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ABSTRACT: Integrating multiple medical imaging techniques, including Magnetic Resonance Imaging (MRI),
Computed Tomography, Positron Emission Tomography (PET), and ultrasound, provides a comprehensive view of the
patient health status. Each of these methods contributes unique diagnostic insights, enhancing the overall assessment
of patient condition. Nevertheless, the amalgamation of data from multiple modalities presents difficulties due to
disparities in resolution, data collection methods, and noise levels. While traditional models like Convolutional
Neural Networks (CNNs) excel in single-modality tasks, they struggle to handle multi-modal complexities, lacking the
capacity to model global relationships. This research presents a novel approach for examining multi-modal medical
imagery using a transformer-based system. The framework employs self-attention and cross-attention mechanisms to
synchronize and integrate features across various modalities. Additionally, it shows resilience to variations in noise and
image quality, making it adaptable for real-time clinical use. To address the computational hurdles linked to transformer
models, particularly in real-time clinical applications in resource-constrained environments, several optimization
techniques have been integrated to boost scalability and efficiency. Initially, a streamlined transformer architecture was
adopted to minimize the computational load while maintaining model effectiveness. Methods such as model pruning,
quantization, and knowledge distillation have been applied to reduce the parameter count and enhance the inference
speed. Furthermore, efficient attention mechanisms such as linear or sparse attention were employed to alleviate
the substantial memory and processing requirements of traditional self-attention operations. For further deployment
optimization, researchers have implemented hardware-aware acceleration strategies, including the use of TensorRT
and ONNX-based model compression, to ensure efficient execution on edge devices. These optimizations allow the
approach to function effectively in real-time clinical settings, ensuring viability even in environments with limited
resources. Future research directions include integrating non-imaging data to facilitate personalized treatment and
enhancing computational efficiency for implementation in resource-limited environments. This study highlights the
transformative potential of transformer models in multi-modal medical imaging, offering improvements in diagnostic
accuracy and patient care outcomes.

KEYWORDS: Multi-modal image analysis; medical imaging; deep learning; image segmentation; disease detection;
multi-modal fusion; Vision Transformers (ViTs); precision medicine; clinical decision support

1 Introduction

Contemporary medical practice relies extensively on diagnostic imaging techniques, which play a
crucial role in providing vital insights into the anatomical structures of patients and their disease states.
These imaging modalities encompass a range of technologies including Magnetic Resonance Imaging (MRI),
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Computed Tomography (CT), and Positron Emission Tomography (PET), each offering unique advantages
in the diagnostic process. According to Zaidi et al. [1], MRI produces detailed images of soft tissues; CT
is particularly effective for examining bone structures and identifying abnormalities; and PET captures
metabolic activity for functional imaging. The integration of these complementary methods, referred
to as multi-modal imaging, enables a comprehensive diagnostic assessment. This method improves the
precision and effectiveness of medical decision making by offering a more comprehensive view of the health
status of the patient. The analysis of multi-modal medical images poses numerous obstacles. Variations in
resolution, contrast, and acquisition parameters among different modalities complicate direct comparisons.
Furthermore, Wenderott et al. [2] highlighted that the immense quantity of information produced in medical
environments surpasses the capabilities of the conventional analytical techniques and human interpreters.
Artificial Intelligence (AI) has emerged as a promising approach for addressing these issues. By streamlining
and enhancing image interpretation, Al can assist in overcoming the constraints of manual analysis, thus
enhancing diagnostic accuracy and alleviating the workload of medical professionals [3-5].

In medical imaging, distinct sequences often capture crucial long-distance relationships and semantic
contents, as shown in Fig. l. These sequences are essential for accurately depicting the structural and
functional aspects of the human organs. Consistency among organs ensures that medical images maintain
an inherent structure, facilitating uniform visual interpretation. Disrupting or modifying these sequences
can significantly impair the model performance by hindering the extraction of meaningful patterns. Conse-
quently, maintaining the integrity of these sequences is crucial for achieving reliable and effective results in
the analysis of medical images.

Modality
Sequence

Modality 1 Modality N

Figure 1: Comparison between natural and multi-modal medical images (adapted from Dai et al. [6])

CNNs have emerged as a crucial element of deep learning in the field of AI-driven medical imaging.
These sophisticated networks demonstrate exceptional performance in various tasks, including the clas-
sification and segmentation of images, as well as the identification of anomalies. CNNs have become an
essential tool in advancing AI applications within the medical imaging domain. Nevertheless, Li et al. [7]
point out that CNNs have fundamental shortcomings in capturing long-distance relationships and compre-
hensive contextual information, which are essential for analyzing images across multiple modalities. The
limited receptive field of CNNs, determined by their convolutional kernels, impedes their ability to detect
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relationships between spatially distant parts of an image. This limitation hampers capacity of CNNss to fully
leverage the complementary aspects of multi-modal data. Advancements in interpretable Al, biomedical
signal analysis, and biomechanics have contributed to improved medical imaging, gene selection, and
interaction recognition [8-12]. The implementation of these denoising methods can enhance the robustness
of multimodal medical-image analysis, thereby increasing the applicability of transformers in practical
clinical environments [13-17]. Recent progress in areas such as skeleton-based human pose prediction,
enhancing the resolution of retinal fundus images, improving the sensitivity of spin-exchange relaxation-
free magnetometers, assessing image quality without reference using transformers, and parsing complex
electronic medical records has made a substantial impact on the domains of computer vision, medical
imaging, and biomedical signal processing [18-22]. Recent studies have explored deep learning-based
approaches for biomedical signal processing, including Electrocardiogram (ECG) denoising, ultrasound
imaging, dental plaque segmentation, and muscle fatigue detection [23-27].

Initially designed for Natural Language Processing (NLP) tasks, transformers have recently become
increasingly popular in the field of computer vision owing to their ability to effectively model global
relationships. Unlike CNNs, transformers employ a self-attention mechanism to process all input parts
simultaneously, enabling them to capture the complex relationships between various image regions. This
characteristic makes transformers particularly well-suited for multi-modal image analysis, where under-
standing spatial and semantic relationships across multiple imaging modalities is essential [28-31]. Recent
progress in transformer-based models has demonstrated their capability to manage noisy data in med-
ical imaging. For example, Naqvi et al. [32] investigated how transformers can improve image quality
by minimizing noise, which aligns with our discussion on the resilience of the model to variations in
image quality.

Transformers have shown significant potential in the field of medical imaging. Studies have revealed
their effectiveness in various applications, including segmenting images, identifying diseases, and pinpoint-
ing anomalies. Through the use of self-attention mechanisms, transformers can more effectively learn and
merge features from multiple modalities compared to conventional methods. For example, Lai et al. [33]
explained tumor segmentation tasks: transformers can concurrently consider anatomical information from
MRI and metabolic activity from PET, resulting in more precise tumor boundary delineation. This ability
not only improves the precision of diagnoses but also offers crucial information about disease progression
and response to treatments. Transformer-based models offer scalability and adaptability, which are vital
in healthcare settings. These models can undergo initial training on large-scale datasets and subsequently
be refined for particular applications using minimally labeled data, which is a typical situation in medical
imaging because of the substantial costs and specialized knowledge required for data labeling. Additionally,
Alsaad et al. [34] highlighted that the flexible architecture of transformers facilitates the seamless integration
of various data types, including medical histories of the patients, laboratory test results, and genetic
information. This adaptability opens up possibilities for developing comprehensive healthcare solutions that
are centered around individual patients. The proposed framework for improving the clinical decision support
through the integration of multimodal data is presented in Fig. 2. The process is initiated with the collection
of information from diverse healthcare facilities, which is then consolidated using multimodal data-
fusion techniques. Subsequently, AI modeling was applied to the aggregated data to derive crucial insights
encompassing diagnosis, prognosis, risk evaluation, and treatment strategies. These valuable insights are then
relayed to healthcare professionals, empowering them to make informed and effective decisions regarding
patient care. Recent progress in compensating for magnetic fields in optically pumped magnetometers,
guiding hematoma evacuation with imaging, employing multi-wavelength microscopy, classifying speech
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imagery using Electroencephalogram (EEG), and reconstructing visual stimuli from EEG signals has greatly
enhanced biomedical imaging and neurological applications [35-38].
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Figure 2: Flow of multimodal data integration for clinical decision support (adapted from Teoh et al. [39])

The interpretability of transformer models is another significant advantage. In clinical environments,
it is crucial for AI systems to provide explainable results that clinicians can comprehend and trust. As
referenced by Alshehri et al. [40] the attention maps generated by transformers highlight the input areas
on which the model focuses, offering transparency in the decision-making processes. This interpretability
not only aids in validating model predictions but also fosters confidence among healthcare professionals in
adopting Al-assisted diagnostic tools.

Although transformer-based models offer numerous benefits, their implementation in clinical settings
presents several hurdles. Transformers face significant constraints owing to their quadratic scaling with
the input size, especially when processing high-resolution medical images, which results in considerable
computational requirements. Researchers are currently developing more efficient transformer architectures
such as Swin Transformers and Vision Transformers (ViTs) to reduce computational costs while maintaining
performance levels, as noted by Xu et al. [41]. Furthermore, ensuring that these models can be applied across
diverse patient groups and imaging protocols is essential for their widespread adoption in health care. Recent
developments, such as the GLoG-CSUnet framework, enhance ViTs by incorporating flexible radiomic fea-
tures, such as Gabor and Laplacian of Gaussian (LoG) filters. This method boosts the segmentation precision
by capturing intricate anatomical details, highlighting the potential of feature-enhanced transformer models
in medical image analysis [42-45].

