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ABSTRACT: This study proposes a system for biometric access control utilising the improved Cultural Chicken Swarm
Optimization (CCSO) technique. This approach mitigates the limitations of conventional Chicken Swarm Optimization
(CSO), especially in dealing with larger dimensions due to diversity loss during solution space exploration. Our
experimentation involved 600 sample images encompassing facial, iris, and fingerprint data, collected from 200 students
at Ladoke Akintola University of Technology (LAUTECH), Ogbomoso. The results demonstrate the remarkable
effectiveness of CCSO, yielding accuracy rates of 90.42%, 91.67%, and 91.25% within 54.77, 27.35, and 113.92 s for
facial, fingerprint, and iris biometrics, respectively. These outcomes significantly outperform those achieved by the
conventional CSO technique, which produced accuracy rates of 82.92%, 86.25%, and 84.58% at 92.57, 63.96, and 163.94 s
for the same biometric modalities. The study’s findings reveal that CCSO, through its integration of Cultural Algorithm
(CA) Operators into CSO, not only enhances algorithm performance, exhibiting computational efficiency and superior
accuracy, but also carries broader implications beyond biometric systems. This innovation offers practical benefits in
terms of security enhancement, operational efficiency, and adaptability across diverse user populations, shaping more
effective and resource-efficient access control systems with real-world applicability.

KEYWORDS: Access control; biometric technology; chicken swarm optimization; cultural algorithm; pattern
recognition

1 Introduction
The administration of an access point, such as a door, turnstile, elevator, etc., to ensure that only

authorized people are permitted admission, is referred to as access control [1]. Doors are the most typical
access control applications, even though access control systems can be utilized for nearly any access point that
incorporates an electronic lock mechanism. Access control systems can be based on what the user has (object-
based), e.g., Keys, Fobs and ID Cards, what the user knows (information-based), e.g., Password, Pass-phrase,
and PIN number, or who the user is (biometric-based): palm vein, fingerprint, iris, and face [2]. Biometric
access control is among the most extensively utilized security systems available today due to the unique way
it combines simplicity and security such as biometric authentication and facial animation [3]. Identity fraud
is now considered among the most prevalent criminal acts since it is associated with dangerous security risks
and a high cost. Given the imperative for exceptionally dependable security procedures in critical systems,
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it has become necessary to implement rigorous measures. Several strategies, including the use of biometric
techniques, have been used to prevent these problems [4,5].

The fingerprint trait is modern, safe, dependable, extremely accurate, and economical. Its matching
procedure is quick and uses little memory space [6]. It may, however, cause problems due to absence, wounds,
scars, dust, filth, twisting, and physical interaction with the system. It may also be applicable for driver
identification, law enforcement, forensics, license, and access control [7]. Face recognition is a desirable
biometric identifier due to its collectability and social acceptability. Facial recognition technology is well
suited for surveillance applications since the face image may be taken from a distance without the user’s
participation [8]. Face biometrics need no physical contact, and template storage is simple, convenient, and
has fewer complex statistics. Face biometric identification has a fast processing speed [9]. Nevertheless,
facial attributes can change with time, age, and random events. The accuracy of a face recognition system
can also be affected by lighting. Face recognition is also useful for access control verification, criminal
identification, and surveillance [10]. Iris biometrics are more protective and have a higher degree of diversity,
scalability, and accuracy with a small sample size. The processing speed is fast but expensive, and it requires no
physical contact but user cooperation. The disease can also affect accuracy. Its utility extends to identification
applications, access control, and national security [11].

Several techniques have been developed to facilitate the efficient recognition of biometric modalities.
Intra-class variability, inter-class similarity, noisy input, mistake rate, high processing cost, and complexity
remain obstacles for biometric recognition systems. As a result of their high dimensions, biometric image
pixels are highly correlated. This results in redundant information and a computational burden for existing
approaches in terms of processing speed and memory use [12,13]. These challenges can be solved with efficient
optimization techniques [14].

