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ABSTRACT: In the complex environment of Wireless Sensor Networks (WSNs), various malicious attacks have
emerged, among which internal attacks pose particularly severe security risks. These attacks seriously threaten network
stability, data transmission reliability, and overall performance. To effectively address this issue and significantly
improve intrusion detection speed, accuracy, and resistance to malicious attacks, this research designs a Three-level
Intrusion Detection Model based on Dynamic Trust Evaluation (TIDM-DTE). This study conducts a detailed analysis
of how different attack types impact node trust and establishes node models for data trust, communication trust,
and energy consumption trust by focusing on characteristics such as continuous packet loss and energy consumption
changes. By dynamically predicting node trust values using the grey Markov model, the model accurately and sensitively
reflects changes in node trust levels during attacks. Additionally, DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) data noise monitoring technology is employed to quickly identify attacked nodes, while a
trust recovery mechanism restores the trust of temporarily faulty nodes to reduce False Alarm Rate. Simulation results
demonstrate that TIDM-DTE achieves high detection rates, fast detection speed, and low False Alarm Rate when
identifying various network attacks, including selective forwarding attacks, Sybil attacks, switch attacks, and black hole
attacks. TIDM-DTE significantly enhances network security, ensures secure and reliable data transmission, moderately
improves network energy efficiency, reduces unnecessary energy consumption, and provides strong support for the
stable operation of WSNs. Meanwhile, the research findings offer new ideas and methods for WSN security protection,
possessing important theoretical significance and practical application value.

KEYWORDS: Wireless sensor networks; intrusion detection; dynamic trust evaluation; data noise detection; trust
recovery mechanism

1 Introduction
In the contemporary digital age, network attacks and data breaches pose significant security threats with

far-reaching impacts on national security, social stability, and economic development. These threats manifest
across diverse sectors, from disrupting critical infrastructure to eroding public trust in digital systems. With
the exponential growth of IoT (Internet of Things) technology, Wireless Sensor Networks (WSNs) have
become a critical component of the digital ecosystem, finding extensive and diverse applications across
multiple domains. In industrial monitoring, they enable real-time tracking of equipment performance to
ensure smooth manufacturing processes. In agricultural automation, they help farmers optimize irrigation
and fertilization based on accurate environmental data. In environmental monitoring, they play a vital role
in collecting data on air quality, water pollution, and climate change. In intelligent transportation, they
contribute to traffic management and vehicle-to-infrastructure communication.
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However, the inherent vulnerability of sensor nodes in WSNs to malicious activities—such as eaves-
dropping, tampering, and forgery—has introduced significant security challenges alongside their widespread
adoption. As an integral part of IoT, WSNs face escalating security issues with the deepening of their
applications. The security of WSNs has thus become a critical and indispensable element of overall network
strategy [1].

1.1 Background and Significance of the Research
WSNs are self-organizing networks composed of vast numbers of low-power, low-cost micro sensor

nodes, each equipped with sensing and communication capabilities. These sensor nodes are typically
deployed in unattended environments, such as remote wilderness areas for environmental monitoring or
inaccessible industrial facilities for equipment surveillance. Their primary function is to monitor and collect
diverse environmental information, including but not limited to temperature, humidity, light intensity,
pressure, sound waves, and even images.

Nevertheless, due to the large number of nodes, limited per-node resources, relatively restricted
communication capabilities, and complex deployment environments, WSNs face severe security and pri-
vacy threats [2,3]. For example, malicious nodes may disrupt normal network operations through data
tampering—injecting fake information into data streams and leading to flawed decisions based on false data.
Additionally, denial-of-service attacks may be launched, flooding the network with excessive requests and
rendering it unable to serve legitimate users. Sensitive data, such as personal health information from medical
sensors or proprietary industrial data, may be intercepted, stolen, or tampered with during transmission,
resulting in serious privacy violations. Therefore, ensuring security and privacy protection in WSNs has
become an urgent issue demanding immediate attention and resolution.

Traditional network security technologies, such as encryption algorithms, intrusion detection systems,
and firewalls, have been employed to enhance WSN security to some extent. Encryption algorithms
scramble data to prevent unauthorized access. Intrusion detection systems identify and alert on suspicious
activities. Firewalls act as barriers between internal networks and external threats. However, these traditional
technologies have inherent limitations: they often require high computing power, imposing a heavy burden
on sensor nodes with limited resources. Their high energy consumption can quickly deplete the nodes’
limited battery power. Moreover, they are ineffective against internal threats (e.g., attacks from compromised
nodes) and newly emerging, evolving digital threats [4,5].

Consequently, there is an urgent need to develop lightweight network security techniques. These
techniques must enable fast processing speeds and low energy consumption, thereby providing novel and
effective solutions for securing WSNs.

1.2 Current Research Status
WSNs have inherent limitations and vulnerabilities, making them prone to attacks. Conventional

methods like authentication and encryption can only defend against external threats. Thus, an efficient
intrusion detection model is essential to counter internal malicious and faulty nodes. Dynamic hierarchical
trust management, which evaluates node trust based on energy, behavior, and communication quality, can
better protect against malicious attacks and internal fraud, enhancing network security and reliability [6–8].
Intrusion detection algorithms based on trust can achieve high detection rates and low False Alarm Rate
in typical attacks. They can defend against internal attacks with relatively low computational complexity,
ensuring secure data transmission [9,10].
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In 2015, Tong et al. proposed a hierarchical clustering WSNs intrusion detection scheme based on node
trust value and Mahalanobis distance to detect common intrusions with high accuracy [11]. In 2019, Xu and
Li combined trust and noise detection, calculating relative deviation values across layers to obtain fusion
trust values, performing well in single and cross layer attacks [12]. In 2021, Muhannad and Agoyi developed
a hybrid wormhole attack detection algorithm for mobile Adhoc networks, which is based on jump-based
round trip time and packet transfer rate, reducing latency and energy consumption [13].