This study investigated the potential of transformer-based models for analyzing multimodal images in
healthcare. As mentioned by Dai et al. [6], we offer a thorough examination of their applications, emphasizing
their capacity to integrate and examine data from various imaging modalities. It is important to note that
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this work does not present original experimental contributions but instead provides a comprehensive review
and analysis of existing literature on transformer-based models in multimodal medical imaging.

The framework proposed in Fig. 3 utilizes transformer models featuring self-attention to analyze the
inputs from various imaging modalities. These include MRI for soft tissue visualization, CT for bone
structure examination, and PET for metabolic activity assessment. The ultimate goal of this multimodal
approach is to achieve an accurate tumor segmentation.
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Figure 3: Transformer-based models in multi-modal medical imaging

Transformers represent a major advancement in the field of medical image analysis. By leveraging
their distinctive attributes, healthcare systems can attain unparalleled levels of precision and effectiveness
in diagnostics, ultimately resulting in improved patient outcomes, as discussed by Li et al. [46]. As this
field continues to advance, future research should concentrate on optimizing transformer architectures for
medical applications and integrating them with other Al-driven tools to create comprehensive healthcare
ecosystems [47-49].

Table 1 presents an overview of various multi-modal medical image fusion techniques, highlighting their
objectives and associated limitations.

Table 1: Multi-modal medical image fusion

Work Year Purpose Limitations
Zaidi et al. [1] 2008 Fusion imaging in clinical practice Limited to PET, CT, MR fusion
Du et al. [50] 2016  Overview of medical image fusion No experimental evaluation
Singh and Gupta [51] 2020 Feature-level image fusion Lacks real-time implementation
Xiao et al. [52] 2020 Decision-level fusion Limited adaptability to new modalities
Hermessi etal. [53] 2021 Multi-modal image fusion Challenges in standardization
Nair et al. [54] 2022 Multi-layer fusion techniques Increased computational costs

Khan et al. [55] 2023 Multi-modal image fusion research Limited practical deployment
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Table 2 summarizes notable works on medical image segmentation, focusing on different deep learning
models and their constraints.

Table 2: Medical image segmentation

Work Year Purpose Limitations
Parihar [56] 2017 Brain tumor segmentation with Data dependency
CNNs
Zhangetal. [57] 2021 CNNs-Transformer fusion for Lacks real-time processing
segmentation
Xiao et al. [58] 2023 Transformers in image High training costs
segmentation
Khan et al. [59] 2023 ViTs for medical segmentation Requires extensive data
Wei et al. [60] 2023  Swin Transformer for segmentation High computational demand
Liu et al. [61] 2023 Hybrid CNNs-Transformer Requires hybrid optimization
segmentation
Maetal. [62] 2024  U-mamba model for segmentation Complexity in long-range
dependency handling

Table 3 outlines key studies on cross-modality representation learning and image registration in
medical imaging.

Table 3: Cross-modality representation and image registration

Work Year Purpose Limitations
van Tulder and 2018 Learning cross-modality Limited generalization
de Bruijne [63] representation
Yu et al. [64] 2019  PET/CT image registration using Requires unsupervised learning
DL
Patel et al. [65] 2022 Anomaly detection in PET using Limited labeled data
transformers

Table 4 provides insights into the use of transformers and attention mechanisms in medical imaging,
emphasizing their challenges.

Table 4: Transformers and attention mechanisms in medical imaging

Work Year Purpose Limitations
Dai et al. [6] 2021 Multi-modal classification with High computational needs
transformers
Li et al. [46] 2023  Review on transformers in medical No experimental evaluation
imaging
He et al. [66] 2023 Transformers in medical image Limited clinical validation
analysis

(Continued)
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Table 4 (continued)

Work Year Purpose Limitations
Xia and 2023 Application of transformers in Requires further standardization
Wang [67] medical images
Papanastasiou 2023  Attention mechanisms in medical Computational inefficiency
et al. [68] imaging
Kimetal [69] 2024 Hybrid transformers for radiology Needs real-time processing
methods

2 Background

Healthcare has undergone significant changes owing to the incorporation of AI, which has revolution-
ized many diagnostic and therapeutic processes. Transformer-based models have emerged as particularly
noteworthy among Al innovations, owing to their remarkable capacity to process and synthesize intricate,
multidimensional data. This section delves into the essential concepts required to comprehend their func-
tions in multimodal medical image analysis. It encompasses the examination of various medical imaging
techniques, conventional image analysis methods, the emergence of transformers, and their implementation
in multimodal medical imaging contexts [36].

2.1 Medical Imaging Modalities

In contemporary healthcare, medical imaging serves a crucial function by providing an in-depth
understanding of the anatomical and functional conditions of the body. Various imaging techniques can be
used to capture specific aspects of human physiology.

« MRI (Magnetic Resonance Imaging): MRI generates highly detailed, contrast-rich images of soft tissues
that are crucial for detecting and evaluating various health issues, including neoplasms and disorders
affecting the nervous system.

o+ CT (Computed Tomography): High-resolution cross-sectional imagery is particularly useful for
identifying bone breaks, malignancies, and disorders affecting the blood vessels.

o PET (Positron Emission Tomography): Visualization of metabolic processes through functional
imaging is commonly used in the fields of oncology and neurology.

Although individual modalities are effective on their own, integrating them improves the diagnostic
precision by offering complementary data. Nevertheless, this multimodal strategy presents difficulties
in merging and interpreting information and requires sophisticated computational techniques. Fig. 4
illustrates that, while individual modalities perform well on their own, combining them creates a multi-
modal approach that improves diagnostic precision by utilizing complementary information. Nevertheless,
this method presents challenges in terms of data integration and interpretation, requiring sophisticated
computational techniques.
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Figure 4: Medical imaging modalities and multi-modal integration

2.2 Traditional Approaches in Medical Image Analysis

Historically, medical image interpretation relied on hand-crafted features and traditional machine
learning techniques, and the emergence of CNNs has marked a significant breakthrough, as these systems
automated feature extraction processes and exhibited remarkable effectiveness in a range of applications,
including:

» Image Classification: Assigning diagnostic labels based on visual patterns.
« Segmentation: Identifying and outlining specific anatomical components or diseased areas.
«  Object Detection: Identifying and localizing specific abnormalities.

Despite the impressive achievements of CNNSs, they have inherent limitations. The limited scope of
their receptive fields hinders their capacity to detect long-distance relationships, which is essential for
processing multimodal information. Furthermore, CNNs struggle to effectively combine diverse data types,
as they handle each modality independently, thus constraining their effectiveness in tasks that require the
comprehensive integration of multiple modalities [70-74].

2.3 Transformers: A Paradigm Shift

Originally designed for NLP, Transformers have brought about a significant shift in the field of AI
by addressing the shortcomings of traditional models. Unlike CNNs, transformers utilize self-attention
mechanisms to examine global connections throughout entire datasets. This ability allows them to recognize
intricate relationships among diverse components of input data, making them exceptionally suitable for tasks
demanding a thorough grasp of information. In the realm of computer vision, transformer models such as
ViTs and Swin Transformers have demonstrated exceptional performance for

« Image Classification: Competing with or surpassing CNNs in accuracy.
«  Object Detection and Segmentation: Providing enhanced precision by leveraging global context.
« Anomaly Detection: Identifying subtle, context-dependent irregularities.

These advancements have created new opportunities in the field of medical imaging, where it is essential
to comprehend the spatial and semantic connections across various modalities [75-77].
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2.4 Transformers in Multi-Modal Medical Imaging

The intricate nature of multimodal medical imaging data necessitates the development of models that
can synthesize various types of information. In this field, transformers have shown exceptional performance
by utilizing self-attention mechanisms to capture cross-modal relationships efficiently. This approach has
resulted in notable progress in several areas including:

o Tumor Segmentation: Combining anatomical data from MRI scans with functional information from
PET imaging to accurately determine tumor boundaries.

« Disease Detection: Improving diagnostic accuracy, especially for intricate disorders such as neurode-
generative conditions, by incorporating diverse types of input data.

« Anomaly Localization: Identifying abnormalities by integrating information across modalities.

Advanced models such as TransUNet and MedT, which integrate transformer-based architectures, have
demonstrated remarkable performance in medical image segmentation. These advanced systems leverage
self-attention mechanisms to extract multiscale contextual information, leading to more accurate and robust
image analysis. Moreover, transformer models can be trained on large-scale datasets and then fine-tuned
for specific applications using small amounts of labeled data, thereby addressing a common challenge in
medical imaging. The modular design of these systems enables smooth integration of additional patient data,
including electronic health records (EHRs), lab results, and genetic information. This integration establishes
the foundation for personalized medical approaches [78].

2.5 Challenges and Future Directions

Despite their potential, transformer-based models face challenges in clinical deployment:

« High Computational Complexity: Processing high-resolution medical images using transformers
requires a substantial amount of computational power and resources.

» Generalizability: To ensure broad adoption, it is essential to verify that the model functions effectively
in diverse patient populations and across various imaging modalities.

Future studies will address these obstacles by streamlining transformer designs for greater efficiency
and improving their ability to adapt to various clinical environments. The combination of transformers with
other AI technologies is expected to result in holistic, patient-focused healthcare systems [79].

