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ABSTRACT: Detecting cyber attacks in networks connected to the Internet of Things (IoT) is of utmost importance
because of the growing vulnerabilities in the smart environment. Conventional models, such as Naive Bayes and
support vector machine (SVM), as well as ensemble methods, such as Gradient Boosting and eXtreme gradient boosting
(XGBoost), are often plagued by high computational costs, which makes it challenging for them to perform real-
time detection. In this regard, we suggested an attack detection approach that integrates Visual Geometry Group
16 (VGG16), Artificial Rabbits Optimizer (ARO), and Random Forest Model to increase detection accuracy and
operational efficiency in Internet of Things (IoT) networks. In the suggested model, the extraction of features from
malware pictures was accomplished with the help of VGG16. The prediction process is carried out by the random forest
model using the extracted features from the VGG16. Additionally, ARO is used to improve the hyper-parameters of
the random forest model of the random forest. With an accuracy of 96.36%, the suggested model outperforms the
standard models in terms of accuracy, F1-score, precision, and recall. The comparative research highlights our strategy’s
success, which improves performance while maintaining a lower computational cost. This method is ideal for real-time
applications, but it is effective.
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1 Introduction
The current cybersecurity landscape is increasingly characterized by the proliferation of malware,

which poses significant threats to digital environments. Defined as harmful software meant to compromise
computer systems, malware has changed significantly and is driving increased cyberattacks. Recent data show
that during the 1990s, malware-related network security events increased by over 50% yearly, underscoring
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the critical necessity of efficient detection and mitigating techniques [1]. The fast development of digital
technology and the related growth in vulnerabilities that cybercriminals use help explain this surge [2].

Sophisticated malware, including ransomware and banking trojans, which have proliferated in cyber-
attack operations, are among the most alarming developments [2]. Ransomware has become well-known
for its capacity to encrypt important data and demand payment, causing significant financial losses for
businesses [3,4]. Renowned for starting Distributed Denial of Service (DDoS) assaults, the Mirai virus shows
the terrible power of malware in compromising security and upsetting systems [5]. The growing complexity
of malware, especially sophisticated obfuscation techniques, renders conventional detection approaches
insufficient; therefore, stronger solutions must be developed [6].

The cybersecurity industry is looking to artificial intelligence (AI) and machine learning (ML) for
malware identification and categorization more and more to fight these threats. These technologies enable
the analysis of enormous volumes of data and the identification of trends suggestive of malicious conduct.
In dynamic contexts where malware may evolve to avoid conventional defenses, AI-assisted methods have
shown promise in improving the speed and accuracy of malware detection [7,8]. Furthermore, integrating
hybrid analytic approaches, mixing static and dynamic techniques, has become increasingly important in
the battle against malware [9].

Beyond just causing instantaneous security breaches, malware compromises data quality and availabil-
ity, which has long-term effects for businesses and people, both individually [10]. Continuous research and
innovation in malware detection and response techniques remain vital to protect digital infrastructures and
lower the risks connected with malware assaults as the terrain of cyberthreats develops [11].

Ultimately, malware’s emergence poses a significant obstacle in the contemporary cybersecurity scene
and calls for a multifarious strategy combining a proactive attitude toward new hazards with enhanced detec-
tion methods. Improving defenses against malware’s constantly changing character depends on including AI
and ML in cybersecurity processes.

1.1 Contribution
In this context, this paper proposes a malware detection system that integrates a Visual Geometry Group

16 (VGG16)-based feature extraction approach with Artificial Rabbits Optimization (ARO). This method
outperforms current strategies in terms of accuracy, computational complexity, and real-time application
by offering a lightweight, accurate, and efficient solution for malware detection in IoT contexts, therefore
addressing the constraints of conventional methods.

1.2 Organization
The rest of the paper is organized as follows: Section 2 presents the details of the past research, Section 3

gives the details of the proposed approach, Section 4 presents the results, and Section 5 concludes the paper.

