75
Tr—En 36.63 0.80
Tr—Hi (syn) En—>Tr 33.44 0.87
En—Hi 34.86 0.77
Mn—Ch 35.46 0.83
Mn—Vi (syn) Ch—-Mn 37.36 0.86
Ch—Vi 25.52 0.75

Note: The underlined NMT models that we have used to synthesize parallel corpus for zero-resource lan-

guage pairs.
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4.2 Model Training

We implemented all algorithms using the PyTorch framework and followed the pre-processing steps
provided by the Fairseq toolkit [46]. Our model is based on the standard Transformer with 8 attention heads
in each encoder and decoder sub-layer. We performed tokenization and true-casing on all corpora using
Moses, and applied byte-pair encoding (BPE) [47] with 32,000 merge operations for pre-processing. The
word embedding size is 512, and the maximum token count is set to 4096 tokens in each batch size. For
optimization, Adam optimizes [48] with an initial learning rate § = (0.9, 0.98) and label smoothing is 0.1.
The dropout rate was 0.1 for each model. During inference, we used a beam size of 5 for greedy search. In
experiments, we evaluated the translation performance using BLEU' [49], TER [50], and COMET [51] as
primary metrics. COMET takes advantage of the pre-trained multilingual language model to evaluate the
translation quality with a higher correlation than human judgment. We used the wmt22-comet-da” model
to evaluate COMET scores.

To establish a shared representation space centered on the pivot language, we integrated pivot corpus
from both source-pivot and pivot-target parallel corpora, which is subsequently utilized for PLM training.
During the training of both NMTs2p and NMTp2t, we share the subword vocabulary of pivot language
between PLM and NMTs.

4.3 Baselines

We address language pair translation in a zero-shot scenario using a pivot language. To validate the
effectiveness, we compare it with the following baselines, each corresponding to one of three categories of
pivot-based NMTs:

Direct pivot baseline: The baseline method involved training Ms2p and Mp2t models separately with
parallel corpora, and then translating the source sentence to the target sentence by piping the output of Ms2p
into the Mp2t model. This method represents a strong baseline.

Teacher-Student baseline (T-S): The baseline method proposed by Chen et al. [52] considers the
pivot—source model as a “teacher” to generate the source—target data. The synthetic parallel corpus of the
source-target is then used to train a “student” model, i.e., the source-target model. In our experiments, both
the teacher and the student models adopt the Transformer model.

Step-wise Pre-training baseline (SP): The baseline method proposed by [12] involves training the
target decoder to align with the source language’s representation space through three stages. Firstly, train
an Ms2p model using a joint vocabulary. Then, train an Mp2t model, initializing its encoder with the
frozen Ms2p encoder. Finally, fine-tune the Ms2t model on the synthetic parallel corpus, initializing it with
the Ms2p encoder and Mp2t decoder.

4.4 Result

Training analysis. Our method fine-tunes a feature converter while freezing the encoder and decoder
initialized by auxiliary Ms2p and Mp2t. We present the train and valid loss for the teacher-student and our
method in Fig. 6. Our method converges faster since only the converter’s parameters are updated. Despite
slower training loss reduction, the lower validation loss demonstrates stable training and robust performance.

'BLEU signature: BLEU+c.mixed+1.{de-ft, de-cs, tr-hi, mn-vi}+#.1+s.exp+tok.13a+v.2.4.0.
2hllps: //huggingface.co/Unbabel/wmt22-comet-da (accessed on 27 May 2025).
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Figure 6: Train and valid loss curve in the training stage. (a) De—Fr loss curve; (b) De—Cs loss curve; (c) Tr—Hi loss
curve; (d) Mn—Vi loss curve

In Tables 3-6, we present the performance of our model and baseline results for De—Fr, De—Cs, Tr—Hi
and Mn—Vi. While the direct pivot method achieves strong performance, its dual-decoder architecture
incurs significant computational overhead. Our method narrows this gap, trailing the direct pivot by no more
than 2 BLEU while achieving the lowest TER and best COMET score for De—Fr. The step-wise pre-training
baseline initially underperforms but improves substantially after fine-tuning with synthetic source-target
parallel corpora, exceeding 10 BLEU across all language pairs. When combined with our feature converter,
we can achieve the best COMET scores for De—Cs, Tr—Hi, and Mn—Vi. This demonstrates the feature
converter’s efficacy in preserving source semantics. The performance of the teacher-student model depends
on the translation quality of the pivot-target model. For example, the noisy De—Cs synthetic parallel corpus
(due to poor En—Cs translation) results in a 15.69 BLEU score drop compared to De—Fr. Initializing the
teacher-student model with the Ms2p encoder and Mp2t decoder, both pre-trained with a pivot PLM, can
enhance performance.