3 Literature Review

This literature review offers a comprehensive analysis of ongoing studies and methodologies pertaining
to the application of transformer-based models in multimodal image analysis within healthcare. By exploring
the current landscape, this section sheds light on the existing knowledge deficits, challenges, and prospective
developments in the field. To methodically explore fundamental works, methodologies, comparative studies,
and emerging trends, this review is structured into separate subsections [38].

3.1 Methodology

This section discusses the approaches utilized to implement transformer-based models in multimodal
medical image analysis. We aimed to provide a comprehensive analysis of the techniques, procedures, and
key architectural decisions involved in developing and implementing transformer-based systems for medical
image analysis. Our goal is to present a detailed exploration of the fundamental elements and factors to be
considered when building these sophisticated analytical frameworks for healthcare imaging [80-83].
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3.1.1 Transformer Architectures for Medical Image Analysis

In medical imaging, transformers demonstrate exceptional performance by capturing intricate patterns
across different modalities and modeling global relationships. Their self-attention mechanisms allow for
accurate segmentation and classification, thus outperforming conventional models. The following sections
examine the influence of key architectures, including ViTs, swine transformers, and hybrid models, on the
field of medical imaging.

ViTs (ViTs)

ViTs are one of the most significant architectures in image analysis, showcasing their capability in both
classifying and segmenting medical images, which involves splitting images into patches and processing
them using multihead self-attention mechanisms. This holistic method enables ViTs to recognize far-
reaching connections, which is crucial for analyzing the complex patterns present in medical imagery. Li
et al. [84] employed a dual-stream Vision Transformer to analyze gait using only a single, affordable RGB
camera, highlighting the capability of transformers to derive medical insights from limited data. ViTs have
demonstrated superior capabilities in certain image analysis tasks compared to CNNs, primarily due to their
capacity to model relationships between distant pixels [66].

Swin Transformers (Swin-T)

Swin Transformers, developed as a model for extracting hierarchical features, excel in processing
high-resolution imagery. In contrast to conventional ViTs, which use a fixed patch size for image analysis,
Swin-T employs self-attention mechanisms based on windows to control the computational complexity.
This design has shown remarkable effectiveness in medical imaging applications, such as segmenting
tumors and classifying diseases, owing to its ability to process large-scale, high-resolution medical images
efficiently [58]. Zhang et al. [85] introduced an innovative method to address the difficulties of segmenting
brain tumors when MRI modalities are unavailable. Achieving precise segmentation of brain tumors using
MRI is crucial for integrated analysis of multimodal images. Nonetheless, in clinical settings, obtaining
a full set of MRIs is not always feasible, leading to significant performance drops in current multimodal
segmentation techniques owing to missing modalities. In this study, the authors introduced the first approach
to leverage the transformer for multimodal brain tumor segmentation, which remains effective regardless
of the combination of available modalities. Specifically, the authors proposed a new multimodal Medical
Transformer (mmFormer) designed for learning from incomplete multimodal data, featuring three key
components: hybrid modality-specific encoders that connect a convolutional encoder with an intra-modal
transformer to capture both local and global contexts within each modality; an intermodal transformer
that establishes and aligns long-range correlations across modalities to derive modality-invariant features
with global semantics related to the tumor region; and a decoder that progressively upsamples and merges
these modality-invariant features to produce reliable segmentation. Additionally, auxiliary regularizers
are incorporated into both the encoder and decoder to bolster the resilience of the model to missing
modalities. The authors performed comprehensive experiments using the public BraT'S 2018 dataset for brain
tumor segmentation. The findings reveal that the proposed mmFormer surpasses the leading methods for
incomplete multimodal brain tumor segmentation across nearly all subsets of missing modalities [85-87].

Hybrid Models Combining CNNs and Transformers

The integration of CNNs and transformers offers a synergistic approach: CNNs excel at efficient local
feature extraction, whereas transformers excel at handling global dependence. This combined architecture
has proven particularly valuable in multimodal medical image analysis, where integrating various data
types, such as MRI, CT, and PET scans, is crucial. By merging these two architectural styles, significant
enhancements were achieved in both segmentation and classification tasks [69].
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3.1.2 Pre-Processing Techniques for Multi-Modal Medical Images

Multimodal medical imaging is based on a combination of diverse diagnostic imaging methods,
including MRI, CT, and PET scans. Preparing the data through preprocessing is crucial for ensuring
proper alignment, standardization, and overall quality improvement. This step addresses various issues,
including misalignment, variations in intensity, and scarcity of labeled data, ultimately leading to enhanced
model performance and improved diagnostic precision. Critical preprocessing techniques involve image
registration, normalization, and data augmentation, which prepare the data for subsequent tasks, such as
segmentation and feature extraction.

Image Registration

Image registration is a crucial preliminary step in multimodal medical image analysis. This method
synchronizes different medical imaging modalities, including MRI, CT, and PET scans, with a common
reference frame. By doing so, it ensures that anatomical structures identified in each modality correspond
accurately, facilitating effective data integration. Various registration techniques, such as rigid and non-
rigid methods, are employed based on the types of images and the level of precision required. The image
registration process contributes to an improved model performance in multimodal fusion tasks by providing
consistently aligned data for analysis. Accurate image alignment enables more precise interpretations from
the combined data, which is vital for the efficacy of medical diagnostic tools. The alignment depicted in Fig. 5
guarantees that anatomical structures observed across different modalities correspond accurately, facilitating
smooth integration of data [64].

Reference Aligned
Point Image

Figure 5: Medical imaging modalities and multi-modal integration

Normalization and Standardization

Different modalities in multimodal medical imaging often have distinct intensity distributions, which
create challenges when integrating data from various sources. To overcome this obstacle, normalization
methods are frequently utilized to harmonize the pixel intensity across different modalities. For instance,
MRI scans, which typically display lower intensity values than PET images, require normalization to ensure
that the features from diverse imaging techniques are comparable. The standardization procedure is not just
a technical necessity but also a vital element in ensuring that subsequent steps in feature extraction function
efficiently and precisely across different modalities. It aids in creating consistent and comparable data for the
model to learn from, thereby enabling the development of robust and high-performance models [63,88,89].

Data Augmentation for Medical Imaging
Data augmentation has become an essential strategy for overcoming challenges associated with the
scarcity of labeled medical imagery. In healthcare, the shortage of labeled data remains a significant hurdle

because acquiring a substantial amount of high-quality annotated images is often costly and time intensive.
Various data augmentation techniques, including rotation, flipping, and scaling, have been employed to
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artificially increase the size of datasets. This expansion improves the model’s ability to effectively generalize.
Through data augmentation, the models become more resilient to different image transformations and
exhibit improved performance on unseen data. These augmentation techniques are specifically adapted for
medical image datasets to ensure diverse representations of the anatomical structures and abnormalities. This
modification is crucial for enhancing the resilience of the model and its ability to apply knowledge to diverse
real-world situations [90]. The transformer-based framework for multimodal medical imaging was trained
through a two-step process: pre-training followed by fine-tuning. Initially, during the pretraining stage, the
model was exposed to a large-scale medical imaging dataset to acquire generalizable feature representations
across various imaging modalities. This phase ensures that the transformer adeptly captures both the
modality-specific and cross-modal relationships. In the fine-tuning stage, a diverse, task-specific dataset
is employed to tailor the model for the intended medical imaging application. This dataset encompasses
a broad spectrum of cases with different imaging conditions, anatomical structures, and pathological
manifestations, thereby ensuring the robustness and generalizability of the model. Furthermore, domain-
specific augmentation techniques and optimization strategies to boost model performance while mitigating
overfitting. Additional details regarding the dataset size, diversity, and pre-training configurations can be
found in the Methodology section.

3.1.3 Fusion Strategies for Multi-Modal Data

Data fusion techniques merge information from various sources to improve the model outcomes.
One approach, known as early fusion, incorporates features from different data types during the initial
processing stage, thus enabling the model to examine complementary information. Although this method
is powerful for intricate tasks, it requires meticulous alignment and standardization. Another technique,
late fusion, aggregates results from independent networks trained on single data types, providing ease of
implementation and adaptability but potentially overlooking interactions between different modalities. To
improve the interpretability of the transformer-based model for clinical use, attention-based visualization
techniques to examine the decision-making process. specifically used attention heatmaps and Grad-CAM-
like methods tailored for transformer architectures to pinpoint the most significant areas in the input data
during predictions. These visual tools enable us to evaluate how the model focuses on various modalities and
anatomical structures, thereby offering insights into its reasoning. By utilizing these techniques, it is ensured
that the prediction of the model met clinical expectations, thereby enhancing transparency and trust among
healthcare professionals. Furthermore, attention distributions across different layers to comprehend how
interactions specific to each modality and cross-modal interactions contribute to the final decision. These
visual explanations are essential to confirm the reliability of the model in practical medical applications.
A detailed discussion of the interpretability and visualization outcomes is included in the Results section.
Early fusion, a technique illustrated in Fig. 6, combines features from diverse data types during the initial
processing phase. This approach enables the model to examine complementary data from the beginning.
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Figure 6: Feature-level fusion of MRI and PET scan data

Early Fusion (Feature-Level Fusion)

Early fusion, also known as feature-level fusion, combines features extracted from multiple modalities
during the initial phases of processing before the network analyzes them. This method enables the model to
concurrently evaluate the complementary attributes from multiple sources. Although this approach offers
benefits, it also presents challenges. Sophisticated techniques for alignment and normalization are necessary
to address issues stemming from modality-specific variations such as disparities in image quality, intensity,
or spatial alignment. Nevertheless, early fusion remains a viable option when it’s crucial to incorporate
diverse information from multiple modalities from the outset. For intricate challenges such as multi-modal
segmentation or multi-class classification, this approach proves especially valuable. Integrating various data
sources enables a more thorough understanding of the medical conditions being examined [51,73,91].