The adoption of systematic methodologies, strategies, disciplines, and tactics to enhance a particular
process within the confines of a project or initiative is known as an optimization technique in machine
learning based work. It improves accuracy, reduces risk, minimizes mistakes, enhances effectiveness, and
many more.

Several optimization techniques have been proposed to address pattern recognition challenges, as
exemplified by the research conducted by [15,16] each exhibiting unique strengths and limitations. Notably,
Chicken Swarm Optimization (CSO) is a technique inspired by the behaviors of the chicken swarm, where
the intelligence of the chicken swarm is effectively utilized to obtain the optimal solution. The CSO replicates
the hierarchical structure and food-seeking behavior observed in a swarm of chickens. Although the CSO
method has performed well in tackling several issues, it also has several intrinsic flaws, including premature
convergence and falling into local extrema. This study seeks to enhance the efficacy of CSO using cultural
algorithm operators for biometric access control. The novel aspects of the Improved Cultural Chicken Swarm
Optimization (CCSO) lie in its innovative integration of cultural algorithm operators with the standard
CSO framework. This creates a hybrid approach that overcomes key limitations of CSO, such as premature
convergence and suboptimal trapping in local optima [17]. In contrast to traditional CSO, which relies solely
on swarm-based heuristics, CCSO integrates cultural components: belief space adjustments, and influence
functions, to dynamically guide the optimization process.

These cultural operators enhance both the exploration phase, by maintaining population diversity,
and the exploitation phase, by refining solution convergence. This dual enhancement enables CCSO to
balance the trade-off between global and local search effectively. This will significantly enable the CCSO to
outperform the basic CSO, Particle Swarm Optimization (PSO), and similar algorithms. The CCSO’s ability
to adaptively optimize multi-dimensional feature spaces in the biometric domain ensures higher accuracy
and robustness in multimodal biometric systems. This is particularly critical for addressing challenges like
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complex data distributions and high-dimensional feature selection, where the traditional algorithms often
fall short [18]. Therefore, adapting the cultural evolution strategies, the application of CCSO is targeted to
improve the convergence rate and ensure more reliable performance in real-world biometric applications,
such as access control, where security and precision are paramount. Existing biometric access control systems
struggle with high-dimensional data processing, inconsistent feature selection, and limited adaptability to
diverse biometric traits. CCSO addresses these limitations through its cultural operators, enabling robust
handling of complex data distributions and dynamic optimization of feature spaces, crucial for maintaining
security standards in real-world applications.

The proposed technique has the following contributions:

(i) The study applied the cultural-based CSO technique based on cultural algorithm operators for
biometric access control.

(ii) The significance of the cultural-based CSO technique is highlighted for biometric access control using
face, fingerprint, and iris traits.

(iii) The study validates the cultural-based CSO against the CSO technique for biometric access control
using face, fingerprint, and iris traits.

(iv) The performance evaluation of the proposed techniques was carried out using accuracy, precision,
False Acceptance Rate (FAR), and False Rejection Rate (FRR), and the techniques were compared
using state-of-the-art existing techniques.

The structure of this research is as follows: Section 2 provides a review of related work. Section 3
showcases the detailed research methodology utilized. Section 4 presents the results and ensuing discussion,
while Section 5 outlines conclusions and future research avenues to achieve efficient biometric access control.

2 Literature Review
Previous studies have proven that it is possible to authenticate a person using several types of biometric

modalities. It has been noted that biometrics’ potential use in access control remains a hot topic of study.
Rizk et al. [19] applied neural network classification for iris recognition using both PSO and gravitational
search algorithm (GSA). Canny Edge Detection and Circular Hough Transforms identify iris borders. The
Daugman rubber sheet model plays a crucial role in normalizing the extracted IRIS area, while the Haar
wavelet transform is utilized to extract features from the normalized iris area. Principal component analysis
then reduces the feature matrix, and to train a forward neural network with optimal weights and biases, PSO
and GSA were employed. Remarkably, GSA has been found to outperform PSO for training the feed-forward
neural network in an iris identification system. In another study, Adetunji et al. [12] explored the reduction
of computational cost in face recognition applications through the use of a hybrid cultural algorithm.
Specifically, the Cultural Algorithm optimizes SVM parameters to reduce computation. Testing shows that
the proposed method boosts SVM efficiency and cuts compute and memory usage. Moreover, Adedeji
et al. [15] performed a comparative analysis of feature selection techniques for fingerprint recognition using
Artificial Bee Colony (ABC) and teaching learning-based optimization (TLBO). Their results demonstrate
that TLBO outperforms the ABC technique as a feature selection technique in fingerprint recognition
and leads to more discriminant features in fingerprint identification. Consequently, the study found that
TLBO feature selection is better than ABC and would generate a more reliable and accurate fingerprint
authentication system.