Table 3: The evaluation on the De—Fr language pairs with En as a pivot language

Method BLEU TER COMET
Direct pivot 22.14 66.53 0.69
T-S 19.38 69.89 0.46

(Continued)
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Table 3 (continued)

Method BLEU TER COMET
T-S + PLM 20.69 68.12 0.48
SP 1.62 - 0.23
SP + Synthetic data 16.75 73.67 0.63
SP + Feature converter 17.48 70.26 0.64

Shared space transfer 21.53 65.84 0.70

Note: T-S is for the teacher-student model and SP is for the step-
wise pre-training. “-” denotes the TER exceeds 100. The bold
values denote the best records in simulations.

Table 4: The evaluation of the De—Cs language pairs with En as the pivot language.

Method BLEU TER COMET
Direct pivot 15.46  76.57 0.68
T-S 3.69 - 0.37
T-S + PLM 4.42 - 0.35
SP 2.22 - 0.31

SP + Synthetic data 10.49  92.87 0.62
SP + Feature converter 11.56  91.32 0.63
Shared space transfer ~ 13.37  75.02 0.58

Table 5: The evaluation of the Tr—Hi language pairs with En as the pivot language

Method BLEU TER COMET
Direct pivot 2110  61.05 0.57
T-S 15.01 85.79 0.42
T-S + PLM 16.28 8726 0.44
SP 4.30 0.28

SP + Synthetic data 18.87  73.05 0.56
SP + Feature converter 19.64 76.31 0.55
Shared space transfer ~ 19.05  61.05 0.51
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Table 6: The evaluation on the Mn—Vi language pair with Ch as a pivot language

Method BLEU TER COMET
Direct pivot 2543 88.81 0.56
T-S 15.32 - 0.47
T-S + PLM 16.44  95.21 0.44
SP 5.90 - 0.41

SP + Synthetic data 2290 74.61 0.57
SP + Feature converter 23.56  71.23 0.59
Shared space transfer ~ 23.98 77.93 0.56

The direct pivot method, while effective, suffers from error propagation due to its dual-decoder
architecture and challenges in cascade training. All existing approaches prioritize direct source—target
translation models when both Ms2p (source—pivot) and Mp2t (pivot—target) exhibit strong performance.
However, the teacher-student method underperforms if the teacher model (e.g., pivot—target) is low-
quality. By defining the source language representation space via the pivot PLM, we ensure the compatibility
between the source space and the target decoder. Notably, our feature converter can be integrated into other
frameworks to enhance their performance. Experimental results confirm that our method outperforms the
baseline models in BLEU and obtains the best COMET score for De—Fr. The step-wise pre-training with
our feature converter can achieve better performance for De—Cs, Tr—Hi, and Mn— Vi language pairs.

Translation quality. To rigorously compare translation fidelity, we benchmark against SP+Feature
Converter (step-wise pre-training baseline). As shown in Table 7, our translation achieves the highest
COMET score, indicating its translation quality is closer to human-judged quality. Additionally, our method
is within 1 BLEU score of direct translation in BLEU, while matching its TER. The step-wise pre-training
model has a lower TER 28.58 than the teacher-student model, and the translation quality is inferior. The
teacher-student model accurately translates “online-spielen” into “jouer en ligne”, whereas the step-wise
pre-training model translated it to “en ligne” and missed the word “derzeit”

Although our method did not achieve the highest BLEU score, it achieved the highest COMET score.
We noticed that the translated sentences produced by the direct pivot and teacher-student methods tend to
include more words, increasing the likelihood of mistranslation for the step-wise pre-training model. Our
method strikes a good balance between the translation quality and similarity to the reference translation.