Late Fusion (Decision-Level Fusion)

In contrast to early fusion, late fusion combines the results or outputs from separate networks, each
of which has been trained on different modalities that are processed through their own networks, with
the results combined at the final stage using methods such as weighted averaging or majority voting. This
approach, which is simpler and potentially advantageous when aligning modalities is difficult, has the draw-
back of not fully exploiting intermodal interactions during feature extraction. The simplicity of late fusion
makes it a viable option when modal alignment is particularly challenging or when computational resources
are constrained. However, learning complex relationships between modalities may not be optimal [52].

3.1.4 Self-Attention and Cross-Attention Mechanisms in Transformers

The self-attention mechanism in transformer models allows the system to focus on different parts of
an image, effectively capturing long-range dependencies that are crucial for applications, such as tumor
detection. Cross-attention, when analyzing data from multiple sources, enables the model to link relevant
information across various modalities by integrating MRI and PET scan data. This combination improves
the accuracy and effectiveness of the model in tasks such as defining tumor margins. Abidin et al. [92]
underscored the significance of integrating various MRI modalities to enhance brain tumor segmentation.
By combining different MRI sequences, a more comprehensive and precise depiction of tumors and
adjacent brain structures can be achieved, which is vital for effective segmentation. Multi-modal MRI allows
researchers to assess the efficacy of different segmentation algorithms and compare their outcomes. These
comparative analyses have fostered the creation of new techniques, ultimately improving the precision of
brain tumor segmentation. The Brain Tumor Segmentation (BraTS) Challenge dataset is a crucial benchmark
for evaluating segmentation performance. This dataset comprises multiple MRI modalities, including T1, T2,



4272 Comput Mater Contin. 2025;84(3)

Tlce, and FLAIR, along with meticulously annotated tumor-segmentation masks. It remains a vital resource
for researchers and clinicians involved in glioma segmentation and brain tumor diagnosis.

Self-Attention in ViTs

Transformer models are characterized by their key component, namely self-attention. This capability
enables the model to focus on different parts of an input image or sequence, regardless of their spatial
connections, making it particularly useful for analyzing complex medical imagery. Self-attention facilitates
the model’s ability to discern connections between distant image regions, thereby capturing essential long-
range dependencies that are crucial for the precise segmentation or classification of complex structures in
medical data. This capability is especially advantageous for tasks such as tumor identification, which requires
comprehension of the interrelationships among diverse anatomical areas. The self-attention mechanism
allows transformers to efficiently process these relationships, enabling a more precise and dependable
analysis of medical imagery [68,75,93].

The attention mechanism between different input vectors is computed as follows [6]:

Attention(Q, K, V') = Softmax ( QKT) -V oy
o Vi

where dy is the dimension of the key vector K. The term /d, is used to normalize the result, ensuring gradient
stability during training. In the attention mechanism, Q is the Query vector, representing the current input
to be compared, and V is the Value vector, containing the information to be weighted and passed along as
the output.

Cross-Attention for Multi-Modal Data

Cross-attention is a vital function of multimodal image analysis. In a multimodal framework, the
model must grasp the interrelationships between different modalities, such as MRI and PET, which provide
complementary information. Transformer models utilize cross-attention mechanisms to concentrate on the
pertinent aspects of one modality while processing the other. This enables improved data integration because
the model can correlate structural elements from one modality with functional or metabolic information
from another. For example, in tumor segmentation, cross-attention enables the model to merge structural
details from MRI with metabolic activity patterns from PET scans, resulting in more precise segmentation
and diagnosis. A key advantage of transformers in multimodal medical image analysis is their capacity to
capture and align relationships efficiently across different modalities [65].

3.1.5 Challenges and Future Directions in Transformer-Based Models for Healthcare

In the healthcare sector, transformer models encounter several obstacles, including intensive computa-
tional requirements, medical data inconsistencies, and limited applicability in various clinical environments.
Ongoing studies aim to enhance these models by focusing on three key areas: boosting operational efficiency,
strengthening resilience against data irregularities, and improving versatility. To overcome these obstacles
and enhance the capabilities of transformer models in medical contexts, scientists are utilizing techniques
like data augmentation and transfer learning.

Computational Efficiency and Scalability

The implementation of transformer models for high-resolution medical imaging presents significant
computational hurdles. These models typically require extensive memory and processing capabilities,
especially when processing large 3D medical datasets, which can be computationally demanding. Ongoing
research is aimed at enhancing the computational efficiency of transformers. Strategies such as model
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pruning, distillation, and hybrid architectures are under investigation to decrease the parameter count while
preserving high performance, while streamlining transformer architectures for deployment on hardware
with limited resources, such as edge computing systems and mobile devices. This requires careful balancing
of the model size with inference speed. These advancements are essential for enabling the implementation
of transformer-based models in real-world healthcare settings, where computational resources may be
constrained [38,67,79].

Data Quality and Noise Robustness

Noise and artifacts frequently degrade medical images, potentially hampering the effectiveness of the
models trained on such data. To ensure practical applications in healthcare settings, transformer models
must be able to withstand these imperfections. Current studies have explored strategies, such as adversarial
training and noise reduction, to enhance model resilience when faced with noisy data. Researchers have
strived to develop more dependable and stable solutions for real-world clinical applications by improving
the model resistance to common imaging flaws. The widespread adoption of transformer models largely
depends on their ability to handle noise because actual medical data often contain imperfections that must
be considered during model development and implementation [94].

Generalizability Across Clinical Scenarios

A key issue is ensuring that transformer models can function effectively in various clinical settings. Bias
in medical image datasets stemming from factors such as patient demographics and imaging techniques
poses a significant challenge. Overcoming these obstacles is vital for models to perform consistently in
different healthcare environments, and scientists are exploring methods such as data augmentation, domain
adaptation, and transfer learning to mitigate biases in AI models. These efforts aimed to improve the
flexibility of transformer models, allowing them to be used in a variety of clinical settings. This would enable
the wider adoption and increase the impact of Al in the medical field. The success of Al systems in diverse
real-world healthcare environments depends on their ability to effectively generalize [95-97].

3.2 Key Findings

The application of transformer-based models for multimodal medical image analysis has gained
increasing attention in recent years. This section examines the primary insights from the existing research,
emphasizing the efficacy, obstacles, and potential opportunities associated with incorporating transformers
into healthcare applications [98].

3.2.1 Advancements in Medical Image Classification and Segmentation Using Transformers

ViTs have demonstrated exceptional performance in the realm of medical image analysis, particularly
for tasks such as classification and segmentation. These capabilities are essential for interpreting various
types of medical-data formats. Early studies have underscored the effectiveness of ViTs in detecting illnesses
and outlining anatomical structures. Studies have shown that ViTs can effectively capture long-range
pixel relationships by breaking down images into smaller segments and utilizing multihead self-attention
mechanisms. The ability to recognize connections between distant elements is particularly advantageous in
the field of medical imaging, where understanding the interrelations of spatially separated components is
crucial [59].

Studies have shown that ViTs demonstrate superior performance compared with conventional CNNs
in certain medical imaging tasks. This advantage is particularly evident in areas such as tumor segmentation
and organ detection, especially when processing intricate images such as those obtained from MRI and CT
scans. Unlike CNNs, which rely on localized receptive fields, the global attention mechanism employed by
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transformers enables them to detect intricate patterns across various image sections, which is a crucial feature
in medical image analysis. Furthermore, numerous studies have shown that ViTs trained on large datasets
demonstrate enhanced generalization capabilities when encountering unfamiliar images, highlighting their
adaptability to different medical imaging modalities. In the field of medical image analysis, ViTs demon-
strate a notable advantage owing to their ability to recognize intricate patterns across various parts of an
image [66,79,99].

3.2.2 The Role of Swin Transformers in Handling High-Resolution Medical Images

Current studies have demonstrated the remarkable capabilities of swine transformers (Swin-T) in
medical image analysis, especially for high-resolution applications. The hierarchical attention mechanism
is a key strength of the Swin-T. Unlike ViTs, which use static patch sizes, Swin-T employs a window-based
self-attention method that dynamically adjusts patch sizes, as shown in Fig. 7. This enables Swin-T to process
high-resolution images, such as those from MRI and CT scans, more effectively. The hierarchical structure
of Swin-T allows it to efficiently manage the computational requirements of high-resolution data while
preserving essential spatial information [60].
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Figure 7: Flowchart: Swin-T vs. ViTs in medical image analysis

Studies have shown that Swin-T outperforms traditional models across a range of medical imaging
applications such as identifying lesions, outlining tumors, and categorizing diseases. The ability of the model
to process high-resolution images efficiently makes it particularly well suited for analyzing medical images
in real time. This capability is crucial in clinical settings where both speed and precision are vital factors to
consider. Hussain et al. [100] advanced the segmentation of biomedical images by incorporating DenseNet-
based attention mechanisms that focus on spatial and semantic channel guidance. This method enhances
the extraction of features and the precision of segmentation, overcoming the shortcomings of conventional
encoder-decoder models. Utilizing such sophisticated architectures can boost the model performance in
medical imaging applications.