In 2022, Bharti et al. used Bayesian probability statistics for trust management, avoiding malicious nodes
with high reputation [14]. Kagade and Jayagopalan proposed a two-level trust assessment intrusion detection
system based on deep learning in WSNs [15]. Tao et al. addressed the vulnerability of trust models to attacks
by introducing punishment and evaporation factors [16].

In 2023, Cho and Qu monitored continuous packet loss to speed up internal attacker detection, with
advantages in network performance [17]. Teng et al. built a dynamic trust evaluation and prediction model
using adaptive weight updates and sliding time windows [18]. Li and Sun designed a global trust intrusion
detection algorithm based on attribute change rate for industrial WSNs, improving detection precision and
reducing energy consumption [19].

Trust mechanism-based intrusion detection algorithms have demonstrated significant advantages in
network security, exhibiting robust performance in resisting internal and external network attacks while
ensuring reliable data transmission. However, these methods are not without limitations, with several key
areas requiring improvement:

• Parameter-Dependent Detection Capability: In the complex and dynamic environment of wireless
sensor networks (WSNs), parameters may deviate or be lost due to noise interference, node failures,
or other factors. This undermines the accuracy of trust value calculations, thereby limiting the further
enhancement of detection capabilities. As a result, maintaining high detection rates alongside low false
alarm and missed alarm rates across all scenarios remains challenging.

• Inadequate Consideration of Node Heterogeneity: Wireless sensor nodes vary significantly in energy
capacity, computing power, and communication capabilities. However, most existing intrusion detection
methods fail to fully account for how such heterogeneities impact trust evaluation and detection perfor-
mance. Complex detection algorithms may not be effectively deployed on low-computing-power nodes,
compromising the comprehensiveness and continuity of detection and reducing overall effectiveness.

• Narrow Application Scenarios: Some methods exhibit strong dependency on specific conditions or node
states. For example, a WSNs intrusion detection system based on deep learning and two-level trust
evaluation relies on high-energy sensor nodes as cluster heads. In energy-constrained real-world WSNs
scenarios, the limited selection of cluster heads diminishes detection efficacy and restricts its applicability
across broader contexts.

1.3 Content and Main Contributions of the Research
In order to improve the detection accuracy and reduce the detection energy consumption of WSNs

intrusion detection, a WSNs intrusion detection model based on dynamic trust sensing and data noise
classification technology is designed. The research mainly makes contributions in the following three aspects:

• By analyzing the continuous packet loss and the characteristics of energy consumption change in WSNs
under different types of attacks such as selective forwarding attack, Sybil attack, and black hole attack,
a trust evaluation model is established from three aspects: communication trust, data trust, and energy
consumption trust. These models can accurately and quickly respond to the changing characteristics of
the trust degree of the attacked nodes.
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• According to the requirements of WSNs intrusion detection algorithm design, the grey Markov model
is used to dynamically predict the node trust value. In this way, the dynamic trust value of nodes can
better reflect the comprehensive cognition of the future change trend of network security and improve
the sensitivity and speed of intrusion detection.

• The improved DBSCAN (Density-Based Spatial Clustering of Applications with Noise) data noise
detection technology is used to detect communication trust, data trust, and energy consumption trust.
Furthermore, a trust recovery mechanism is added to reduce the False Alarm Rate of intrusion detection,
which effectively improves the Detection Rate and reduces the False Alarm Rate.

This paper first analyzes the characteristics of WSNs and the changes of node attributes in detail,
calculates the detection parameters according to different intrusion methods, uses the grey Markov model
to dynamically predict the node trust value, and establishes a dynamic hierarchical trust evaluation model
for WSNs. According to the three-level detection structure of base station, cluster head, and ordinary node,
the DBSCAN data noise monitoring technology is used to quickly identify the attacked nodes, and the trust
recovery mechanism is used to restore the trust of temporary fault nodes to reduce the False Alarm Rate, so
as to establish the WSNs intrusion detection model TIDM-DTE.

The rest of this paper is organized below. Section 2 designs the network topology and energy con-
sumption model of the WSNs, followed by the design of the trust evaluation and intrusion detection model
in Section 3. Section 4 is the experimental part, which introduces the experimental design and specific
content, and analyzes the experimental results in detail. Finally, Section 5 presents conclusions and future
research directions.

2 Network Topology and Model of Energy Consumption
Network topology is the basis of a safe and stable network operation, and it is also the focus of WSNs

research. The organization of each node in WSNs is determined by the network topology. The larger the scale
of WSNs is, the larger the energy consumption is. In this research, a more typical cluster topology WSNs is
selected as the research object for analysis, and its basic structure is shown in Fig. 1.