Furthermore, optimization techniques find applicability in a wide range of fields, spanning pattern
recognition, machine learning, image analysis, and biometrics. Notably, Oguntoye et al. [16] employed
an Optimized Convolution Neural Network (OCNN) to diagnose COVID-19 from chest X-ray images,
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optimizing the network with PSO. This method eliminates iterative weight adjustments, markedly boosting
computational speed and achieving an impressive accuracy rate of 99.20%. Recent advancements in feature
selection have introduced new optimization methodologies aimed at dealing with the challenges associated
with high-dimensional biometric datasets. Grey Wolf Optimizer, Whale Optimization Algorithm, Particle
Swarm Optimization, Gravitational Search Algorithm [20], Firefly Algorithm, and Levy flight-based Chicken
Swarm Optimization techniques [21] have been applied with the aim to improve classification accuracy,
reduce dimensionality, and to avoid the problem of local optimum.

For this study, the proposed CCSO approach will be evaluated to examine its unique contributions to
feature selection. Chicken Swarm Optimization (CSO) and its enhanced variants are becoming the state-of-
the-art literature on feature selection due to their robust performance in dimensionality reduction as well
as classification accuracy in various domains. Ahmed et al. [17] introduced a Chaotic CSO (CCSO), which
uses chaotic maps to combat premature convergence and significantly improves classification accuracy. A
study by Hafez et al. [22] showed that CSO was useful for choosing features at power plants. They found
that swarm intelligence was better at choosing features than the more traditional PSO and GA methods.
More recently, Wang et al. [23] combined Levy flight and inertial weight strategies with CSO to globally
search and avoid local optima. In detail, Abolarinwa et al. [18] extended CSO for face recognition, and Verma
et al. [21] introduced a two-stage hybrid scheme of multi-Philtre feature selection and Levy’s flight-based
CSO with unsurpassed feature reduction and forecasting precision. Self-adaptive CSO was applied to mango
grading in a hybrid model by Kumari et al. [24] and the algorithm showed its adaptiveness and precision.
However, limitations such as local optima challenges are shown in these studies as well as CSO’s adaptability
across tasks. The proposed Improved CCSO further advances this line of research by incorporating cultural
algorithm operators, enabling enhanced exploration and exploitation. The CCSO is proposed to achieve
superior classification performance and feature reduction compared to other optimization techniques like
PSO, GA, and variants of CSO. This is to reinforce its relevance and efficacy in multimodal biometric systems.

It is evident from previous studies that biometric authentication has been a focal point of research
in recent years. These studies have collectively demonstrated the continuous evolution and innovation in
optimization techniques to enhance various biometric modalities, emphasizing their critical role in improv-
ing biometric system performance, including accuracy, computational efficiency, and feature selection.
Moreover, they signify the broader applicability of optimization techniques in diverse fields, aligning with
the exploration of an improved CSO technique in this study. The proposed CCSO technique, as discussed
earlier, builds upon optimization principles, balancing exploration and exploitation, which can significantly
contribute to the advancement of biometric access control systems.

3 Materials and Methods
The steps involved in the implementation of improved chicken swarm optimization techniques based

on Cultural algorithm operators for biometric access control include the following:

1. Face, iris, and fingerprint datasets acquisition.
2. Preprocessing of the face, iris, and fingerprint datasets.
3. Feature Extraction of each dataset using the Haar Wavelet-Based Technique.
4. Feature selection using the Cultural Chicken Swarm Optimization technique.
5. Generating matching score from optimized feature using Mahalanobis distance.
6. Identification of the subject as a genuine user or impostor.