Freeze strategy influence: We analyze different pivot PLM freeze strategies in the De-En and En-Fr
translation models. In our experiments, we initialize the Ms2p encoder and Mp2t decoder by using pivot
PLM and train them according to the freeze strategy. We set freezing strategies for the decoder and encoder
respectively according to the layer-wise and component-wise freezing. The details are as follows:

No-Frozen: Initialize the De—~En decoder and En—Fr encoder by using pivot (English) PLM. All
parameters can be fine-tuned in training time.

Embedding-Frozen: After initializing the encoder or decoder with pivot PLM, we freeze the embedding
layer while other parameters are fine-tuned.

Lower-Frozen: After initializing the encoder or decoder with pivot PLM, the attention parameters of
the lowest three layers and embedding layer are frozen. For the De—En decoder, the cross-attention of frozen
layers is fine-tuned.

All-Frozen: After initializing the encoder or decoder with the pivot PLM, the attention parameters of
all layers are frozen. For the De—En decoder, the cross-attention of frozen layers is fine-tuned.
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Table 7: An example of pivot-based NMTs for the De—Fr language pair

Source derzeit verbringen wir 3 milliarden stunden pro woche mit
online-spielen.
Pivot right now we spend three billion hours a week playing online
Method & P playlig
games.
Target  Aujourd’hui, nous passons trois milliards d’heures par semaine a
jouer en ligne.
Pivot we currently spend three billion hours a week playing online
games.
Direct pivot

nous passons actuellement 3 milliards d’heures par semaine a
Target jouer aux jeux en ligne.
(BLEU: 44.80, TER: 42.86, COMET: 0.94)

nous passons 3 milliards d’heures par semaine en ligne.

P + Feat ter Target
SP + Feature converter  Targe (BLEU: 28.38, TER: 35.71, COMET: 0.89)

en ce moment, nous passons a peu preés 3 milliards d’heures par
T-S Target semaine a faire des jouer en ligne.
(BLEU: 34.11, TER: 64.29, COMET: 0.85)

en ce moment, nous passons 3 milliards de heures par semaine a
Shared space transfer ~ Target jouer en ligne.

(BLEU:43.85, TER: 42.86, COMET: 0.93)

In Table 8, we compare the model that does not utilize pivot PLM initialization. For De-En and En-Fr,
using PLM initialization without any freezing strategy (No-Frozen) achieves BLEU scores of 35.01 and 41.27,
respectively, outperforming direct models. This indicates that the PLM’s representations enhance translation
performance. Our results show that different freezing strategies affect performance: the more layers that are
frozen, the worse the performance tends to be. Specifically, using an all-frozen strategy for the decoder in the
De—En translation results in a BLEU score drop over 20, while En—Fr only achieves 8.15 BLEU. In contrast,
lower freezing strategies for the De-En and En-Fr maintain good performance, with differences from the
best BLEU scores of no more than 2 and 5 points, respectively. Compared with the No-Frozen strategy,
varying degrees of performance degradation are observed across different freezing strategies where the
frozen layers discontinue parameter updates. Embedding-Frozen and Lower-Frozen strategies only decrease
0.14 BLEU and 0.85 BLEU on De—En, as both PLM and NMT are more inclined towards representing
lexical and syntactic features at lower layers, meanwhile, higher layer learn task-specific representation.
Thus, the All-Frozen strategy limits high layers to learn translation-specific patterns, which dramatically
reduces performance, decreasing by 27.65 BLEU and 33.12 BLEU on De—En and En—Fr. Note that freezing
only the embedding layer can enhance translation performance, but this approach may deviate from the
representation space defined by the pivot language.

The lower layers of the language model mainly encode lexical and local syntactic features of the target
language, while higher layers focus on semantic integration and task-specific representations [53]. Freezing
these lower layers preserves general linguistic knowledge and avoids damaging the modeling ability of pre-
trained language models [54] while allowing fine-tuning of higher layers for task adaptation. For translation
tasks, the Transformer decoder needs to simultaneously learn target language generation and cross-language
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alignment [55]. An all-frozen strategy prevents the Transformer from achieving cross-language alignment,
severely degrading performance. Thus, while freezing all encoder or decoder layers preserves the pivot
representation space effectively, it sacrifices translation quality. Our lower-freezing strategy balances this
trade-off: retaining pivot-space alignment while enabling sufficient flexibility for task-specific adaptation.