Figure 1: Structure of cluster-like WSNs
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2.1 Model of WSNs Network
It is assumed that WSNs consist of a base station h0 and K sensor nodes distributed in a square

monitoring area with side length L. CH = {h1 , h2, . . . , hM} is a cluster head node set, G = {g1 , g2, . . . , gN} is
a common node set, and K =M + N. dg p hi is the distance between the node gm and the node hn .

The network has the following features [20,21]:

1. The base station is trusted and has unlimited energy, and the initial energy of all sensor nodes is the same.
2. The relative position of the nodes in the network is directly estimated by the location method.
3. The positions of sensor nodes and base stations will not change after they are determined, and all sensor

nodes have an ID.
4. The sensor nodes have an energy control mechanism, which can adjust the amount of energy sent

according to the transmission distance.

2.2 Model of Energy Consumption
The energy consumed ETx(q,d) of a node sending q bytes of data to a location with distance d is calculated

as [21,22]:

ETx (q, d) = ETx−e l sc (q) + ETx (q, d) = { qEel sc + qε f sd2 , d < d0
qEel sc + qε f sd4 , d ≥ d0

(1)

d0 =
√

ε2
f s/εam p (2)

where, Eel ec is the energy consumption of sending or receiving 1 bit of data, ETx-elec(q) is the energy
consumption of sending q bits of data, ε f s is the magnification of the free space model.

The energy consumption ERx(q) of a node to receive q bytes of data is calculated as:

ERx (q) = ERx−e l ec (q) = qEel ec (3)

where, ERx-elec(q) is the energy consumption of receiving q bits of data.
The energy consumed EDA(q) of a node to fuse q bits of data is:

EDA (q) = E f u × q (4)

where, E f u is the energy consumption of 1 bit data fusion.

3 Model of Trust Evaluation and Intrusion Detection
All sensor nodes in WSNs have limited energy and may be attacked and become malicious nodes. The

base station has unlimited energy and can not be attacked, so the trust value of all nodes is calculated by
the base station. Intrusion detection adopts a three-level structure, that is, the base station is responsible for
detecting the attack of the cluster head, and the cluster head is responsible for detecting and monitoring the
attack of the member nodes in the cluster.

3.1 Model of Trust Value Evaluation
TIDM-DTE model calculates and monitors the data trust, communication trust and energy consump-

tion trust of sensor nodes.
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3.1.1 Data Trust
When nodes in WSNs are subjected to insider attacks, it is common to experience continuous packet

loss. Normal nodes, in general, are unlikely to experience sequential packet loss naturally. Therefore,
continuous packet loss can be used as one of the characteristics of intrusion detection, and the malicious
nodes that receive internal attacks can be monitored and isolated by observing the continuous packet loss
rate [17,23]. If it is normal for continuous packet loss and isolation network node, trust TIDM-DTE model
design recovery mechanism will also avoid the effects of false alarm.

The trust model measures the trustworthiness of the monitored nodes based on the data collected in
the previous phase. When a node is observed to forward a packet s times and drop a packet f times, the Beta
trust model will assign a trust value D j_be ta(s, f ) to node j according to the following formula:

D j_be ta(s, f ) = E[bata(p∣s + 1, f + 1)] = s + 1
s + f + 2

(5)

where, E [beta (P∣s + 1, f + 1)] is the expectation of the probability density function of the beta distribution
given s and f .

When a failure occurs, each trust model decreases the trust value by a certain amount. A penalty
function PD j (n) is included in the data trust model, which determines how much the trust value should be
reduced at a node that produces n consecutive failures. Using PD j (n), given the number of n consecutive
failures, the new trust function D j (n) is expressed as follows:

D j (n) = D j (0) − PD j (n) (6)

where, D j (0) is the initial trust value of the evaluation node that produces n consecutive failures at the
evaluation node, which is the expected value of P (s) at n = 0 in the Beta trust model.

Therefore, when an evaluated node generates n consecutive failures (n ≥ 1), we measure its trust value
by using D j (n) by subtracting a certain amount of penalty PD j (n) from D j (0) before generating n
consecutive failures.

P [ f ] = 1 − D j (0) (7)

where, P[f ] is the probability that a packet is dropped at a normally functioning node.
Let:

PD j (n) = P [ f ] PD j (n − 1) + αn = α
n
∑
i=1

1 − P [ f ]i

1 − P [ f ] = D j (n) − D j (n − 1) (8)

where, α is the punishment for a failure.

D j (n) = D j (n − 1) − PD j (n) (9)

PD j (n) =
n
∑
i=1

(n − i + 1) × α × (1 − P [ f ]i)
1 − P [ f ] (10)

PD j (n) − PD j (n − 1) = α
n
∑
i=1

1 − P [ f ]i

1 − P [ f ] (11)

PD j (n) =
n
∑
i=1

(n − i + 1) × α × (1 − P [ f ]i)
1 − P [ f ] (12)
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where, PDj(n) is a penalty function which determines how much we should lower the trust value of a node
that generates n consecutive failures.

The data trust D j (n) of the node j is as follows:

D j (n) = D j (0) −
n
∑
i=1

(n − i + 1) × α × (1 − P [ f ]i)
1 − P [ f ] (13)

3.1.2 Communication Trust
Communication trust is the most basic factor to verify the credibility of sensor nodes in trust evaluation,

which can be used to detect black hole attacks and selective forwarding attacks [24]. The communication
trust of a node reflects its packet forwarding behavior with its neighbors, and each node can calculate the
trust value of its neighbors independently.