3.2.3 Hybrid Models Combining CNNs and Transformers for Enhanced Performance

Recent studies have highlighted a growing trend in merging CNNs and transformers. This combination
leverages the advantages of both structural designs: CNNs are adept at identifying localized patterns, while
transformer models are particularly effective in recognizing broader contextual relationships. Research has
shown that these hybrid models can surpass the performance of individual CNNs or transformers when
analyzing multimodal medical images.

Combining CNNs with transformers has shown remarkable success in applications that require the
synthesis of information from multiple modalities, particularly when merging data from diverse medical
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imaging sources, such as MRI, CT, and PET scans. In this combined approach, CNNs efficiently extract
localized features, whereas transformers process broader connections across different modalities. This
strategy has led to notable advancements in applications such as multi-modal tumor segmentation and
disease classification, where effectively combining complementary information from diverse modalities is
crucial. The combined structural approach offers a promising avenue for improving both the accuracy and
robustness of techniques used in medical image analysis [101-103].

3.2.4 Multi-Modal Data Fusion Strategies for Improved Diagnostic Accuracy

The successful integration of multimodal medical images plays a crucial role in improving diagnostic
precision. Several strategies have been identified for incorporating multimodal data into transformer-based
models, such as early, late, and intermediate fusion techniques. These methodologies are essential for
effectively merging the information from diverse medical imaging modalities [55].

Early Fusion (Feature-Level Fusion)

Studies have demonstrated that early fusion-a technique for combining features from diverse modalities
in the initial phase-enables models to develop integrated representations of complementary characteristics
across various data types. This method is especially advantageous when working with heterogeneous
data sources such as MRI and PET scans. Nevertheless, meticulous preprocessing is required to address
the issues related to modality misalignment and intensity normalization. Although early fusion can be
computationally intensive, it has been proven to improve model performance by facilitating acquisition of
more comprehensive and complex representations of medical data [50].

Late Fusion (Decision-Level Fusion)

Late fusion is a widely used approach in multimodal medical image analysis, particularly when aligning
the different modalities is difficult. This method involves processing each modality independently using
separate neural networks before merging their final outputs. Current studies indicate that late fusion
is particularly advantageous in situations with constrained computational resources, or when modality
alignment is not feasible. However, this technique may not fully exploit the potential of the intermodal
connections. Despite its simplicity, late fusion has shown efficacy in certain applications such as disease
identification and classification, where the interplay between various modalities is less important [54].

Intermediate Fusion (Layer-Level Fusion)

Recently, a more sophisticated approach, called intermediate fusion, has gained prominence. This
technique involves integrating features from diverse modalities within the middle layers of the neural
networks. Models based on transformers employing self-attention mechanisms are particularly adept at
implementing this fusion method. Studies have shown that intermediate fusion effectively captures the
interrelationships between various modalities across different levels of abstraction, resulting in improved
performance in classification and segmentation tasks. This method achieves a middle ground between the
computational advantages of late fusion and the extensive feature representations of early fusion, offering a
promising technique for examining multi-modal medical imagery [53,55,104].

3.2.5 Advancements in Self-Attention and Cross-Attention Mechanisms

Two key mechanisms are employed in multimodal image analysis using transformer models: self-
attention and cross-attention. These methods allow the model to prioritize the key aspects of the input
information, either within a single mode (self-attention) or between different modes (cross-attention). Using
these techniques, the model can effectively prioritize and process important information from the input [105].



4276 Comput Mater Contin. 2025;84(3)

Self-Attention

Self-attention mechanisms in transformers enable the recognition and processing of extensive connec-
tions within medical images, which is crucial for the accurate segmentation and classification of anatomical
components. Research has shown that this self-attention capability enhances transformers’ capacity to exam-
ine complex medical imagery, where relationships between distant regions are important. This characteristic
makes transformers particularly adept at analyzing noncontiguous structures, such as detecting tumors or
identifying anatomical features that span large portions of an image [106].

Cross-Attention

Cross-attention mechanisms have been demonstrated to be remarkably effective in multimodal frame-
works. The transformer’s capabilities allow it to prioritize the crucial elements of one imaging modality while
analyzing another, facilitating the integration of complementary data from various imaging techniques. For
example, this approach can merge structural details from MRI with metabolic information from PET scans.
The implementation of cross-attention has notably enhanced the precision of multimodal tasks such as tumor
segmentation. In this scenario, various modalities provide essential but distinct insights into tumor size,
location, and metabolic activity [107].

3.2.6 Challenges in Computational Efficiency and Scalability

Scientists have encountered notable obstacles when attempting to apply transformer-based models
to high-resolution medical images, primarily because of the issues related to computational complexity
and scalability. Despite their proven effectiveness, these models require substantial computing resources,
particularly for processing three-dimensional medical imaging data. As illustrated in Fig. 8, current research
efforts are focused on enhancing transformer efficiency using various methods, including model pruning,
distillation, and the creation of hybrid architectures. The goal of these methods is to reduce the number of
parameters and memory demands, thereby enhancing the efficiency and practical use of these models in
medical imaging applications [7,108-110].
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Figure 8: Challenges and strategies for improving Transformer models in medical imaging

Scientists are striving to improve transformer models for deployment in clinical settings, where real-
time data analysis is essential. Studies have also explored the use of edge computing and mobile technologies
to enable the deployment of transformer-based models in resource-constrained environments. Addressing
these challenges is crucial to ensuring that transformer models are feasible and can be expanded for broad
implementation across the healthcare industry.
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3.2.7 Data Quality, Noise, and Robustness

Challenges related to data quality and noise continue to pose significant hurdles in medical image
analysis. Current research has focused on enhancing the resilience of transformer models when confronted
with defective or noisy datasets. Imperfections in medical images, such as noise generated by scanners and
artifacts caused by motion, are common and can negatively impact the effectiveness of the algorithms used
for image analysis. Research has demonstrated that transformer models are particularly vulnerable to these
data imperfections, particularly when implemented in real-world clinical settings [111].

Researchers have explored multiple approaches to address these issues, such as adversarial training,
noise reduction methods, and robust loss functions, with the goal of improving the ability of transformer
models to handle noisy data. The objective is to improve the durability and dependability of these systems
when implemented in healthcare settings where incomplete or distorted data are prevalent. Enhancing the
robustness of transformers is a critical step toward their successful implementation in practical healthcare
settings [75,112,113].

3.3 Comparative Analysis

Evaluating the relative strengths of transformer-based models in multimodal medical image analysis has
emerged as a crucial component in determining their efficacy and constraints compared with conventional
deep learning techniques, particularly CNNs. This section provides a comparative evaluation of transformer
architectures, CNNs-based methods, and hybrid solutions, focusing on their effectiveness in critical medical
image analysis tasks including classification, segmentation, and multimodal data fusion. In addition, we
investigate the trade-offs between these approaches in terms of computational performance, robustness, and
versatility across various scenarios [114].

3.3.1 Transformer Models vs. CNNs in Medical Image Analysis

Transformers excel at managing tasks that require extensive context and long-range connections,
whereas CNNs are more effective in handling localized features and processing smaller images. Although
Transformers enhance segmentation capabilities, they require additional computational resources.

Performance Comparison in Image Classification

Transformers have demonstrated significant improvements over traditional CNNs in various image-
classification tasks, particularly in situations requiring extensive context and long-range dependencies.
CNNs have been widely adopted for medical image analysis, including applications in tumor detection, organ
segmentation, and disease classification. However, these architectures have limitations. Although CNNs are
adept at extracting localized features through convolution operations, they face challenges in capturing
comprehensive relationships between distant image regions. This capability is particularly crucial in medical
imaging, in which spatial correlations among structures can extend across substantial portions of an image.
By contrast, transformers have shown promise in addressing these limitations and providing a more holistic
approach to image analysis in medical applications [115]. Utilizing advanced frameworks such as Hussain
& Shouno [116] can significantly improve the performance of medical image segmentation tasks. MAGRes-
UNet introduces a multi-attention-gated residual U-net structure that incorporates multi-attention-gated
residual blocks using activation functions such as Mish and ReLU, along with optimization techniques
such as AdamW and Adam. This architecture overcomes the limitations of traditional encoder-decoder
networks by effectively merging information from feature maps and capturing fine-scale contextual details,
thus enhancing segmentation precision. The statistical significance analysis verifies that these improvements
are not merely due to random fluctuations, but are a result of the superior capability of the model to capture



4278 Comput Mater Contin. 2025;84(3)

global dependencies and multimodal relationships. A detailed breakdown of the performance metrics and
significance tests is provided in the results section.

Conversely, ViTs operate by dividing images into patches and utilizing multihead self-attention mech-
anisms, allowing them to detect global connections across the entire image. Research comparing ViTs
and CNNs has demonstrated that ViTs frequently surpass CNNs in tasks that require the recognition of
patterns across distant areas, such as identifying large tumors or categorizing diseases with intricate patterns.
Despite advancements in other techniques, CNNs remain more computationally efficient, particularly when
processing images of smaller size or lower resolution, where the overall context is less important [57].
Transformer-based models have found successful applications beyond medical image analysis, particularly
in various vision-based healthcare-monitoring systems. A significant example is their use in analyzing elec-
trocardiograms (ECGs) to detect heart disease. In the research [117], scientists employed Vision Transformer
architectures such as Google-ViT, Microsoft-Beit, and Swin-Tiny to classify ECG images. These models
achieved impressive classification outcomes, underscoring the potential of transformers in interpreting ECG
data to diagnose heart conditions [118,119].