Table 8: The results for different freezing strategies

Freezing strategy = BLEU (De—En) BLEU (En—Fr)

Direct 33.57 40.14
No-Frozen 35.01 41.27
Embedding-Frozen 34.87 40.02
Lower-Frozen 34.16 34.87
All-Frozen 7.36 8.15

Converter efficiency. We analyzed the impact of feature converter design and different sizes of synthetic
data on translation performance. Auxiliary Ms2p and Mp2t models are trained by using a Lower-Frozen
freezing strategy with the pivot PLM. Despite shared initialization, Ms2p and Mp2t occupy distinct repre-
sentation spaces. Directly combining their encoder and decoder (“plain transfer”) yields poor performance
(<2 BLEU). Our approach adds the extra feature converter between Ms2p encode and Mp2t decoder, and
fine-tunes the model by synthetic parallel corpus. Our feature converter transforms the representation of the
Ms2p encoder into the Mp2t decoder. Fig. 7 shows the performance of the final model with different feature
converters and synthetic data. With the same synthetic parallel data, the non-linear converter performs better
than the linear converter. For De—Fr, the non-linear converter is higher than linear converters 1.49, 1.67, and
1.21 BLEU. The fine-tuning data ranging from 10k, 50k to 160k can improve 2 BLEU and 0.13 for De—Fr with
a non-linear converter.

25 | 21 25 7
| Linear Converter L Linear Converter Linear Converter Linear Converter

Mon-Linear Converter Non-Linear Converter Nen-Linear Converter Non-Linear Conyerter

p= = e} |
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Figure 7: The performance of different synthetic data numbers and converters. (a) De—Fr BLEU; (b) De—Cs BLEU;
(¢) Tr—Hi BLEU; (d) Mn—Vi BLEU

We pre-trained the auxiliary Ms2p and Mp2t with the freezing strategy, but there is still a deviation
between the representation space of the source and pivot language. The performance for plain transfer is
poor. The feature converter can narrow the gap effectively, but there is a small amount of synthetic parallel
data that can obtain positive performance. The results indicate the non-linear converter is suitable for feature
transformation from source to pivot representation. However, even with a significant increase in fine-tuning
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data, the feature converter’s improvement is limited because of its simple network structure. This intrigues
us to build a feature converter with more stronger transformation ability in the future.

Language model effect. We compared the proposed method using BART and RoBERTa [56] as LMs
for De—Cs and Mn—Ch. The results are shown in Table 9. Using BART as a pivot outperforms RoBERTa in
both pre-trained Ms2p and Mp2t and the final Ms2t model with feature converter. Compared to RoBERTa,
the BLEU is higher at 2.1 and 1.24 respectively on De—Cs and Mn—Ch. BART adopts the encoder-decoder
architecture, which maintains compatibility with standard Transformer, and its pre-training paradigm com-
bines bidirectional and autoregressive objectives, which effectively handle text generation tasks. However, as
RoBERTa has used an encoder-only framework, it limited text generation capabilities.

Table 9: Comparison of our method using BART and RoBERTa as LMs

BART RoBERTa

BLEU COMET BLEU COMET

De—En 34.87 0.78 33.95 0.76
De—-Cs En—Cs 1707 0.75 17.48 0.79
De—-Cs  13.37 0.58 11.27 0.53

Mn—-Ch 35.46 0.83 34.02 0.79
Mn—-Vi Ch-Vi 2552 0.75 24.36 0.75
Mn—-Vi 2398 0.56 22.74 0.51

5 Conclusion

Our work introduced a novel pivot-based approach to enhance neural machine translation for zero-
resource language pairs by aligning cross-lingual representation spaces. We analyzed the similarity of
language representation across different languages and proposed a strategy involving parameter initialization
and freezing to share the pivot language space between the Ms2p and Mp2t models. Furthermore, we
proposed a feature converter to ensure the conversion between source language space and pivot language
space. Experiment results on four language pairs including both synthetic and real zero-resource translation
indicate the effectiveness of the present method. However, the COMET scores for these zero-resource pairs
remain space for improvement as the present method cannot fully resolve word alignment issues. For
future work, it is interesting to explore the integration of additional semantic information (e.g., part-of-
speech tagging) and develop a more robust feature converter to enhance performance. Another method is
to investigate leveraging LLMs with high-resource auxiliary languages to bridge the gap between the rigid
literalness of NMT and the flexibility of human translation.