Then, the communication trust Ci
j (t) of node j computed by node i can be obtained by the forwarding

trust value F i
j (t) and the recommendation trust value Ri

j (t).

Ci
j (t) = τ × F i

j (t) + (1 − τ) × Ri
j (t) (14)

where, Ci
j (t) ∈ [0, 1], and τ is the weight of forwarding trust.

τ = It (i , j)
It (i , j) +Mt (i , j) (15)

where, It (i , j) is the number of packets of node i forwarded by node j, and Mt (i , j) is the average of the
total number of packets forwarded by node j except the packets of node i.

Mt (i , j) =
∑x∈X j−i [Rx

i (t) × It (i , j)]
∣X j∣ − 1

(16)

where, X j is a collection of a set of nodes communicating with the node j.

3.1.3 Energy Consumption Trust
Sybil attack and other internal attacks usually start after the network has been running for a period of

time, and the intruder node usually needs to consume more energy than the normal node to launch the
attack, or drastically reduce the energy consumption to ensure the energy required for the attack. Therefore,
the energy consumption rate of the node under internal attack will be different from that of the normal node,
which is a kind of attack with energy consumption sensitive characteristics. This can be considered as a factor
in the direct trust evaluation of the cluster head to the node [25,26].
Calculation of Energy Consumption Trust of the Cluster Heads

The calculation process of the energy consumption trust of the cluster head by the base station is as
follows: by collecting the residual energy values of the cluster head connected to the base station in the
current cycle and the previous cycle, the energy consumption rate ΔE j of the cluster head j in this cycle is
calculated. And by comparing the average energy consumption rate in the same area to see whether meet
the average energy consumption rate equation, the results into the energy consumption of trust trust update
equation node energy consumption.

Suppose that the residual energy Eres_ j of any cluster head j connected to the base station in a certain
trust update cycle is as follows:

Eres_ j = Eini t − ESx_ j − ERx_ j (17)
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where, Eini t represents the initial energy of the cluster head, and the residual energy of the cluster head can
be calculated from the energy consumption ESx_ j of sending data and ERx_ j of receiving data.

The base station can calculate the energy consumption rate ΔE j_now at this time by using the residual
energy of the cluster head at the current time tnow and the residual energy of the last time t1:

ΔE j_now =
[Eres_ j (t1) − Eres_ j (tnow)]

Δt
(18)

Using this equation, the energy consumption rate of all nodes connected to the base station can
be calculated.

Let N ( j) denote the set of neighbor nodes of any cluster head j, then the number of neighbor nodes is
∣N ( j)∣, and the average energy consumption rate ΔE j_av g (tnow) of its neighbor nodes at the current time
tnow is calculated by the following Eq. (19):

ΔE j_av g (tnow) =

∣N( j)∣
∑
i=1

ΔE j

∣N ( j)∣ (19)

In practical applications, the cluster head and its neighbor nodes are adjacent in geographical location
and similar in sensing data and functional structure, so there is a similarity in their energy consumption rate.
Therefore, the deviation degree of energy consumption rate d j_E is defined to represent the deviation degree
of energy consumption rate of node j from the average energy consumption rate of its neighbor nodes. The
base station node checks whether the difference between the energy consumption rate Ej of the cluster head
and the average energy consumption rate of its neighbor nodes is greater than the deviation degree d j_E .

d j_E =
l ε f s Distch_ j

Δt
(20)

ΔE j_av g (tnow) − d j_E ≤ E j ≤ ΔE j_av g (tnow) + d j_E (21)

where, Distch_ j is the square of the difference between the intra-cluster radius and node j distance, and l is
the number of data packets sent.

When its energy consumption rate satisfies Eq. (21), it is recorded as the success of primary energy
consumption and is included in the success queue. The direct energy consumption trust of the base station
to the cluster head is calculated as follows [27]:

E j (Δt) =
⎡⎢⎢⎢⎣

S j (Δt)
S j (Δt) +U j (Δt) ⋅

1√
U j (Δt)

⎤⎥⎥⎥⎦
(22)

where, Δt represents unit time, S j (Δt) represents the number of times that the current trust cycle energy
consumption rate satisfies Eq. (21), U j (Δt) is the number of times that it does not satisfy, the value range of
ETj (Δt) is [0, 1], and 1/

√
U j (Δt) is the energy consumption trust inhibitory factor.

Through similar queue data structure to store the deviation of the number of node energy consumption
rate, the new data into at the same time remove the history data, by adjusting the length of queue can get
different period of the energy consumption of cluster heads to trust. In Eq. (22), 1/

√
U j (Δt) is the energy

consumption trust inhibitory factor, which can quickly reduce the energy consumption trust of cluster heads
that do not satisfy the trust equation in a short time to 0.
Calculation of Energy Consumption Trust of Normal Node
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Cluster heads to the next layer of cluster heads attached to it by normal node calculation process of trust
and the base station energy consumption calculation of cluster heads trust values of energy consumption
of the process is similar. The cluster head calculates the energy consumption rate ΔE of the node in the
current cycle by collecting the residual energy values of the cluster member nodes in the current cycle and
the previous cycle. The energy consumption trust ETk (Δt) of member k in the cluster was calculated by the
above Eqs. (17)–(22).