2 Related Work
This section gives the details of the state-of-the-art models proposed by the researchers, and the

summary of the models is presented in Table 1. Kumar et al. [12] propose an intelligent malware classification
approach using a deep convolutional neural network (IMCNN) combined with honeypots in organizational
networks. The method utilizes transfer learning with pre-trained CNN models (VGG16, VGG19, Incep-
tionV3, and ResNet50) and ensemble learning for malware detection. Features are extracted and selected
using ReLU layers, PCA (Principal Component Analysis), and SVD (Singular Value Decomposition), then
classified using k-NN (k-Nearest Neighbors), SVM, and RF (Random Forest), with final predictions made
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through soft voting. The model demonstrates high accuracy on benchmark and real-world malware datasets.
However, the model has limitations: it relies on computationally intensive deep learning models and requires
substantial preprocessing, which may limit its scalability in real-time environments. Rao et al. [13] explore
security challenges in cloud computing, focusing on flooding (DoS) and Sybil attacks that disrupt services
and mislead users. It discusses existing security mechanisms to counter these threats and highlights the
need for more potent defense strategies, especially for small-scale industries. However, the study lacks a
novel detection or prevention approach and does not provide an in-depth performance evaluation of existing
security schemes. Additionally, it offers a theoretical discussion without real-world implementation or case
studies to validate its findings.

Table 1: Comparative analysis of state-of-art models

Paper Methodology Strengths Limitations
[12] IMCNN with transfer learning

& ensemble learning
High accuracy, robust

feature selection
Computationally expensive,

requires preprocessing
[13] Cloud security analysis (DoS,

Sybil attacks)
Comprehensive threat

analysis, identifies key risks
Lacks novel detection

mechanism, theoretical
focus

[14] SimHash & CNN-based
malware classification

Effective classification, high
accuracy on imbalanced data

Vulnerable to obfuscation,
lacks dynamic analysis

[15] Federated learning with VGG16 Preserves data privacy, high
accuracy

Limited to MNIST dataset,
lacks real-world validation

[16] Hybrid deep learning &
visualization

Improves detection accuracy
with hybrid approach

High computational cost,
relies on data quality

[17] LSTM-GRU model optimized
with EOA (Earthworm

Optimization Algorithm)

99% accuracy, outperforms
traditional models

Lacks real-world validation,
ignores adversarial

robustness
[18] Grayscale image-based malware

detection
Effective against

obfuscation-based attacks
Computationally expensive,

struggles with complex
obfuscation

[19] Serverless malware detection
with AWS & n-grams

Scalable cloud-based
approach, promising results

Latency & cost concerns,
lacks adversarial analysis

[20] CNN-based IIoT malware
detection using visualization

Improved accuracy for IIoT
malware detection

High computational
demand, real-time

performance concerns
[21] Few-shot classification with

multi-view image generation
Enhances generalization in

few-shot learning
Lacks deployment

validation, adversarial
robustness untested

[22] Dynamic feature extraction for
online malware detection

Dynamic analysis,
outperforms traditional

methods

Scalability & advanced
evasion concerns

[23] APT evasion techniques with
EMRF

Demonstrates effectiveness
of APT evasion

No mitigation strategies,
lacks practical security

solutions

(Continued)
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Table 1 (continued)

Paper Methodology Strengths Limitations
[24] Review of malware visualization

techniques
Identifies key gaps in
malware visualization

No experimental validation
or impact assessment

[25] Lightweight CNN-based
malware classification

(IMCLNet)

High accuracy, lightweight
model

Limited to small images,
lacks data augmentation

[26] Transfer learning-based
malware classification (IVMCT)

Good performance against
polymorphic malware

Image conversion may miss
malware characteristics

[27] Binary file to image-based
malware classification

Effective malware family
classification

Struggles with highly
obfuscated malware

Ni et al. [14] propose a malware classification algorithm called MCSC (Malware Classification using
SimHash and CNN), which converts disassembled malware codes into gray images using SimHash and clas-
sifies them using a convolutional neural network. Techniques such as multi-hash, primary block selection,
and bilinear interpolation are employed to enhance performance. The model achieves high classification
accuracy, even for unevenly distributed samples. However, the model has the following limitations: it relies
on static features, which may be vulnerable to evasion techniques like obfuscation. It does not incorporate
dynamic analysis, potentially missing behavior-based detection. Sharma et al. [15] propose a federated
learning (FL)-based framework for training a VGG16-based CNN model without sharing client data,
addressing security concerns in critical infrastructure. The model updates occur locally by utilizing federated
averaging, ensuring data privacy while achieving high accuracy, as demonstrated on the MNIST dataset.
Additionally, the paper discusses the benefits and challenges of FL, security vulnerabilities, potential attacks,
and mitigation strategies. However, the study is limited to the MNIST dataset, which may not fully represent
real-world critical infrastructure scenarios. It lacks comparative analysis with other FL models or alternative
deep learning architectures.