The scheme of the proposed biometric recognition system is presented in Fig. 1.
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Figure 1: Block diagram of CSO techniques based on biometric access control

3.1 Acquisition of Biometric Traits
A total of 240 students at LAUTECH had their facial features, irises, and fingerprints scanned using a

digital camera, an iris camera, and a fingerprint sensor. The subjects’ fingerprints, irises, and facial images
were stored. Three images were captured of each person’s face from the front, with little variation in
expression. Only 200 people were captured adequately. Therefore, 600 images of faces, irises, and fingerprints
were used to train and evaluate the technique. Some of the acquired images are depicted in Fig. 2. Training
and testing employed 360 and 240 trait images, respectively. Each component in the scheme is explained
in detail in the sub-sections. Ethical approval was obtained from LAUTECH Ethics Review Committee in a
letter dated 23 March 2023 for the collection and analysis of face, fingerprint, and iris biometrics. All data
were anonymized, securely stored, and collected with informed consent, ensuring participant privacy and
compliance with ethical standards.

Figure 2: Acquired images
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3.2 Pre-Processing of Biometric Traits
Pre-processing encompasses acts including image brightness adjustment, scaling, filtering, cropping,

segmentation, normalization, and additional operations that facilitate image enhancement. This section
delineates the approach for pre-processing face, iris, and fingerprint datasets. The face dataset was pre-
processed by image cropping and normalization. The normalization of the facial photos was executed by
histogram equalization to enhance contrast by expanding the intensity range. This improved the luminance
in the grayscale photos enabling a more distinct observation of the face characteristics in a vision guide work.
By employing a sequence of preprocessing techniques, such as normalization, segmentation, orientation
estimation, ridge filtering, binarization, and thinning, the fingerprint images were enhanced to improve
their quality. The normalization process involved specifying a pre-determined mean and variance for the
input fingerprint image. The Histogram equalization (HE) technique mapped the grey levels based on the
probability distribution of the input grey levels. Histogram equalization flattened and stretched the dynamic
range of the image’s histogram. As a consequence of this, the image’s contrast is improved, leading to an
enhanced thumbprint image that can be utilized for feature extraction.

Segmentation, normalization, and enhancement were the operations performed on the iris images.
Segmentation was conducted to eliminate extraneous information, specifically the pupil segment and the
area beyond the iris. It assessed the iris perimeter. For boundary estimation, the iris images were initially
processed using the Canny algorithm, which produces the edge map of the iris image in a similar manner
to Keyless entry authentication system. Using Hough transforms, the detected edge map was leveraged to
precisely locate the iris and pupil boundaries. Extracting the edge information of the eyelids was carried
out using the horizontal segmentation operator and image binarization. The parabolic curves were used to
model the eyelid boundaries based on the identified edge points. Daugman’s rubber sheet model was then
utilized to normalize the polar image of the iris, mapping it into the Cartesian frame as a rectangular strip.
This homogenous model remaps each point within the iris region to a pair of polar coordinates (r, θ), where
r ranges from 0 to 1 and θ ranges from 0 to 2π. The remapping process from (x, y) Cartesian coordinates to
normalized polar coordinates is defined by Eqs. (1)–(3).

I (x (r, θ) , y (r, θ)) → I (r, θ) (1)

X (r, θ) = (1 − r) xi (θ) + r ⋅ x0 + cos θ . (ri + r ⋅ (r0 − ri)) (2)

Y (r, θ) = (1 − r) yi (θ) + r ⋅ y0 + sin θ ⋅ (ri + r ⋅ (r0 − ri)) (3)

where I (x , y) represents iris region image, (x , y) denotes the original Cartesian coordinates, (r, θ) rep-
resents the transformed polar coordinates obtained through normalization along the θ direction from the
original Cartesian coordinates (x , y).