3.2 Model of Trust Value Prediction
In view of the complexity and variability of network environment, attack behavior and other factors, in

order to quickly reduce the trust of malicious nodes, it is necessary to improve the accuracy of trust evaluation
and the detection speed of malicious nodes [18]. Grey theory is good at nonlinear evaluation, especially
suitable for predicting uncertain systems with small samples and poor information [28]. Using grey theory
to evaluate the trust value of nodes has the advantages of less processing samples, less calculation, fuzzy
data, random dynamic changes, and high prediction accuracy. However, node reputation may be affected
by external factors, resulting in large random volatility, diversity of changing trends, complexity and other
issues. Therefore, the state transition matrix of Markov theory is used to improve the evaluation results of
grey model.

In this research, the grey Markov model is used to predict the data trust, communication trust and
energy consumption trust of WSNs nodes. The prediction process of node dynamic trust value based on
grey Markov model is shown in Fig. 2, and the following is the prediction process and specific algorithm of
data trust.

No

Yes

Select the original data 
sequence D0 for the data 

trust value

Generates the sequential 
cumulative sequence D1 of  D0

The rank ratio test is performed on the 
raw data and the rank ratio sequence 
�k is calculated for the raw data

The grey GM (1,1) model is established 
for the corresponding data series.

The appropriate constant b is selected to 
translate and transform the data set, so 

that the level ratio of the processed data 
sequence falls into the admissible 

coverage interval �.

The first-order differential equation of the 
data trust value model is established by 

accumulating the sequence D1 once, and 
the grey GM (1,1) model is further 

calculated.

The cumulative value is reduced to the 
predicted value after a reduction.

The error is corrected by the Markov state 
probability matrix.

The predicted value of the data trust value 
of the node is obtained.

Start

Finish

Decide whether �k is all within the 
admissible coverage interval �

Figure 2: Prediction process of node dynamic trust value based on grey Markov model
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The original data sequence of the data trust is selected, denoted as D0 = {d0,1 , d0,2 , . . . , d0,n}, and the
sequential accumulation sequence D1 = {d1,1 , d1,2 , . . . , d1,n} of D0 is generated.

d1,k =
k
∑
i=1

d0, i (k = 1 , 2 , . . . , n) (23)

where, n is the number of samples.
To test the level ratio of the original data, first calculate the level ratio sequence ρk of the original data:

ρk =
d0,k−1

d0,k
(24)

Then determine whether ρk is all within the admissible coverage interval δ = (e−2/(n+1), e2/(n+1)).
If so, the grey GM (1, 1) model can be established for the corresponding data sequence. Otherwise, the
appropriate constant b should be selected to translate and transform this group of data, so that the level ratio
of the processed data sequence Y0 = {y0,1 , y0,2 , . . . , y0,n} falls into the admissible coverage interval, and the
translation and transformation process is as follows:

y0,k = d0,k + b (25)

By accumulating sequence D1 once, the first-order differential equation of data trust GM (1, 1) model
is established as follows:

dD1

dt
+ αD1 = q (26)

where, α and q are development coefficient and grey action, respectively.
Let a = (α, q)T , using the least squares method, solve α and q as follows:

a = (α, q)T = (BT B)−1
BT D (27)

where, B =
⎡⎢⎢⎢⎢⎢⎣

−0.5d1,1 L 1
M O M

−0.5d1,n−1 L 1

⎤⎥⎥⎥⎥⎥⎦
and D =

⎡⎢⎢⎢⎢⎢⎣

d0,2
M

d0,n

⎤⎥⎥⎥⎥⎥⎦
.

According to Eqs. (26) and (27), the grey GM (1, 1)model is obtained as follows:

d̂1,k+1 = (d0,1 − q/α) e−αk + q/α (28)

The cumulative value d̂1,k+1 is subtracted once and restored to the predicted value d̂0,k+1:

d̂0,k+1 = d̂1,k+1 − d̂1,k (29)

Then, in view of the limitations of the grey model, the error of the Markov state probability matrix is
corrected [29,30].

The steps are as follows:
Step 1: According to the maximum value emax and minimum value emin in the trust residual sequence

Ê (t) = {e (t1) , e (t2) , . . . , e (tn−1)} of historical data, the sequence is divided into several state intervals.
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Step 2: The state transition probability is established. According to the state of e (tk) (k = 1, 2, . . . , n − 1),
the transition probability between e (tk) states is calculated through the statistics of the state change of e (tk)
at the adjacent time, and the state transition matrix is established.

Step 3: Calculate the predicted value, according to the state of e (tn−1) at the current time, combined
with the state transition probability matrix to judge the most likely state of residual e (tn) at n time, the
middle value of the state interval is taken as the value of e (tn), and the risk value at n time predicted by
GM (1, 1)model is corrected. The predicted value d̂′ (tn) of the node data trust of the Grey Markov model
at n time is obtained.

d̂′ (tn) = d̂ (tn) − e (tn) (30)

Through the above steps, the predicted value of the data trust of the node can be obtained. The
communication trust and energy consumption trust are also calculated through the above steps to obtain
the dynamic prediction value.

3.3 Data Noise Detection
DBSCAN algorithm is a density-based clustering method. The advantages of DBSCAN are that it can

find categories of arbitrary shapes, has strong noise immunity, and only needs to scan the dataset once to
complete clustering [12]. The basic idea of density-based clustering method is: for any data object in the same
cluster, the data object is taken as the center of the circle, a radius (Minpts) is given to limit a region, and the
region must contain at least the minimum number of data objects (Eps). In this research, DBSCAN algorithm
is used to detect the data noise point of the trust value of the node to realize the network-based intrusion
detection function. The intrusion detection process based on DBSCDN model is shown in Fig. 3.