Venkatraman et al. [16] propose a novel hybrid deep learning and visualization approach for malware
detection, utilizing image-based techniques to detect suspicious system behavior and hybrid deep learning
architectures for effective malware classification. The model incorporates various similarity measures and
cost-sensitive deep learning architectures to improve performance, demonstrating high accuracy on large
public and private datasets. However, the model has the following limitations: it requires substantial
computational resources for image processing and deep learning training, and the quality and completeness
of data representation may limit its reliance on behavior visualization. Gupta et al. [17] present an Android
malware detection model that integrates long short-term memory (LSTM) and gate recurrent unit (GRU)
networks optimized using the Earthworm Optimization Algorithm, with a random forest employed for
feature selection. The model achieves 99% accuracy, outperforming traditional methods such as GRU,
LSTM, RNN (Recurrent Neural Network), Logistic Regression, and SVM, demonstrating its effectiveness in
enhancing cybersecurity for Android devices. However, the study lacks real-world deployment validation
and focuses solely on accuracy without addressing computational efficiency, adversarial robustness, or model
generalizability across diverse malware datasets.

Mercaldo and Santone [18] propose a novel method for malware detection in mobile environments
that classifies malware families and variants by converting executable samples into grayscale images and
extracting features for classification. This approach addresses the limitations of signature-based methods
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and performs well against obfuscation techniques. However, the model has the following limitations: it
may still face challenges with highly complex or novel obfuscation methods and requires image processing,
which can be computationally demanding for large datasets. Mishra et al. [19] introduce CloudIntellMal, a
serverless computing-based intelligent malware detection framework for Android applications. It leverages
AWS (Amazon Web Services) (EC2, S3) for log storage, preprocessing, and machine learning-based malware
detection. A Bag of n-grams-based feature extraction algorithm is developed to enhance feature represen-
tation, and a trained decision model is deployed on EC2 for classification. Experimental validation using
the Drebin dataset shows promising results. However, the study relies on cloud-based infrastructure, which
may introduce latency and cost concerns, and lacks comparative analysis with on-device detection models
or adversarial robustness assessments.

Naeem et al. [20] propose a novel architecture for detecting malware attacks on the Industrial Internet
of Things (IIoT) using color image visualization and a deep convolutional neural network (CNN). This
approach enhances malware analysis and improves predictive time and detection accuracy compared to
existing methods. However, the model has the following limitations: it may have high computational
demands due to image-based deep learning techniques, which could impact real-time performance in
resource-constrained IIoT environments. Chai et al. [21] introduce DMMal, a novel few-shot malware
classification framework that addresses the challenge of classifying new or unknown malware. It enhances
classification at the data and model levels by proposing a multi-channel malware image generation method
based on multi-view techniques to enrich semantic information. Additionally, it employs adaptive sharpness-
aware minimization to improve model generalization by optimizing both loss and sharpness simultaneously.
Experimental results on two few-shot malware classification datasets demonstrate improved performance.
However, the paper does not explore real-world deployment feasibility, and the effectiveness of the proposed
approach against adversarial attacks or evolving malware patterns remains unaddressed.

Ghahramani et al. [22] propose a novel method for online malware detection in IoT devices by
monitoring malware behavior, extracting dynamic features, and converting them into sparse binary images
for analysis. They compare clustering, probabilistic, and deep learning methods to identify the most effective
approach, demonstrating that deep learning outperforms others in seven out of eight metrics. However,
the model has the following limitations: the binary image transformation may not capture all malware
behavior nuances, and the approach’s scalability and effectiveness against advanced evasion techniques need
further validation. Sharma et al. [23] present the Evasive Manoeuvres Re-Engineering Framework (EMRF)
to systematically analyze and demonstrate evasive techniques used by Advanced Persistent Threats (APT)
malware across multiple platforms, including Windows, Linux, macOS, Android, IoT, and ICS/SCADA
devices. By leveraging a dataset of 4403 APT malware samples, the framework examines evasion strategies
such as stealth, covert communication, and anti-analysis mechanisms, revealing that non-zero-day payloads
can effectively evade modern security solutions with an evasion rate between 36% and 96%. This research
challenges the over-reliance on zero-day exploit detection and highlights the growing advantage of attackers
in bypassing existing defenses. However, the study does not propose a concrete countermeasure or defense
mechanism and primarily focuses on demonstrating evasion rather than mitigating it, limiting its immediate
applicability for enhancing security solutions.