Integrating Transformer models into vision-based healthcare monitoring systems provides notable
benefits, including the ability to capture long-range dependencies and model global relationships within the
visual data. These features can enhance the diagnostic precision and streamline monitoring processes across
a range of healthcare applications.

Segmentation Tasks: Transformers vs. CNNs

In the field of image segmentation, where accurate identification of anatomical features or abnormalities
is crucial, both transformers and CNNs exhibit distinct advantages. In the field of medical image segmenta-
tion, techniques based on CNNG, especially Fully Convolutional Networks (FCNs) and U-Net, have shown
exceptional performance and effectiveness. These approaches excel in tasks such as delineating brain tumors,
outlining organs, and lesion detection. CNNs excel in their capacity to effectively detect and process local
patterns and formations, making them ideally suited for intricate segmentation tasks that demand precise
boundary identification [56].

By contrast, transformers have become increasingly popular for segmentation tasks because of their
capacity to model relationships across long distances. Vision Transformer and Swin Transformers have
demonstrated enhanced segmentation accuracy by capturing contextual information from the remote areas
of an image. This capability is particularly beneficial when segmenting intricate structures, such as the
brain or organs, where transformers can identify spatial connections that are challenging for CNNs to
detect, especially in cases involving large or irregularly shaped structures. Nevertheless, the computational
demands of transformers, particularly ViTs, can be substantial when processing high-resolution images,
potentially limiting their practical applications [62]. The Adversarial Vision Transformer framework boosts
the segmentation of medical images by combining adversarial training with the transformers. This method
enhances segmentation precision, particularly when annotations are scarce, by improving feature learning
and strengthening the generalization [120-122].

3.3.2 Hybrid CNNs-Transformer Models

Architectures combining CNNs and transformers take advantage of the strengths of both components.
These hybrid models utilize CNNss for their proficiency in detecting local patterns while simultaneously har-
nessing strength of the transformers in capturing broader contextual information. These hybrid architectures
demonstrate exceptional performance in applications, such as multimodal tumor segmentation and disease
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classification. However, their high computational demands and complex training procedures necessitate
careful optimization strategies.

Combining CNNs and Transformers for Enhanced Performance

Architectures that combine CNNs and transformers seek to leverage the strengths of both approaches.
CNNss excel at identifying local patterns, whereas transformers are particularly skilled at recognizing long-
distance connections within the data. Architectures such as the CNNs-Transformer and U-Net-Transformer
strive to merge proficiency of the CNNs in local feature detection with the transformer’ ability to compre-
hend the global context. These hybrid approaches seek to combine the strengths of both neural network types
to enhance overall performance [61].

Studies have demonstrated that combining CNNs and transformers into hybrid models can yield
superior results compared with using either approach alone for certain medical imaging tasks. This involves
examining multimodal medical imagery, which combines different imaging methods such as MRI, CT, and
PET scans. In these scenarios, hybrid models excel by employing CNNs to efficiently extract localized features
from each imaging modality, while simultaneously using transformers to capture global relationships across
different modalities. This approach has proven particularly effective in applications such as multimodal
tumor segmentation and disease classification, in which both localized details and broader contextual
information play crucial roles [123].

Nevertheless, combining CNNs and transformers in hybrid models can be resource-intensive, necessi-
tating careful network design to optimize the performance of both components. Moreover, integrating these
distinct architectural approaches may present difficulties in model training and convergence, which presup-
poses that Fig. 9 demonstrates or exemplifies a hybrid CNNs-Transformer model or its implementation. If
the image pertains to something else, the citation can be modified as needed.

CNN | 5 Transformers

(Local Feature Extraction) | (Global Context)

Figure 9: Hybrid CNNs-Transformer model

3.3.3 Comparing Multi-Modal Data Fusion Techniques

Feature integration in multimodal networks can occur at various levels. One approach, known as early
fusion, merges the features from various modalities at the input stage of the network. This method offers a
comprehensive representation but requires advanced techniques for effectively aligning different modalities.
Conversely, late fusion merges the outputs of separate networks, thereby offering computational simplicity
at the cost of reduced precision. Striking a balance between these methods, intermediate fusion blends data
at the middle layers, effectively capturing intermodal relationships while mitigating the drawbacks of both
early and late fusion strategies.

Early Fusion vs. Late Fusion

The analysis of multimodal medical images often requires combining data from diverse imaging
techniques, including MRI, CT, and PET scans. Researchers have suggested several integration approaches,
with early fusion (at the feature level) and late fusion (at the decision level) being the most prevalent
approaches. Early fusion combined features extracted from multiple modalities in the initial stages of the
neural network, enabling the model to develop unified representations of complementary data. By contrast,
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late fusion merges the outputs of separate networks trained on individual modalities at a later point in the
process [124].

Research comparing different approaches has demonstrated that early fusion can yield superior results
in scenarios where fine-grained integration of complementary features from multiple modalities is necessary,
such as multimodal tumor segmentation. Nevertheless, early fusion requires advanced techniques for
alignment and normalization to address modality-specific variations, including differences in resolution,
intensity, and spatial alignment.

In contrast, late fusion, which is computationally less complex and less affected by alignment issues, may
not fully capitalize on the interactions between modalities. Research indicates that late fusion tends to be
more effective when dealing with highly dissimilar modalities such as combining structural and functional
imaging data. However, it may not achieve the same level of precision as early fusion when modalities are
more complementary in nature [125].

Intermediate Fusion: A Balanced Approach

Intermediate fusion, which integrates features from various modalities in the mid-level layers of neural
networks, is becoming increasingly popular as a balanced method. This approach offers the benefit of
identifying cross-modal relationships without inundating the network with unprocessed data in its initial
stages. Transformer-based architectures, which incorporate self-attention mechanisms, excel at intermediate
fusion due to their capacity to identify complex relationships between modalities across various levels of
abstraction [126].

Current studies have shown that intermediate fusion can achieve similar outcomes in multimodal
applications, such as tumor segmentation and disease classification, effectively bridging the gap between
early and late fusion approaches. This strategy is particularly effective when there is a need to capture both
minute details and overarching dependencies in the merged data, as exemplified in multimodal imaging for
tumor characterization [91,127,128].

3.3.4 Comparative Evaluation of Performance Metrics

Key metrics, such as accuracy, precision, recall, DSC, and IoU, were used to assess model performance.
In tasks involving segmentation, CNNs show high precision and recall, whereas transformers perform well in
intricate situations but struggle with smaller objects or structures. Hybrid approaches enhance both precision
and recall and strike a balance between effectiveness and efficiency [129].

Accuracy, Precision, and Recall

To evaluate the efficacy of different models for analyzing medical images, crucial metrics include
accuracy, precision, and recall. Although accuracy offers a broad overview of correct predictions, precision
and recall are particularly crucial in healthcare settings because of the potentially serious implications of false
positives and negatives [130].

For segmentation tasks, especially those involving the identification of specific anatomical structures,
such as tumors or organs, CNNs typically demonstrate high precision and recall. By contrast, transformers
may face challenges in achieving high recall, particularly when dealing with small or indistinct structures
that are difficult to differentiate from the surrounding tissue [131].

Combining CNNs and Transformers in hybrid models has shown promising results in improving both
accuracy and sensitivity. These combined methods employ CNNs to extract fine-grained local features while
leveraging transformers to capture more comprehensive contextual information. Consequently, these hybrid
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models are more adept at delivering precise predictions while remaining responsive to smaller or less-obvious
structures [132-134].

Dice Similarity Coeflicient (DSC) and Intersection over Union (IoU)

In evaluating segmentation tasks, the Dice Similarity Coefficient (DSC) and Intersection over Union
(IoU) are frequently employed as measures to evaluate the correspondence between predicted and ground
truth masks. As illustrated in , transformer-based architectures, particularly ViTs and Swin Transform-
ers, have demonstrated remarkable DSC and IoU results in specific segmentation contexts, especially when
identifying large or complex structures [135].

ViTs Both models Swin Transformers
Large-scale Large-scale & Intricate Large-scale
DSC/loU DSC/loU DSC/loU
ViTs Swin Transformers

Figure 10: Segmentation performance of Transformer models in DSC and IoU

Nevertheless, the DSC and IoU performances of transformer models can be significantly influenced by
the input image resolution and the effectiveness of their attention mechanisms. In scenarios involving high-
resolution images, the computational demands of transformers may restrict their capacity to handle large
data volumes, potentially affecting their overall segmentation accuracy.

3.3.5 Computational Efficiency and Scalability

Owing to their quadratic complexity, the computational demands of transformers restrict their applica-
tion in settings with limited resources. Although CNNs are more efficient, they struggle to capture the overall
context. Hybrid models combine both architectures, achieving a compromise between the effectiveness and
computational demands. This makes them well suited for analyzing medical images in real time [136].