The steps of intrusion detection using DBSCAN model in WSNs are as follows [31]:
Step 1: The data trust, communication trust and energy consumption trust of network nodes form a

three-dimensional sample space, calculate the Euclidean distance between sample point xi and other sample
points x j, and sort the distance set { j = 1, . . . , n ( j ≠ i) ∣di j} from large to small to obtain a new distance set
{1 ≤ m ≤ (n − 1) ∣dm}.

Step 2: Use the new distance set {1 ≤ m ≤ (n − 1) ∣dm} to fit the curve based on the least square method
to generate a cubic equation, calculate the inflection point radius ri of the sample point xi and the number of
sample points ni by taking the second derivative of the cubic equation, and then calculate the corresponding
density ρ of the sample point.

Step 3: Loop Step 1–Step 2, traverse each sample point of the data set, calculate the corresponding density
ρ of each sample point, and form the density set densitydata.

Step 4: The density ρ of each sample point in densitydata set was arranged in order of size, and a
cubic equation was generated based on the least square curve fitting method. The bump D of the curve was
calculated by taking the first derivative of the cubic equation.

Step 5: Using convex point D corresponding radius and the sample points as Eps and MinPts parameters
in DBSCAN clustering.

Step 6: Check the unchecked sample points in the data set xi , and if they have not been processed, check
their neighborhood. If the number of objects contained in the neighborhood is not less than the minimum
number of included points MinPts, a new cluster Ci is established, and all the sample points xi are assigned
to the candidate set N. Otherwise, xi is marked as a noise point.
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Step 7: For all the unprocessed sample points xi in the candidate set N, check the neighborhood of
sample point xi . If it contains at least MinPts sample points, add these sample points xi to the candidate
set N.

Step 8: If sample point xi is not assigned to any cluster, then assign sample point xi to Ci .
Step 9: Repeat Step 7 and Step 8, continuing to check unprocessed objects in the candidate set N until

the candidate set N is an empty set.
Step 10: Repeat Step 6 to Step 9 until all samples are assigned to a cluster or labeled as noise, thus

completing the detection of malicious nodes in the network.

Figure 3: Intrusion detection process based on DBSCDN model
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3.4 Trust Recovery Mechanism
During the normal operation of sensor nodes, temporary failures may occur, leading to misclassification

as malicious nodes and reduced credibility. For example, network congestion can cause repeated transmis-
sion failures of node data packets. To address this issue, a trust recovery mechanism is employed to restore
the trust of temporarily faulty nodes, enhancing the performance of the intrusion detection mechanism and
reducing False Alarm Rate [19,32].

When a wireless sensor node is initially flagged as a suspected malicious node, it is not immediately
identified as malicious or isolated from the network. Instead, the TIDM-DTE model uses a trust recovery
mechanism to reintegrate the node into the normal node set for further evaluation. A node is only finally
classified as malicious and isolated from the network if it is repeatedly identified as a suspected malicious
node three consecutive times.

The TIDM-DTE model achieves a lower False Alarm Rate and higher Detection Rate by having trusted
sensor nodes review suspicious nodes and reinstate normal nodes through the recovery mechanism.

3.5 Three-Level Intrusion Detection Model Based on Trust Evaluation
Because only the base station is trustworthy, and the base station resources are not limited. Therefore,

the intrusion detection of sensor nodes is carried out at the base station. The anomaly detection algorithm
model based on TIDM-DTE model is shown in Fig. 4.

Figure 4: TIDM-DTE intrusion detection model
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The overall steps of intrusion detection are as follows:
Step 1: The member node records its own specific attribute value and submits it to the cluster head node

to enter step 2.
Step 2: Each cluster head summarizes the attribute values of cluster head nodes and submits them to the

base station to enter step 3.
Step 3: The base station determines whether the number of surviving nodes is less than the threshold:

(1) If it is not less than the threshold, enter step 4; (2) If it is less than the threshold, the network operation
is terminated.

Step 4: The base station calculates the communication trust, data trust, and energy consumption trust
of each node and enters step 5.

Step 5: The base station uses the Grey Markov model to calculate the predicted values of communication
trust, data trust, and energy consumption trust, and enter step 6.

Step 6: DBSCAN algorithm is used to detect the data noise of the trust of the node and enter step 7.
Step 7: To determine whether the node is a malicious node: (1) If a node is judged as safty, enter step 1;

(2) If the node is judged as malicious, enter step 8.
Step 8: Through the trust recovery mechanism, the characteristics of the suspected malicious nodes were

further analyzed: (1) If a node is judged as safty, enter step 1; (2) If a malicious node is judged, the base station
broadcasts the number of the malicious node throughout the network before the start of the new round of
setup phase, and isolates the malicious node from the network.

The network stops operating when the number of surviving nodes is not enough to maintain the normal
operation of the network.

4 Experiment and Results
Experiment using Python3.8 for this TIDM-DTE model and reference [16] proposed FIBTM model

(trust attack fast identification based on trust model), proposed by reference [18] FSEPM model (dynamic
trust evaluation model integrating fuzzy comprehensive evaluation mechanism and similarity measure
theory) for simulation comparison.