Brosolo et al. [24] evaluate the effectiveness of malware visualization techniques in detecting and
classifying malware by categorizing studies based on information retrieval, visualization, feature extraction,
classification, and evaluation. This comprehensive review identifies key challenges in visualization-based
methods and offers valuable insights into current progress and future opportunities in the field. However,
the study has the following limitations: it primarily focuses on reviewing existing methods without providing
experimental validation or direct comparisons of the visualizations’ impact on detection performance.
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Zou et al. [25] propose IMCLNet, a lightweight malware classification model that uses malware images
without relying on feature engineering or domain knowledge. IMCLNet integrates Coordinate Attention,
Depthwise Separable Convolution, and Global Context Embedding to enhance accuracy while minimizing
computational costs and parameters. The model demonstrates high classification accuracy on MalImg and
BIG2015 datasets, outperforming mainstream lightweight models like MobileNetV3, ShuffleNetV2, and
MixNet. However, the model has the following limitations: it is primarily optimized for small image sizes
(32 × 32), which may limit its applicability to more complex malware images, and it lacks data enhancement,
potentially affecting generalization to diverse malware types.

Kumar [26] propose the IVMCT framework, which utilizes transfer learning to classify malware using
grayscale images derived from malware binaries. This approach addresses the limitations of traditional
signature-based and machine learning methods that struggle with polymorphic and metamorphic malware
variants. The framework is evaluated on the MalImg dataset and demonstrates superior performance
compared to existing techniques. However, the model has the following limitations: it relies on image
conversion, which may not capture all malware characteristics, and its effectiveness against highly obfuscated
malware variants needs further evaluation.

Han et al. [27] propose a novel malware family classification method that converts binary files into
images and entropy graphs to detect similarities among malware variants and classify malware families. This
approach leverages the repeated modules within malware variants to improve detection and classification
accuracy. However, the model has the following limitations: it may not fully capture the behavioral char-
acteristics of malware, and its effectiveness could be limited when dealing with highly obfuscated or novel
variants that do not share common modules.

3 Proposed Approach
Three main phases define the proposed appraoch for AI-driven malware detection: data collecting,

feature extract, and hyperparameter optimization, as represented in Fig. 1. Malware data is collected from
the Kaggle [28]. In the feature extractiom phase, the malware pictures are given to a VGG16 model, which
acts as a feature extractor, spotting important characteristics from the malware images. After that a Random
Forest model uses the extracted features for the calssficaiton. Also, ARO technique is used to fine-tunes
hyperparameters of randome forest.

Figure 1: Proposed approach

Our selection of ARO was motivated by its improved exploration-exploitation balance since it essentially
inhibits premature convergence compared to genatic algorithm (GA) and Particle Swarm Optimization
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(PSO) while using adaptive energy-based mobility for various solution generation. While Bayesian Opti-
mization (BO) is computationally expensive and ARO is more appropriate for real-time applications,
ARO shows faster convergence than GA and PSO regarding computational efficiency. Furthermore, ARO
dynamically adapts to various search environments and provides superior scalability and resilience to GA
and PSO, which reduces the hyperparameter changes needed.

3.1 Feature Selection by VGG
The VGG16 model (Fig. 2) is a deep convolutional neural network (CNN) used for feature extraction

from images. It consists of multiple convolutional layers followed by pooling layers. VGG16 retrieves spatial
and texture-based characteristics from input malware images. Notably, although deeper layers extract higher-
level abstract information, including repeating patterns, density changes, and shape distributions, which
are useful for identifying malware families, the bottom levels of VGG16 detect edges, corners, and simple
textures. These extracted properties assist in classification since different kinds of malware show distinct
structural patterns depending on packing, encryption, and obfuscation methods.