By mapping each point within the iris region to a pair of polar coordinates (r, θ) with the use of
Daugman’s rubber sheet model, inconsistencies in pupil dilation and size are taken into account to generate a
normalized representation that has constant dimensions. When this is done, finally, histogram equalization
will be used for image enhancement. Fig. 3 depicts the pre-processed images.
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Figure 3: The pre-processed images

3.3 Feature Extraction Using Haar Wavelet-Based Technique
The Haar wavelet-based technique was applied to pre-processed face, iris, and fingerprint images to

extract its features. The wavelet transform is a decomposition technique that produces many resolutions of
an image, from the original’s high-resolution version to lower-resolution approximations. In Fig. 4, the result
of the multilevel 2-D wavelet decomposition can be observed, which is comprised of four sub-images. The
detailed images for the horizontal, vertical, and diagonal orientations are represented by LH, HL, and HH,
respectively, while the approximation image is represented by LL. Two-level decomposition was performed
to reduce the image matrix size. The new image size on applying the technique was reduced to 1/4th the
original. The maximum information of the image is contained in the approximation coefficient (LL), which
is extracted until the final round of decomposition, following the same process as that used for the original
image. The output of the Haar wavelet-based technique was converted to a feature vector to become input
into the classification modules for all biometric systems considered in this study.

Figure 4: Haar wavelet decomposition

3.4 Cultural Chicken Swarm Optimization for Feature Selection
The Chicken Swarm Optimization technique is one of the most efficient intelligence optimization

algorithms, as it solves complex optimization problems effectively. However, CSO typically suffers from poor
convergence and accuracy when applied to problems with large dimensions due to the loss of diversity during
solution space exploration. Introducing the cultural algorithm strategy involving the belief space, acceptance
function, and influence function into the problem search space iteratively can increase the convergence and
precision of the algorithm.

The cultural algorithm, through its operators, possesses a powerful global optimization ability, making
it well-suited for high-dimensional data applications [25]. Integrating it with Chicken Swarm Optimization
enhances the combined technique’s exploration and exploitation capabilities [26]. This ensures robust feature
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selection. This synergy effectively addresses challenges in multimodal biometric systems, such as diverse
feature distributions and dimensionality, optimizing feature selection, and achieving superior classification
accuracy for improved system performance. The integration of cultural algorithm operators with CSO
enhances its optimization framework by utilizing its hierarchical structure. The belief space (Bs) is initialized
as an empty set and dynamically updated using knowledge of optimal solutions derived from the hierarchical
behaviors of roosters, hens, and chicks. The acceptance function evaluates and selects superior solutions
influenced by roosters’ leadership. The influence function guides hens and chicks to explore and exploit
the search space more effectively. This framework ensures diversity preservation while optimizing feature
selection for high-dimensional multimodal biometric systems, taking full advantage of CSO’s hierarchical
structure. The CCSO technique is described in detail.

Step 1: Initialization of the chicken swarm xi and the related parameter (N , Ir, G , RN , HN , CN , MN).
Where N = total number of chickens, Ir = the maximum iterations, G = frequency of change of hierarchical
order in the swarm, RN = numbers of roosters, HN = numbers of hens, CN = numbers of chicks, and MN =
numbers of mothers, respectively.

Step 2: Creation of initial belief space: Belief space (Bs) was initially created as an empty set.
Step 3: Evaluate the fitness values of the chicken swarm xi and initialize the personal best position pbest

and the global best position gbest . Set t = 1.
Step 4: If t mod G is 1, sort the fitness values of the individuals within the chicken swarm, and establish

the hierarchical structure of the chicken swarm; categorize the entire chicken swarm into multiple subgroups
and clarify the link between the hens and the chicks.