In the simulation experiment of the TIDM-DTE model, the networkx library is used to construct the
topology of the wireless sensor network, simulate the communication connection and data transmission in
the network, and the topological characteristics such as the degree and the shortest path of nodes can be
conveniently calculated. The core computing logic is implemented based on NumPy. Communication trust is
calculated through the interaction history of nodes. Data trust is based on the statistics of continuous packet
loss rate. Energy consumption trust is evaluated according to the energy consumption pattern of nodes. The
dynamic trust prediction based on the grey Markov model is implemented by combining the NumPy and
SciPy libraries. The DBSCAN algorithm of the scikit-learn library is invoked to achieve the identification
of malicious nodes. These models have constructed a complete three-level detection architecture through
the vectorization calculation of NumPy, the optimization solution of SciPy, and the clustering algorithm of
scikit-learn, combined with the networkx library, achieving efficient detection of various attack types.

100 nodes are randomly deployed in a 100 m × 100 m area, and the base station is set in the middle
position of the edge, and malicious nodes are proportionally designed in the network to randomly launch
selective attacks. There are many different types of attacks in WSNs. In this paper, selective forwarding attack,
Sybil attack, on-off attack and black hole attack are selected as the simulation objects to verify and analyze
the performance of three intrusion detection models: TIDM-DTE, FIBTM and FSEPM. The simulation
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parameters are set in Table 1 [3,16–19]. Fig. 5 shows the initial network topology of the wireless sensor
network. In Fig. 5, the blue dots represent normal nodes, the red dots represent malicious nodes, and the
green square dots represent base stations.

Table 1: Setting of simulation parameters

Name of parameter Value of parameter
Area 100 m × 100 m

Number of nodes K 100
Initial energy of nodes Eini t 1 J

Initial trust value 0.5
Data fusion rate 0.5

The energy consumption of the transceiver data circuit Eel ec 50 nJ/bit
Power amplification parameters in multipath attenuation propagation εam p 0.001 J/(bit ⋅m4)

Free space propagation medium power amplification parameters ε f s 10 pJ/(bit ⋅m2)
Energy consumption for fusing 1 bit of data E f u 5 nJ/bit

Free space maximum transmission distance dmax 50 m

Note: m represents the unit meter, J represents the unit joule, and bit represents 1 bit of data.

Figure 5: Initial network topology of the wireless sensor network

4.1 Parameters of Performance in Experiment
The Detection Rate refers to the proportion of intrusion detection system (IDS) that can correctly

identify and report the actual intrusion attacks. It reflects the sensitivity and ability of the system to identify
intrusions.

Detection rate = Numberd ecec ted_correc t

Numberintrusion_al l
(31)

where, Numberd ecec ted_correc t is the number of correctly detected intrusion attacks and Numberintrusion_al l
is the total number of actual intrusion attacks.
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The False Alarm Rate refers to the proportion of normal network activities or harmless events that the
intrusion detection system incorrectly identifies as intrusion attacks, and it reflects the False Alarm Rate of
the system.

False al arm rate =
Numberd ecec ted_ f a l se

Numberdet ec ted_al l
(32)

where, Numberd ecec ted_ f a l se is the number of false alarms and Numberdet ec ted_al l is the total number of
intrusion attacks marked by the system.

The Detection Accuracy Rate refers to the proportion of records that are actually intrusion attacks
among the records marked as intrusion attacks by the system. It reflects the accuracy of the system’s detection.

Accurac y rate = Numberd ecec ted_correc t

Numberdet ec ted_al l
(33)

where, Numberaccurac y is the number of intrusion attacks correctly detected, and Numberdet ec ted_al l is the
total number of intrusion attacks marked by the system.

4.2 Detection Speed of Network Intrusion Detection Model
The detection speed of network intrusion detection models is closely tied to minimizing attacker-

induced network damage. Fig. 6 illustrates the variation in average Detection Rate of malicious nodes across
iteration rounds for TIDM-DTE, FIBTM, and FSEPM. Compared with FIBTM and FSEPM, the TIDM-
DTE model employs a data trust model based on continuous packet loss rate observation and dynamic trust
prediction via the Grey Markov model. This enables TIDM-DTE to identify malicious nodes more rapidly
at the onset of intrusion detection.

Figure 6: Comparison of detection speed of three different intrusion detection models

The simulation results in Fig. 6 demonstrate that TIDM-DTE’s Detection Rate rises rapidly and
stabilizes at a superior level, validating its capability to enhance the early-stage detection performance of
network intrusion detection models.
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4.3 Detection Rate, False Alarm Rate and Detection Accuracy Rate of Network Intrusion Detection Model
In network intrusion detection, Detection Rate, False Alarm Rate, and Detection Accuracy Rate are

interrelated yet distinct performance metrics. A high Detection Rate aids in timely intrusion detection but
may be accompanied by a high False Alarm Rate. A low False Alarm Rate reduces false positives but may
compromise Detection Rate to some extent. By contrast, a high Detection Accuracy Rate aims to maximize
the inclusion of actual intrusions among records flagged as intrusions. This study evaluates the performance
of three intrusion detection models—TIDM-DTE, FIBTM, and FSEPM—by analyzing Detection Rate,
False Alarm Rate, and Detection Accuracy Rate under varying proportions of malicious nodes, as depicted
in Fig. 7.