Figure 2: Pre-trained VGG16 model
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3.1.1 Convolution Operation
The convolution operation in VGG16 involves sliding a filter (kernel) across the input image or feature

map to compute the dot product between the filter weights and the input values. The convolution operation
for a single filter can be expressed as:

X(l)
i jc = σ (

K
∑
k=1

M
∑
m=1

N
∑
n=1

W(l)
mnk ⋅ X

(l−1)
(i+m)( j+n)k + b(l)

c ) (1)

where:
• X(l)

i jc : Output at location (i , j) and channel c of the l-th layer.
• W(l)

mnk : Weight of the filter at position (m, n) for the k-th channel of the l-th layer.
• X(l−1)

(i+m)( j+n)k : Input value from the previous layer at location (i +m, j + n) and channel k.

• b(l)
c : Bias term for the c-th output channel of the l-th layer.

• K: Number of input channels.
• M and N: Dimensions of the filter (kernel size).
• σ : Activation function, typically ReLU.

3.1.2 ReLU Activation Function
The ReLU activation function introduces non-linearity, allowing the network to model complex

patterns:

σ(x) =max(0, x) (2)

This activation function is applied element-wise after each convolution operation.

3.1.3 Pooling Layer (Max Pooling)
Pooling layers downsample the feature maps to reduce the spatial dimensions, preserving important

features while reducing computation. For max pooling, the equation is:

P(l)
i jc = max

(m ,n)∈R
X(l−1)
(2i+m)(2 j+n)c (3)

where:
• P(l)

i jc : Output value at location (i , j) and channel c in the pooling layer.
• R: Pooling region (e.g., 2 × 2 window).
• X(l−1)

(2i+m)(2 j+n)c : Input values within the pooling region from the previous layer.

3.1.4 Sequential Layer Blocks in VGG16
VGG16 consists of five main convolutional blocks, each containing multiple convolutional layers

followed by a max pooling layer. The pattern is:
• Block 1: 2 Conv layers + 1 Max Pooling
• Block 2: 2 Conv layers + 1 Max Pooling
• Block 3: 3 Conv layers + 1 Max Pooling
• Block 4: 3 Conv layers + 1 Max Pooling
• Block 5: 3 Conv layers + 1 Max Pooling
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3.1.5 Fully Connected Layers (Omitted in Feature Extraction)
In classification tasks, the extracted features are usually fed into fully connected layers; however, the

output from the last pooling layer is used directly for feature extraction.

3.1.6 Output Feature Map
The final output of the feature extraction process is a set of feature maps that encapsulate hierarchical

information about the input image. In the proposed approach, the downstream Random Forest model in the
proposed approach.

By systematically applying these convolutional, activation, and pooling operations, VGG16 effectively
captures spatial hierarchies and patterns from the input images, making it an excellent choice for feature
extraction in various applications, including malware detection.

3.2 Hyper-Parameter Optimization by ARO
The ARO [29] algorithm is used to optimize the hyperparameters of the Random Forest model by

navigating the search space and finding the optimal settings.
The optimization process for the Random Forest model begins with a set of baseline hyperparameter

values, which serve as a reference point for performance evaluation. Initially, the model is configured with
100 estimators, a maximum depth of 10, and a minimum sample split of 2. To enhance model performance,
a hyperparameter search is conducted within predefined search space constraints: the number of estimators
is varied between 50 and 500, the maximum depth is adjusted within the range of 5 to 50, and the minimum
samples required for a split are explored between 2 and 10.

3.3 Initialization
The ARO algorithm initializes a population of artificial rabbits (Ri) with random positions (Xi) within

the defined search space. Each position represents a potential solution for the hyperparameters of the
Random Forest model.

Xi = random(Xmin, Xmax) (4)

3.4 Fitness Evaluation
Each rabbit evaluates its position based on a fitness function f(Xi), which in this context is the

performance metric of the Random Forest model (e.g., accuracy, precision).

f (Xi) = evaluate_RF(Xi) (5)

3.5 Energy Factor Calculation
The algorithm calculates the energy factor of each rabbit based on its current fitness. Lower energy

values correspond to better solutions.