Acknowledgement: Not applicable.

Funding Statement: This research was funded by the National Natural Science Foundation of China (Grant number:
Nos. 62172341 and 12204386), Sichuan Natural Science Foundation (Grant number: No. 2024NSFSCI1375), Youth
Foundation of Inner Mongolia Natural Science Foundation (Grant number: No. 2024QN06017), Basic Scientific
Research Business Fee Project for Universities in Inner Mongolia (Grant number: No. 0406082215).

Author Contributions: The authors confirm contribution to the paper as follows: Conceptualization and design,
Lingfang Li; data collection, Lingfang Li, Weijian Hu; draft manuscript preparation: Lingfang Li, Weijian Hu, Mingxing



5932 Comput Mater Contin. 2025;84(3)

Luo; funding acquisition and project administration, Mingxing Luo. All authors reviewed the results and approved the
final version of the manuscript.

Availability of Data and Materials: The data that support the findings of this study are openly available in
WMT2018, WMT2019 and OPUS at https://www.statmt.org/wmtl9, https://www.statmt.org/wmtl8 and https://opus.
nlpl.eu/corpora (accessed on 19 January 2025).

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References

1. Charoenpornsawat P, Sornlertlamvanich V, Charoenporn T. Improving translation quality of rule-based machine
translation. In: Proceedings of the COLING-02: Machine Translation in Asia; 2002 Sep 1; Taipei, Taiwan.

Lopez A. Statistical machine translation. ACM Comput Surv. 2008;40(3):1-49. d0i:10.1145/1380584.1380586.
Dumebi OM. Machine translation approaches: issues and challenges. Int ] Comput Sci Issues. 2014;11(5):159.
Wang H, Wu H, He Z, Huang L, Church KW. Progress in machine translation. Engineering. 2022;18(2):143-53.
doi:10.1016/j.eng.2021.03.023.

5. Junczys-Dowmunt M, Dwojak T, Hoang H. Is neural machine translation ready for deployment? A case study on

TS

translation directions. In: Proceedings of the 13th International Conference on Spoken Language Translation; 2016
Dec 8-9; Seattle, WA, USA.

6. Garg A, Agarwal M. Machine translation: a literature review. arXiv:1901.01122. 2018.

7. Wu, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, et al. Google’s neural machine translation system:
bridge the gap between human and machine translation. arXiv:1609.08144. 2016.

8. Dabre R, Chu C, Kunchukuttan A. A survey of multilingual neural machine translation. ACM Comput Surv.
2020;53(5):1-38. doi:10.1145/3406095.

9. Koehn P, Knowles R. Six challenges for neural machine translation. In: Proceedings of the First Workshop on
Neural Machine Translation; 2017 Aug 4; Vancouver, BC, Canada. doi:10.18653/v1/W17-3204.

10. Sennrich R, Zhang B. Revisiting low-resource neural machine translation: a case study. In: Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics; 2019 Jul 28-Aug 2; Florence, Italy. doi:10.18653/
v1/P19-1021.

11. Ranathunga S, Lee E-SA, Skenduli MP, Shekhar R, Alam M, Kaur R. Neural machine translation for low-resource
languages: a survey. ACM Comput Surv. 2023;55(11):1-37. d0i:10.1145/3567592.

12. KimY, Petrov P, Khadivi S, Khadivi S, Ney H. Pivot-based transfer learning for neural machine translation between
Non-English languages. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing; 2019 Nov 3-7; Hong Kong,
China. doi:10.18653/v1/D19-1080.