Figure 7: Performance comparison of intrusion detection models. (a) detection rate comparison under varying
proportions of malicious nodes. (b) false alarm rate comparison under varying proportions of malicious nodes. (c)
detection accuracy comparison under varying proportions of malicious nodes

Fig. 7 shows that as the proportion of malicious nodes increases, the Detection Rate and Detection
Accuracy Rate of all three methods decline to some degree, while their False Alarm Rate increase. FIBTM
and FSEPM rely on fused node trust values for judgment, but the inherent difficulty in increasing trust values
(combined with their tendency to decrease) hinders the speed of node attribute determination. In contrast,
the TIDM-DTE model uses data noise classification technology to identify malicious nodes, achieving
superior detection performance. Notably, FIBTM lacks dynamic trust value prediction and perception,
leading to significantly poorer performance compared to TIDM-DTE and FSEPM. These results demonstrate
TIDM-DTE’s robust attack detection capability.

4.4 Detection Rate of Different Types of Attacks
Different types of attacks induce distinct changes in sensor node parameters within WSNs. A selective

forwarding attacker deliberately drops data packets, reducing inter-node data transmission reliability and
increasing packet loss rates. Nodes must retransmit lost packets, thereby escalating network communica-
tion delays and energy consumption. A Sybil attacker forges multiple identities, confusing network node
authentication and causing excessive consumption of resources like bandwidth and power. An on-off attacker
disrupts network connectivity by manipulating node switch states, halting data transmission and degrading
overall network performance. A black hole attacker masquerades as a high-energy or high-trust node to
attract and intercept data, leading to data loss and network resource waste. Fig. 8 illustrates the Detection
Rate comparison of three intrusion detection models against the four network attack types described above.
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Figure 8: Detection rate comparison of three intrusion detection models for different attack types

As shown in Fig. 8, the TIDM-DTE model demonstrates significantly higher detection rates than
FIBTM and FSEPM across four typical attacks: selective forwarding, Sybil, on-off, and black hole attacks.
The communication trust mechanism in TIDM-DTE effectively detects black hole and selective forwarding
attacks. Attacks such as selective forwarding and Sybil cause continuous packet loss, which the TIDM-DTE
model’s data trust calculation monitors through continuous packet loss observation, significantly enhancing
detection effectiveness for these attacks. Moreover, selective forwarding, Sybil, and black hole attacks notably
impact wireless sensor node energy consumption, enabling TIDM-DTE to detect them by tracking node
energy changes. In contrast, FIBTM and FSEPM rely solely on Beta distribution for node trust calculation,
resulting in insufficiently comprehensive monitoring and evaluation—and consequently lower intrusion
detection performance. Therefore, TIDM-DTE can rapidly and accurately identify various malicious nodes,
isolate them across the network, minimize network losses, and ensure reliable data transmission.

4.5 Effect of Trust Recovery Mechanism
The False Alarm Rate serves as a critical performance metric in network intrusion detection sys-

tems. Excessively elevated False Alarm Rate generate excessive non-critical alerts, compromising both the
reliability and practical utility of detection outcomes. This study proposes a trust recovery mechanism to
mitigate False Alarm Rate in intrusion detection processes. Through 20 experimental trials, we evaluated
system performance using three key metrics: average Detection Rate, average False Alarm Rate, and average
Detection Accuracy Rate. Comparative analysis between the detection results from the trust recovery
mechanism vs. those from a baseline system demonstrated the effectiveness of our approach. Fig. 9 illustrates
these findings, with simulation parameters configured at a 25% malicious node density.
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Figure 9: Impact of trust recovery mechanism on network intrusion detection model performance

The experimental results in Fig. 9 show that deploying the trust recovery mechanism achieves higher
detection accuracy and lower False Alarm Rate. This indicates the mechanism can reinstate communication
functions for normal nodes misclassified as malicious. The reduction in False Alarm Rate and improvement
in overall detection accuracy validate the trust recovery mechanism’s feasibility.

5 Conclusions
By innovatively introducing a dynamic trust evaluation mechanism, this study analyzes the impact

of different attacks on node trust and constructs trust models for data, communication, and energy
consumption, fully considering node status. The grey Markov model dynamically predicts node trust values
to sensitively reflect trust changes under attacks. The TIDM-DTE model, leveraging DBSCAN technology,
enhances intrusion detection against malicious attacks—particularly insider threats in WSNs. Experimental
results confirm TIDM-DTE’s effectiveness in improving detection accuracy, reducing False Alarm Rate, and
optimizing resource utilization. This research contributes a novel theoretical framework to WSNs security
and provides robust practical support for real-world security implementations.

TIDM-DTE’s reliance on multi-dimensional trust models and technologies like the grey Markov model
and DBSCAN introduces computational complexity, especially in large-scale networks where node growth
amplifies calculation demands. Multi-model establishment and complex detection techniques may also
increase energy consumption from data processing. While TIDM-DTE demonstrates versatility across attack
types and theoretical scalability to new threats, expanding WSNs scale and topological complexity pose
challenges—such as surging trust model computations and degraded detection accuracy/timeliness—that
may limit scalability.

Facing evolving security challenges, future work will focus on:

• Integrating machine learning (e.g., deep learning) to enhance complex attack pattern recognition.
• Exploring privacy-protection mechanisms to safeguard node data during intrusion detection.
• Optimizing the model for large-scale, dynamic WSNs to balance generalization with minimized

computational complexity.
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