Ei =
1

1 + f (Xi)
(6)
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3.6 Position Update
Rabbits update their positions based on their local and global best solutions, adjusting their direction

and magnitude to move toward optimal hyperparameters.

Xt+1
i = Xt

i + α ⋅ (Xglobal best − Xi) + β ⋅ random(−1, 1) (7)

where:

• Xt+1
i : Position of the rabbit at the next iteration.

• Xt
i : Current position of the rabbit.

• Xglobal best: Position of the best solution found so far.
• α and β: Coefficients that control the influence of the global best and randomness.
• random(−1, 1): A random value between −1 and 1.

3.7 Termination
The process continues iteratively until a termination condition is met, such as reaching a maximum

number of iterations or achieving the desired fitness level.
These equations provide the core mechanics of how ARO optimizes the hyperparameters of the Random

Forest model, guiding the search towards configurations that enhance the model’s performance.

4 Results and Discussion
Our model tested on a dataset derived from Kaggle [28] consists of visual representations of Portable

Executables (PEs) produced by Mallook. Two groups define these PEs: benign and malignant. While the
“malicious” PEs were acquired from publicly accessible malware repositories, more significantly, the zoo-the
“benign” PEs were taken from reliable programs featured in PC Magazine’s “The Best Free Software of 2020.”

Each executable file was converted into graphics using several resolutions, 120, 300, 600, and
1200 DPI. Two interpolation techniques, nearest and Lanczos, were used to improve the visual display of
the data, thereby guaranteeing a comprehensive depiction of the structural variations between benign and
malicious files.

Fig. 3 provides benign software examples with usually more homogeneous and less organized visual
patterns. Fig. 4, on the other hand, shows instances of malicious software that emphasize the fundamental
variations in the executable code by showing frequently clear patterns, lines, and erratic color distributions.

Figure 3: Benign samples
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Figure 4: Malicious samples

4.1 Performance of Artificial Rabbits Optimizer (ARO)
Aiming to get optimum performance, the Artificial Rabbits Optimizer (ARO) [29] was used to fine-tune

the hyperparameters of the Random Forest model after feature extraction from the picture representations
using VGG16. The performance measures of ARO throughout many iterations are shown below, therefore
stressing essential features of its optimization mechanism:

Fig. 5, the runtime chart, shows, in seconds, the ARO algorithm’s running time throughout 100
iterations. The differences in runtime point to the computational complexity and the iteratively performed
corrections. Early fluctuations balance out around the middle, indicating that exploration and exploitation
are in balance when the system adjusts its settings. The latter rounds show a regular pattern, suggesting a
convergence phase wherein the algorithm stabilizes its search space, lowering the running variance.

Showcasing in Fig. 6, the diversity measurement follows the exploration capacity of the algorithm
throughout iterations. High initial diversity lets the algorithm search the parameter space broadly, enabling it
to investigate many possible answers. The variety decreases dramatically as the iterations proceed, suggesting
a move toward exploitation in which the algorithm focuses only on the most likely areas of the search space
to modify the hyperparameters efficiently.

Figure 5: Runtime of ARO Figure 6: Diversity of ARO

Fig. 7 emphasizes the dynamic balance between exploration and exploitation throughout the opti-
mization process. High exploration percentages in the early phases of the method highlight the search
for many solutions. With time, exploitation takes front stage and shows how the process moves toward
optimal parameter refinement. This change is absolutely necessary for the ARO to converge to an ideal set
of hyperparameters.
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As shown in Fig. 8, the Global Objectives Chart shows the objective value over the iterations. An
apparent decline at iteration 40 denotes a significant performance gain in the model, most likely resulting
from the ARO algorithm focusing on a very optimum parameter range. Depending on the goal set, the
following flat line shows the stability of the objective function, implying either successful minimization of
the error or maximization of the performance measure.