13. Dabre R, Imankulova A, Kaneko M. Simultaneous mult-pivot neural machine translation. arXiv:2104.07410. 2021.

14. Cheng, Liu Y, Yang Q, Sun M, Xu W. Neural machine translation with pivot languages. arXiv:1611.04928. 2017.

15. Tokarchuk E, Rosendahl ], Wang W, Petrushkov P, Lancewicki T, Khadivi S, et al. Towards reinforcement learning
for pivot-based neural machine translation with non-autoregressive transformer. arXiv:2109.13097. 2021.

16. Lakew SM, Lotito QF, Negri M, Turchi M, Federico M. Improving zero-shot translation of low-resource languages.
In: Proceedings of the 14th International Conference on Spoken Language Translation; 2017 Dec 14; Tokyo, Japan.

17.  Heafield ACK. Zero-resource neural machine translation with monolingual pivot data. In: Proceedings of the 3rd
Workshop on Neural Generation and Translation; 2019 Nov 4; Hong Kong, China. d0i:10.18653/v1/D19-5610.

18. Mbhaskar S, Bhattacharyya P. Pivot based transfer learning for neural machine translation: CFILT IITB @ WMT
2021 triangular MT. In: Proceedings of the Sixth Conference on Machine Translation; 2021 Nov 10-11; Online.

19. Zhang M, Li L. Triangular transfer: freezing the pivot for triangular machine translation. In: Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics; 2022 May 22-27; Dublin, Ireland. doi:10.
18653/v1/2022.acl-short.72.


https://www.statmt.org/wmt19
https://www.statmt.org/wmt18
https://opus.nlpl.eu/corpora
https://doi.org/10.1145/1380584.1380586
https://doi.org/10.1016/j.eng.2021.03.023
https://doi.org/10.1145/3406095
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/P19-1021
https://doi.org/10.18653/v1/P19-1021
https://doi.org/10.1145/3567592
https://doi.org/10.18653/v1/D19-1080
https://doi.org/10.18653/v1/D19-5610
https://doi.org/10.18653/v1/2022.acl-short.72
https://doi.org/10.18653/v1/2022.acl-short.72

Comput Mater Contin. 2025;84(3) 5933

20.

21

22.

23.

24,

25.

26.

27.

28.

29.

30.

3L

32.

33.

34.

35.

36.

37

Zoph B, Yuret D, May ], Knight K. Transfer learning for low-resource neural machine translation. In: Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing; 2016 Nov 1-5; Austin, TX, USA.
doi:10.18653/v1/D16-1163.

Zhang H, Chen K, Bai X, Li X, Xiang Y, Zhang M. Exploring translation mechanism of large language models.
arXiv:2502.11806. 2025.

LiJ, Zhou H, Huang S, Cheng S, Chen J. Eliciting the translation ability of large language models via multilingual
finetuning with translation instructions. Trans Assoc Comput Linguist. 2014;12:576-92. doi:10.1162/tacl_a_00655.
Sizov E, Espafia-Bonet C, Van Genabith J, Xie R. Analysing translation artifacts: a comparative study of LLMs,
NMTs, and human translations. In: Proceedings of the Ninth Conference on Machine Translation; 2024 Nov 15-16;
Miami, FL, USA. doi:10.18653/v1/2024.wmt-1.116.

Muennighoff N, Wang T, Sutawika L, Penedo G, Le Scao T, Melas-Kyriazi L, et al. Crosslingual generalization
through multitask finetuning. In: Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics; 2023 Jul 9-14; Toronto, ON, Canada. doi:10.18653/v1/2023.acl-long.891.

Wendler C, Veselovsky V, Monea G, West R. Do llamas work in English? On the latent language of multilingual
transformers. In: Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics; 2024
Aug 11-16; Bangkok, Thailand.

Zhu S, Cui M, Xiong D. Towards robust in-context learning for machine translation with large language models.
In: Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024); 2024 May 20-25; Torino, Italia.

Arora A, Jurafsky D, Potts C, Goodman ND. Bayesian scaling laws for in-context learning. arXiv:2410.16531. 2024.
Zhu S, Pan L, Li B, Xiong D. LANDeRMT: dectecting and routing language-aware neurons for selectively
finetuning LLMs to machine translation. In: Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics; 2024 Aug 13-15; Bangkok, Thailand. doi:10.18653/v1/2024.acl-long.656.