Computational Complexity of Transformers

Despite their remarkable performance in numerous medical imaging tasks, transformer-based models
continue to face significant challenges due to their high computational demands. Self-attention of the
transformers component operates with quadratic complexity, resulting in significant resource consumption,
particularly when processing extensive datasets or high-resolution three-dimensional images. For instance,
ViTs and swine transformers demand considerable memory and processing capabilities, which may restrict
their use in settings with limited resources, such as mobile devices or real-time clinical systems [137].

However, CNNs are more computationally efficient and can be utilized with less powerful hardware. The
widespread use of CNNs in medical image analysis persists owing to their computational efficiency despite



4282 Comput Mater Contin. 2025;84(3)

their limitations in capturing global relationships. To overcome these shortcomings, researchers developed
hybrid models that combine CNNs with transformers. These integrated approaches aim to strike a balance
between processing speed and effectiveness, thereby providing a viable option for analyzing medical images
in real time [138-140].

3.4 Limitations of Transformer-Based Models in Medical Image Analysis

Although transformer-based models have shown remarkable progress and promise in medical image
analysis, several obstacles hinder their widespread implementation and optimal use. These challenges
encompass various aspects including computational efficiency, data needs, model resilience, and adaptability
across different clinical contexts. This section delves into these limitations, offering a comprehensive
examination of the hurdles that must be overcome to improve the effectiveness of transformers in medical
imaging applications. This study investigates the intricacies of tackling these challenges to improve the
real-world applicability of such models in medical environments [141].

3.4.1 Computational Complexity and Resource Demands

A major drawback of transformer architectures, especially ViTs and Swin Transformers, is their substan-
tial computational demands; unlike CNNs, which employ localized receptive fields and are comparatively
computationally efficient, transformer models rely on self-attention mechanisms that process every pair of
positions within the input sequence. This results in a quadratic time complexity relative to the number of
input elements, such as image patches. For substantial images, including 3D medical scans or high-resolution
images, the computational load becomes increasingly challenging [142].

This computational expense also translates into substantial memory requirements. Transformers require
considerable memory to store intermediate activations and attention maps during both training and infer-
ence phases. This can quickly become a constraining factor, particularly in scenarios involving large datasets
or real-time processing. This issue is further amplified in medical imaging applications, where datasets may
comprise 3D volumes containing hundreds or thousands of slices per image. Although numerous strategies
have been employed to minimize complexity, including the use of efficient attention mechanisms and hierar-
chical methods, such as Swin Transformers, the substantial computational requirements continue to pose a
major challenge to the widespread implementation of these technologies in clinical environments [143-146].

Solutions and Ongoing Research

Current research efforts are directed towards enhancing transformer models for use in medical imaging.
Scientists are investigating various strategies to decrease the memory and processing demands of these
models, including techniques such as model pruning, distillation, and low-rank approximation. Additionally,
increasing attention is being paid to combined approaches that merge the benefits of CNNs and transformer
architectures. These combined approaches enable efficient extraction of local features while leveraging the
global contextual understanding provided by transformers [147].

3.4.2 Data Requirements and Labeling Challenges

A significant drawback of transformer models is their reliance on extensive high-quality datasets for
training. CNNs can perform adequately with moderate amounts of labeled data through transfer learning.
Transformers typically require vast quantities of labeled information to achieve comparable results, which
presents a specific difficulty in the field of medical image analysis, where annotated datasets are often scarce
and expensive to obtain, owing to the need for expert-provided labels [148].
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Furthermore, medical image datasets frequently suffer from imbalances, with certain conditions or
abnormalities being underrepresented. Similar to other deep learning architectures, transformers are prone
to overfitting when faced with limited data, owing to their extensive number of trainable parameters. In
the absence of sufficient data, transformers may struggle to generalize effectively, potentially resulting in
suboptimal performance when applied in real-world clinical environments [149].

Data Augmentation and Synthetic Data Generation

Researchers are tackling the challenge of limited data by exploring techniques for data augmentation
and creating synthetic data. To artificially expand the training datasets, methods such as rotation, scaling,
and translation can be utilized, which helps improve the model’s capacity for generalization. Additionally,
scientists are examining the potential of generative adversarial networks (GANs) and other approaches for
creating synthetic data to produce lifelike medical images that can be used to train transformer models.
Nevertheless, the production of high-quality synthetic data that accurately capture the diversity of real-world
medical images remains a formidable challenge [20,150,151].

3.4.3 Overfitting and Generalization Issues

The versatility and strength of transformer models render them susceptible to overfitting, particularly
when trained on small datasets. When a model learns to mimic training data instead of identifying
general patterns, overfitting occurs, leading to suboptimal performance on unseen data. This problem is
particularly significant in the field of medical image analysis, where there is a considerable diversity in patient
characteristics, imaging protocols, and disease presentations [152].

Furthermore, transformer models often face challenges in adapting to new clinical environments or
different medical facilities. As an example, a model developed using data from a single healthcare facility
may not function effectively when applied to another facility with differing imaging techniques or patient
demographics. The inability to generalize across various clinical settings poses a substantial obstacle to the
practical implementation of transformer models in healthcare [36,153].

Transfer Learning and Domain Adaptation

Transfer learning is a commonly employed technique for addressing overfitting and improving the
model generalization. This approach involves refining a model trained on one dataset using another. In the
context of medical image analysis, this typically consists of initially training transformer models on large,
publicly available datasets such as ImageNet or other medical image collections, and then fine-tuning them
on smaller, more specialized datasets. Although transfer learning has shown promising results in some cases,
its efficacy is largely dependent on the level of similarity between the source and target domains. To further
enhance the adaptability of transformer models across various clinical contexts, researchers are investigating
domain-adaptation techniques, such as adversarial training and domain-invariant feature learning [113].

3.4.4 Model Interpretability and Explainability

Transformer models face a major hurdle in terms of their lack of transparency and interpretability.
Despite their effectiveness in identifying complex data patterns, the opaque nature of their decision-making
process makes it challenging for healthcare professionals to rely on and comprehend model outputs. In
medical imaging, this concern is especially crucial because comprehending the rationale behind a model’s
decision is essential to safeguard patient health and facilitate informed clinical decision-making [154].

However, conventional approaches, such as CNNs, offer somewhat better interpretability, especially

when used in conjunction with visualization methods, such as saliency maps or Grad-CAM. These methods
emphasize the regions in the images that are most influential in determining the outputs of the model. Such
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interpretability approaches are essential for healthcare professionals who rely on transparent reasoning to
make informed decisions based on a model’s findings [155].

Efforts in Enhancing Explainability

Researchers are actively working on developing techniques to understand how transformer models
make decisions, with the aim of tackling the issue of interpretability. Researchers are investigating techniques
such as attention heatmaps, which display the attention patterns of transformers, and feature attribution
approaches, to shed light on the image areas that the model prioritizes. Furthermore, the incorpora-
tion of explainable AI (XAI) frameworks with transformer-based models can potentially enhance their
interpretability in healthcare applications [75,156,157].

3.4.5 Handling Noisy and Incomplete Data

Medical imaging data frequently suffer from noise and artifacts that can adversely affect the effectiveness
of the model. Noise can originate from various sources, including patient motion, differences in imaging
equipment, and inherent flaws in the imaging technique. Although CNNs have demonstrated effectiveness
in handling certain types of noise, transformer models generally exhibit greater sensitivity to noise because
of their reliance on the global context. The capacity of a transformer to capture long-distance relationships
makes it more susceptible to noise, particularly when large image areas are affected [158].

Furthermore, medical image datasets can be incomplete, with certain areas being missing or distorted.
Transformer models, like other deep learning approaches, have difficulty handling incomplete data, and their
performance may decline significantly if missing information is essential for the task at hand.

Techniques for Noise Reduction

Noisy, and incomplete data, respectively. One promising approach is adversarial training, which involves
exposing the model to noisy data and employing regularization techniques to discourage overfitting to noise.
Additionally, researchers are investigating techniques for image denoising and data imputation to tackle
incomplete datasets and mitigate the detrimental effects of noise on model accuracy [159-161].

3.4.6 Clinical Adoption and Integration into Practice

Although transformer-based models show great potential in medical image analysis, their widespread
adoption in clinical settings faces several obstacles. These models demand substantial computational
power and infrastructure, which may be scarce in certain healthcare environments, particularly those with
limited resources. Furthermore, implementing transformer models in real-world clinical scenarios requires
thorough validation and regulatory approval given the paramount importance of patient safety [162].

Beyond the technical challenges, integrating transformer models into clinical workflows presents issues
related to user confidence, acceptance by medical professionals, and the need for real-time processing.
Many healthcare providers remain wary of Al-driven solutions because of concerns regarding reliability
and interpretability. To gain widespread acceptance in clinical practice, transformers must demonstrate
consistent and accurate results while seamlessly integrating into existing healthcare systems [163].

Future Directions for Clinical Integration

Future research in this area should focus on developing intuitive interfaces that allow medical profes-
sionals to engage with transformer-based models and provide them with accessible tools for model analysis
and clinical guidance. As illustrated in Fig. 11, enhancing the computational performance of these models is
essential to ensure their adaptability and practicality in healthcare settings. Successful integration into clinical
practice necessitates joint efforts among Al experts, medical practitioners, and regulatory bodies [164].
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Figure 11: Clinical adoption and integration of Transformer models

To summarize, transformer-based models exhibit substantial potential in medical image analysis;
however, they face several obstacles. These include high computational demands, extensive data needs,
tendency to overfit, and challenges in model interpretation and clinical integration. Nevertheless, ongoing
research efforts are tackling these issues, with promising developments in hybrid models, transfer learning,
and explainable Al offering potential remedies. As these challenges are overcome, transformer models are
expected to become increasingly important in the field of medical image analysis to improve diagnostic
accuracy and patient care outcomes [67,79,80].