Figure 7: Exploration and exploitation of ARO Figure 8: Global best fitness ARO

4.2 Performance of Random Forest
Following the Artificial Rabbits Optimizer (ARO) to find the ideal hyperparameters, the Random Forest

model was trained and tested on the dataset with performance assessed using the confusion matrix shown
in Fig. 9. The confusion matrix shows how precisely the model distinguishes between benign and dangerous
software, therefore offering a thorough analysis of its classification outcomes. The model correctly classed 47
cases as benign (True Negatives), suggesting effective detection of non-harmful software; it also accurately
recognized 59 instances of malware (True Positives), exhibiting good competence in spotting malicious files.
There were no false positives, which emphasizes the excellent specificity of the model as it did not falsely
identify any innocuous program as dangerous. However, the model misclassified four instances of malware as
benign (False Negatives), suggesting considerable potential for development in identifying all hostile events.
With excellent accuracy in identifying benign and harmful events, low false alarms, and good dependability
in malware detection, the confusion matrix generally shows the resilience of the ARO-optimized Random
Forest model.

Figure 9: Confusion matrix
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The ARO optimized Random Forest model’s performance was systematically assessed using the classi-
fication report in Table 2. Using essential metrics: precision, recall, F1-score, and support for benign (class 0)
and malicious (class 1) software, this paper offers thorough insights into the categorization capabilities of the
model. Accuracy of the model’s optimistic forecasts is gauged by precision. The accuracy of benign software
was 0.92, meaning most cases labeled benign were accurate. With flawless accuracy of 1.00, the model proved
that all expected malware cases were precisely detected, free from false positives.

Table 2: Classification report

Precision Recall F1-score Support
Benign 0.92 1.00 0.96 47

Malicious 1.00 0.94 0.97 63
Accuracy 0.96 110
Macro avg 0.96 0.97 0.96 110

Weighted avg 0.97 0.96 0.96 110

Recall tests the model’s capacity to identify every relevant example of every class. With a recall of 1.00
for benign software, the model proved to have precisely detected all benign events without missing any.
At 0.94, the recall for malware was somewhat lower, indicating that false negatives resulted from a limited
number of undetectable malware occurrences. Reflecting the general correctness and usefulness of the model
in categorizing the dataset, the F1-score, which strikes a balance between precision and recall, was high for
both classes: 0.96 for benign and 0.97 for malware.

4.3 Result Prediction
We evaluated our ARO-optimized Random Forest model on a collection of random photos from the

dataset to further assess its efficacy. These numbers show the actual and expected labels for every picture,
proving the model’s capacity to accurately categorize benign and dangerous software depending on their
visual forms.

Fig. 10 displays a successfully categorized harmful picture; the prediction and the actual label indicate
‘1’ (malicious). The model effectively determined that the intricate patterns in the picture mirror the
sophisticated architecture often seen in dangerous software.

Fig. 11 shows a benign picture; the expected and actual labels are ‘0’. This image’s homogeneous and
less regimented pattern fits benign software’s usual traits, highlighting the model’s accuracy in spotting non-
malicious events.

Figs. 12 and 13 support the accuracy of the model by providing further instances of accurately identified
harmful pictures where both the actual labels and the predictions are “1.” Regardless of the particular
visual depiction, the variances in these photos highlight the model’s resilience in spotting many kinds of
malevolent trends.



4768 Comput Mater Contin. 2025;84(3)

Figure 10: Test sample 1 Figure 11: Test sample 2

Figure 12: Test sample 3 Figure 13: Test Sample 4

These findings, seen in the figures, show the great predictive power of the model, which often matches
the real labels with the predictions. Reiterating its dependability in real-world malware detection, the proper
classifications show the efficiency of the VGG16 feature extraction coupled with the ARO-optimized Random
Forest model.

We used t-Distributed Stochastic Neighbour Embedding (t-SNE) to depict the predictions, as shown
in Fig. 14, thus obtaining further understanding of the performance of the ARO-optimized Random Forest
model. By mapping high-dimensional data to a two-dimensional space, t-SNE is a dimensionality reduction
method that facilitates visualization of the data points based on the model’s predictions and helps explain
the separation and grouping of the data points.
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Figure 14: t-SNE visualization of random forest predictions

Fig. 10 shows the t-SNE plot of the model’s predictions, where every point is a sample from the dataset
and the colors reflect the prediction probability, ranging from 0 (benign) to 1 (malicious). The benign and
malicious examples are separated in the plot, and different clusters develop around certain areas. The dark
purple spots indicate harmful samples, while the yellow points indicate benign ones.