Pan §, Tian Z, Ding L, Zheng H, Huang Z, Wen Z, et al. POMP: probability-driven meta-graph prompter for
LLMs in low-resource unsupervised neural machine translation. In: Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics; 2024 Aug 13-15; Bangkok, Thailand. doi:10.18653/v1/2024.acl-
long.537.

Chen G, Ma S, Chen Y, Zhang D, Pan J, Wang W, et al. Towards making the most of cross-lingual transfer for zero-
shot neural machine translation. In: Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics; 2022 May 22-27; Dublin, Ireland. doi:10.18653/v1/2022.acl-long.12.

Eronen J, Ptaszynski M, Nowakowski K, Chia ZL. Improving polish to english neural machine translation with
transfer learning: effects of data volume and language similarity. In: Proceedings of the 1st International Workshop
on Multilingual, Multimodal and Multitask Language Generation; 2023 Jun 15; Tampere, Finland.

FuY, Hospedales TM, Xiang T. Transductive multi-view zero-shot learning. IEEE Trans Pattern Anal Mach Intell.
2015;37(11):2332-45. d0i:10.1109/TPAMI.2015.2408354.

Luong T, Pham H, Manning CD. Effective approaches to attention-based neural machine translation. In:
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing; 2015 Sep 17-21; Lisbon,
Portugal. doi:10.18653/v1/D15-1166.

Tan Z, Wang S, Yang Z, Chen G, Huang X, Sun M, et al. Neural machine translation: a review of methods, resources,
and tools. AI Open. 2020;1:5-21. d0i:10.1016/JAIOPEN.2020.11.001.

Sennrich R, Haddow B, Birch A. Improving neural machine translation models with monolingual data. In:
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics; 2016 Aug 7-12; Berlin,
Germany. doi:10.18653/v1/P16-1009.

Xia M, Kong X, Marquez L. Generalized data augmentation for low-resource translation. In: Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics; 2019 Jul 28-Aug 2; Florence, Italy. doi:10.
18653/v1/P19-1579.

Ko W, El-Kishky A, Renduchintala A, Chaudhary V, Goyal N, Guzman F. Adapting high-resource nmt models
to translate low-resource related languages without parallel data. In: Proceedings of the 59th Annual Meeting of


https://doi.org/10.18653/v1/D16-1163
https://doi.org/10.1162/tacl_a_00655
https://doi.org/10.18653/v1/2024.wmt-1.116
https://doi.org/10.18653/v1/2023.acl-long.891
https://doi.org/10.18653/v1/2024.acl-long.656
https://doi.org/10.18653/v1/2024.acl-long.537
https://doi.org/10.18653/v1/2024.acl-long.537
https://doi.org/10.18653/v1/2022.acl-long.12
https://doi.org/10.1109/TPAMI.2015.2408354
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.1016/JAIOPEN.2020.11.001
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P19-1579
https://doi.org/10.18653/v1/P19-1579

5934

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.
49.

50.

51

52.

53.

Comput Mater Contin. 2025;84(3)

the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing; 2021 Aug 1-6; Online. doi:10.18653/v1/2021.acl-long.66.

Ji B, Zhang Z, Duan X, Zhang M, Chen B, Luo W. Cross-lingual pre-training based transfer for zero-shot neural
machine translation. In: Proceedings of the AAAT Conference on Artificial Intelligence; 2020 Feb 7-12; New York,
NY, USA. doi:10.1609/aaai.v34i01.5341.

Cho K, van Merriénboer B, Bahdanau D, Bengio Y. On the properties of neural machine translation: encoder-
decoder approaches. In: Proceedings of the SSST-8, Eighth Workshop on Syntax, Semantics and Structure in
Statistical Translation; 2014 Oct 25; Doha, Qatar. doi:10.3115/v1/W14-4012.

Aitken K, Ramasesh VV, Cao Y, Maheswaranathan N. Understanding how encoder-decoder architectures attend.
In: Proceedings of the 35th International Conference on Neural Information Processing Systems; 2021 Dec 6-14;
Online.