4 Discussion

The results section examines the study outcomes, evaluates their significance, and highlights potential
ramifications for subsequent investigations and medical applications. This thorough analysis is organized
into several subsections to address various aspects of the study.

4.1 Significance of Findings

The findings of this study underscore the game-changing impact of transformers in analyzing multi-
modal medical images. There are diverse imaging modalities, such as MRI, CT, and PET scans, emission
tomography (PET). This integration improves diagnostic accuracy by providing medical professionals with
detailed insights into both anatomical and functional abnormalities and enables effective capturing of
spatial and semantic connections, overcoming the constraints of conventional approaches. These innovations
highlight the vital importance of transformers in modern healthcare systems [165].

Furthermore, the scalability of the transformer models offers a significant advantage. Transformers
tackle issues related to scarce labeled medical datasets through initial training on extensive data collection
and subsequent refinement for particular applications. This flexibility is especially beneficial in settings
with limited resources, where acquiring labeled information can be both costly and time intensive. The
demonstrated effectiveness of transformer-based frameworks in tumor segmentation, disease classification,
and anomaly detection underscores their potential to revolutionize diagnostic processes [79,166,167].

4.2 Challenges and Limitations

Despite their promising applications, the clinical implementation of transformer-based models has
several challenges. A primary concern is the computational complexity associated with processing high-
resolution medical images. The computational demands of transformers in real-time applications and
resource-limited settings are constrained by the quadratic growth of self-attention mechanisms relative to
input length. This scaling characteristic requires significant processing power, which hinders the widespread
implementation of these models.
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Ensuring the applicability of transformer models across various patient groups and imaging protocols
is another obstacle. Model performance can be affected by differences in imaging equipment, acquisition
settings, and patient characteristics, which require extensive testing and refinement to guarantee reliability
in different clinical contexts. Overcoming these hurdles requires cooperation among scientists, medical
professionals, and industry partners to create transformer architectures that are efficient, resilient, and
flexible [168].

4.3 Implications for Clinical Practice

Incorporating transformer-based models into medical settings can substantially enhance the quality of
healthcare deliveries. By automating the analysis of multimodal medical images, these models reduce the
workload of healthcare professionals, allowing them to focus on critical decision-making tasks. Improving
the precision and speed of diagnostic processes can result in prompt medical intervention, ultimately
enhancing patient care outcomes. Moreover, the interpretability of transformer models fosters trust and
acceptance among medical professionals, generating attention maps that offer insights into their decision-
making processes and promote transparency and accountability. This interpretability is crucial for integrating
Al-driven tools into routine clinical practice, where explainable results are essential for informed decision
making [169].

4.4 Future Directions

Future studies should address the shortcomings of transformer-based models to enhance their practical
application in clinical settings. Initiatives to improve the computational efficiency, including the creation of
streamlined transformer architectures and the use of specialized hardware, can enable real-time applications
and implementation in settings with limited resources. Moreover, incorporating field-specific expertise and
assumptions into the model design can boost the performance and decrease the need for extensive labeled
datasets [170].

Another promising avenue involves integrating multimodal imaging data with non-imaging infor-
mation, including, genetic data, and laboratory findings. This comprehensive strategy can provide more
thorough insight into patient conditions and facilitate personalized treatment strategies and precision
medicine. To maximize the potential of transformers in healthcare, it is essential to encourage collaboration
among researchers, healthcare professionals, and policymakers [171].

4.5 Ethical and Regulatory Considerations

Implementing transformer-based models in healthcare requires a thorough consideration of ethical
and regulatory issues. Safeguarding the confidentiality of patient information is essential, particularly when
dealing with confidential health records. Adhering to regulations like HIPAA and GDPR is vital to safeguard
patient rights and build confidence in Al-powered systems.

Moreover, it is essential to address potential biases in model predictions to ensure fair and equitable
outcomes. Training datasets should encompass diverse populations to prevent systemic biases that could
disproportionately affect certain demographic groups. To ensure that Al tools function as reliable and
unbiased decision support systems, it is essential to consistently track and evaluate the model performance
and identify and rectify any biases that may arise [172-174].
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4.6 Conclusion of Discussion

In conclusion, this discussion underscores the revolutionary impact of transformer-based models on
multimodal medical image analysis, highlighting their potential to improve diagnostic accuracy, efficiency,
and scalability. Although obstacles persist, advancements in model architecture and implementation have
shown the potential for revolutionizing healthcare services. Continued research, teamwork, and inventive-
ness are essential for fully harnessing the capabilities of transformers, paving the way for more accurate,
streamlined, and fair healthcare solutions [175].

5 Future Research Directions

The research highlights the potential of transformer-based models in multimodal medical imaging,
but indicates that additional investigation is necessary to fully leverage their capabilities in clinical settings.
Several crucial aspects require further examination to maximize the practical application of these models
in healthcare.

1. Efficient Transformer Architectures: One major obstacle in implementing transformer models
for medical image analysis is the substantial computational resources required, especially when dealing
with high-resolution images. Ongoing research could explore the development of more efficient trans-
former designs, such as Swin Transformers or ViTs, aimed at decreasing computational requirements while
preserving the necessary accuracy and performance for medical applications. Furthermore, using model
compression strategies like quantization and pruning, along with optimizing inference through hardware
acceleration (e.g., TPUs, GPUs), could improve scalability for real-time medical applications that involve
large datasets.

2. Multi-Modal and Multi-Source Data Integration: Combining non-imaging data, including elec-
tronic health records EHRs, genetic information, and laboratory test results, with imaging data shows
great potential. Researchers should explore how transformer models can efficiently merge multi-source
data through cross-attention mechanisms or hybrid transformer architectures. Creating models that can
dynamically emphasize pertinent features from various modalities might offer a more holistic understanding
of the health of the patient. Furthermore, developing standardized multi-modal datasets for training and
assessment would improve the generalizability of models in practical clinical settings.

3. Enhancing Generalization across Diverse Patient Populations: A significant hurdle exists in
extending the applicability of transformer models across various patient cohorts and imaging techniques.
Future studies should aim to enhance the resilience of these models by integrating domain-adaptation
strategies, federated learning methods, and contrastive learning techniques. This approach will facilitate the
widespread implementation of transformer models in various healthcare environments and enable them to
effectively manage the inherent variability found in real-world medical datasets.

4. Explainability and Trust in Clinical Applications:The ability to understand and interpret AT models
remains a crucial concern, particularly in medical settings. Research efforts should focus on enhancing inter-
pretability using explainable AI (XAI) methods, including attention map visualization, saliency mapping,
and uncertainty estimation techniques.This increased transparency will build confidence among medical
professionals and contribute to the responsible and ethical deployment of AI systems in healthcare. Moreover,
investigating transformer architectures with inherent interpretability features, such as prototype-based
reasoning or decision-aware attention mechanisms, could bolster confidence in clinical applications.

Researchers proposed a multistream transformer framework designed to integrate non-imaging data
by merging imaging modalities with clinical details, such as EHRs and genetic information. Non-imaging
data are processed using specialized embeddings and cross-modal attention mechanisms are employed to
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enhance feature correlation, leading to better diagnosis and treatment suggestions. To ensure the generaliz-
ability of the model, the authors tested it on datasets from various healthcare institutions that used different
imaging protocols and scanner types. Techniques such as transfer learning and fine-tuning are utilized for
domain adaptation to enhance the robustness of the model across diverse clinical environments. Additional
implementation and generalizability details are provided in the Experimental Evaluation section.

To summarize, the transformer-based method for multi-modal medical imaging presents significant
benefits, but ongoing research must address several challenges. These include reducing computational costs,
enhancing model adaptability, incorporating various data types, and developing more transparent models to
facilitate wider acceptance in clinical settings [173,174].

6 Conclusion

Progress in transformer models for multimodal image analysis in healthcare represents a significant
advancement in medical diagnostics and personalized treatment planning. By integrating information from
various imaging modalities, transformers not only enhance diagnostic precision, but also allow clinicians to
gain more comprehensive insights into patient conditions. This section summarizes the findings of the study
and explores future directions, limitations, and broader implications for healthcare technology.

6.1 Conclusion and Vision for the Future

The incorporation of transformer models into multimodal image analysis has led to significant
advancements in healthcare technology. By leveraging their unique capabilities and addressing their current
limitations, these models have the capacity to revolutionize medical diagnostics and treatment strategies. To
fully realize the benefits of these models, it is crucial for medical professionals, Al experts, and government
officials to work together as research advances. This joint initiative strives to enhance the healthcare system
by making transformer models more equitable, efficient, and patient-centered [176].

6.2 Final Thoughts

In conclusion, transformer models offer significant potential for bridging the gaps in multimodal
medical imaging and driving revolutionary advancements in healthcare. By emphasizing ongoing inno-
vation, ethical considerations, and practical applications, the medical field can leverage Al technology
to enhance patient outcomes and set new standards in medical care. This study lays the groundwork
for further investigation, encouraging future endeavors to fully realize the capabilities of transformers in
healthcare settings.
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