The differing grouping of benign and malicious data suggests that the model efficiently catches the
fundamental trends separating the two groups. While the dispersal of benign points reflects the varied
character of benign software, the close grouping of dangerous samples demonstrates great confidence in
the model’s capacity to identify malware. Apart from verifying the Random Forest model’s correctness, this
image shows its strength in managing intricate dataset patterns.

4.4 Comparative Analysis
The findings unequivocally show, based on comparing our suggested strategy with other models, that it

constantly performs well across many assessment criteria, including accuracy, F1-score, precision, and recall.
Comparatively to Naive Bayes (87.27%) and SVM (88.18%), our suggested method attained an accuracy

of 96.36%, as shown in Fig. 15. Though usually more sophisticated and computationally demanding, needing
longer training durations and more resources, models like Gradient Boosting, AdaBoost, XGBoost, Logistic
Regression, and k-NN also obtained comparable accuracies of 96.36%.

Fig. 16 shows the performance of our suggested method with an F1-score of 96.38%, which is on par
with the highest-scoring models, including Gradient Boosting, AdaBoost, and k-NN. However, models like
Naive Bayes (87.34%) and SVM (88.24%) fared much worse, suggesting that our model not only preserves
high accuracy and recall but also fairly balances both measures.

Figure 15: Accuracy comparison Figure 16: F1-score comparison
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Our suggested model’s 96.65% precision, which is on par with Gradient Boosting, AdaBoost, and k-NN,
and above Naive Bayes (87.92%), and SVM (88.66%), as shown in Fig. 17. This great accuracy guarantees that
our model reduces false positives, guaranteeing dependability in essential uses.

Our model attained a recall of 96.36% (Fig. 18), which aligns with other high-performance models such
as XGBoost, Gradient Boost, and AdaBoost. The poor recall rates of Naive Bayes (87.27%) and SVM (88.18%)
underline even more the resilience of our method in accurately spotting positive situations.

Figure 17: Precision comparison Figure 18: Recall comparison

Although our suggested method has a simpler structure, resulting in reduced computational cost, it
meets or surpasses the performance of more complicated models across all measurements. This efficiency
distinguishes it from other, more complicated models that need longer training cycles and greater computing
capability, making it better for practical uses where speed and resource economy are crucial.

4.5 Computational Complexity Analysis
A balance between computational efficiency and predictive performance depends on choosing a

suitable machine learning model. Based on results from Singh [30], Random Forest is quite an effective
supervised learning model because of its favorable trade-off between training difficulty, inference speed,
and generalization capabilities. Built on Random Forest, our model gains from these features; hence, it is a
good solution for large-scale projects. The paper [30] shows that Random Forest guarantees scalability as
the dataset size rises by attaining a training complexity of O(knlog(n)), while k is the number of trees.
Random Forest preserves computational feasibility while providing strong performance, unlike Support
Vector Machines (SVM), which have a significantly greater training complexity of O(n2d2) and become
intractable for big datasets. The complexity of random forest also makes it more efficient than models such as
k-Nearest Neighbors (k-NN), which suffers from a considerable inference cost of O(klog(n)d). Moreover,
unlike decision trees, which sometimes overfit, random forests use an ensemble of trees to lower variance and
improve predictive accuracy. Random Forest is more suited to manage non-linearity and high-dimensional
data than more basic models, such as logistic regression and naïve Bayes. With these improvements, our
model shows an ideal balance between accuracy and efficiency and fits the computational gains reported in
previous work rather nicely. Thus, we find from theoretical complexity analysis and empirical explanation
that our approach is computationally efficient, scalable, and appropriate for practical applications needing
high-performance learning.
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5 Conclusion
This work uses VGG16 for feature extraction paired with a Random Forest model optimized using

the ARO algorithm to provide an efficient AI-driven malware detection method. While reducing compu-
tational complexity, the suggested model performs better than conventional models, with high accuracy,
F1-score, precision, and recall. Using modern feature extraction and optimization methods, this method
efficiently solves the difficulties of malware detection and offers a strong and quick solution fit for real-time
applications. The results show the value of combining artificial intelligence-driven feature extraction with
ideal machine learning models, setting a new bar for malware detection in challenging surroundings. This
study offers a scalable and effective methodology for malware detection in smart devices, greatly improving
cybersecurity measures.
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