Lewis M, Liu Y, Goyal N, Ghazvininejad M, Mohamed A, Levy O, et al. BART: denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehension. In: Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics; 2020 Jul 5-10; Online. doi:10.18653/v1/2020.acl-main.
703.

Vaswani A, Shazeer N, Parmar N, Uszkoreit ], Jones L, Gomez AN, et al. Attention is all you need. In: Proceedings
of the 31st International Conference on Neural Information Processing Systems (NIPS’17); 2017 Dec 4-9; Long
Beach, CA, USA.

Tiedemann AR]J. An analysis of encoder representations in transformer-based machine translation. In: Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP; 2018
Nov I; Brussels, Belgium. doi:10.18653/v1/W18-5431.

Li X, Wang C, Tang Y, Tran C, Tang Y, Pino J, et al. Multilingual speech translation from efficient finetuning of
pretrained models. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing; 2021 Aug 1-6; Online. doi:10.18653/
v1/2021.acl-long.68.

Gheini M, Ren X, May J. Cross-attention is all you need: adapting pretrained transformers for machine translation.
In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing; 2021 Nov 7-11;
Online. doi:10.18653/v1/2021.emnlp- main.132.

Ott M, Edunov S, Baevski A, Fan A, Gross S, Ng N, et al. FAIRSEQ: a fast, extensible toolkit for sequence modeling.
In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics; 2019 Jun 2-7; Minneapolis, MN, USA. doi:10.18653/v1/N19-4009.

Sennrich R, Haddow B, Birch A. Neural machine translation of rare words with subword units. In: Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics; 2016 Aug 7-12; Berlin, Germany.
doi:10.18653/v1/P16-1162.

Kingma DP, Ba JL. Adam: a method for stochastic optimization; 2014. arXiv:1412.6980. 2014.

Papineni K, Roukos S, Ward T. A method for automatic evaluation of machine translation. In: Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics; 2002 Jul 6-12; Philadelphia, PA, USA.
doi:10.3115/1073083.1073135.

Snover M, Dorr B, Schwartz R, Micciulla L. A study of translation edit rate with targeted human annotation. In:
Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers;
2006 Aug 8-12; Cambridge, MA, USA.

ReiR, Stewart C, Farinha AC, Lavie A. COMET: a neural framework for MT evaluation. In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP); 2020 Nov 16-20; Online. doi:10.
18653/v1/2020.emnlp-main.213.

Chen Y, Liu Y, Cheng Y. A teacher-student framework for zero-resource neural machine translation. In: Proceed-
ings of the 55th Annual Meeting of the Association for Computational Linguistics; 2017 Jul 30-Aug 4; Vancouver,
BC, Canada. doi:10.18653/v1/P17-1176.

Devlin ], Chang M-W, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language
understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for


https://doi.org/10.18653/v1/2021.acl-long.66
https://doi.org/10.1609/aaai.v34i01.5341
https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/W18-5431
https://doi.org/10.18653/v1/2021.acl-long.68
https://doi.org/10.18653/v1/2021.acl-long.68
https://doi.org/10.18653/v1/2021.emnlp-main.132
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/P17-1176

Comput Mater Contin. 2025;84(3) 5935

Computational Linguistics: Human Language Technologies; 2019 Jun 2-7; Minneapolis, MN, USA. doi:10.18653/
v1/N19-1423.

54. Peters ME, Ruder S, Smith NA. To tune or not to tune? Adapting pretrained representations to diverse tasks. In:
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019); 2019 Aug 2; Florence,
Italy. doi:10.18653/v1/W19-4302.

55. Voita E, Sennrich R. Analyzing the source and target contributions to predictions in neural machine translation.
In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing; 2021 Aug 1-6; Online. doi:10.18653/v1/2021.acl-
long.91L

56. LiuY, Ott M, Goyal N, Du J, Joshi M, Chen D, et al. RoBERTa: a robustly optimized BERT pretraining approach.
arXiv:1907.11692. 2019.


https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/2021.acl-long.91
https://doi.org/10.18653/v1/2021.acl-long.91

	PNMT: Zero-Resource Machine Translation with Pivot-Based Feature Converter
	1 Introduction
	2 Background and Motivation
	3 Approach
	4 Experiments
	5 Conclusion
	References