Step 5: Update the positions of roosters, hens, and chicks and recalculate the fitness values, respectively:
roosters, hens, and chicks update their positions according to (4)–(6), respectively.

xi , j (t + 1) = xi , j (t) ∗ (1 + Randn (0, σ 2)) (4)

σ 2 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 i f fi < fk

exp( fk − fi

∣ fi ∣ + ∈
) otherwise , k ≠ i

(5)

where xi , j (t + 1) and xi , j (t) denote the new and old position of ith rooster in jth dimension, respectively;
t refers to the iteration number; Randn is the normal distribution with zero mean and σ 2 SD, fi and fk are
the fitness value of rooster i and rooster k.

xi , j (t + 1) = xi , j (t) + s1 ∗ Rand1 ∗ (xr1, j (t) − xi , j (t)) + s2 ∗ Rand2 ∗ (xr2, j (t) − xi , j (t))

S1 = exp( fi − fr1

∣ fi ∣ + ∈
) S2 = exp ( fr2 − fi)

(6)

where xi , j (t + 1) and xi , j (t) denote the new and old position of ith hen in jth dimension, respectively; r1
should be the rooster of the same group, and r2 will be the randomly chosen rooster or hen from the entire
chicken swarm such that r1 ≠ r2; Rand1 and Rand2 will be a random number in the range [0, 1].

xi , j (t + 1) = xi , j (t) + FL ∗ (xm , j (t) − xi , j (t)) (7)

xi , j (t + 1) and xi , j (t) denote the new and old position of ith chick in jth dimension, respectively;
xm , j (t) is the position of the mother; FL refers to the random number in the range of [0, 2].

Step 6: Apply the acceptance function and adjust the belief space Bs .
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Eq. (8) determines the number of chickens that are used to adjust the belief space while Eq. (9)
determines the interval of the belief space. The current best chicken was used to shape the belief space.

Nacce pted = n% × N + n%
t
× N (8)

where n% is a parameter that is set by the user, N is the number of chickens, and t represents the th generation.

NBs = [lw , up] = {xi ∣ lw ≤ p ≤ up , x ∈ 3i} (9)

where lw is the lower bound on belief space (Bs) and up is the upper bound on belief space (Bs). lw and up
are determined using Eq. (10):

lw =
⎧⎪⎪⎨⎪⎪⎩

xi , if xi ≤ lw

lw , otherwise
up =

⎧⎪⎪⎨⎪⎪⎩

xi , if xi ≥ up

up , otherwise
(10)

Step 7: Adjust belief space using Eqs. (10) and (11).
Step 8: Apply the influence function to generate new chickens.
Based on the updated best chicken (xi), lw and up adjust the position of the chicken using an influence

function (12) to change the direction of each chicken in solution space and to avoid being easily trapped at a
local optimum.

xi (t) =
⎧⎪⎪⎨⎪⎪⎩

xi (t) + ∣Rand() × (up − lw)∣ if xi < lw

xi (t) − ∣Rand() × (up − lw)∣ if xi > up
(11)

Step 9: Update the individual’s best fitness value (pbest) and the global best (gbest) solution: if the
chicken’s fitness value is better than the previous best one, the chicken’s best fitness value or the global best
solution will be updated using Eq. (12).

xi (t) =
⎧⎪⎪⎨⎪⎪⎩

xi (t − 1) , f (xi (t)) > f (xi (t − 1)) ,
xi (t) , f (xi (t)) ≤ f (xi (t − 1)) .

(12)

Step 10: If the number of iteration times t is less than Ir, return to Step 4. Otherwise, terminate the
algorithm and output the global best solution.

Step 11: Select the Optimal Parameter for the optimum solution
Select the best global position xi (t) of the Chicken.
The Selected best global position xi (t) of the chicken based on the feature subset mapped by xi (t) and

model with the optimized parameter becomes the optimized features Fi (t) as shown in Eq. (13).

Fi (t) = GBest (xi (t)) (13)

3.5 Matching Phase
The matching module compares the optimized feature set with the stored templates using a matching

algorithm to generate optimized matching scores. The matching score of the optimized feature was generated
using Mahalanobis distance. The matching process involved comparing the extracted features with the pre-
stored template in the database and generating matching scores as output. This is given in Eq. (14):

Sg (x , y)2 = (x − y)′ S−1 (x − y) (14)
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The vector with the minimum distance was selected as the most similar vector, where S represents the
within-group covariance matrix.

3.6 Decision Module
The matching score of the optimized features was used to identify a user as either genuine or an impostor.

The matching score Sc was compared to a pre-specified threshold (th). If Sc > th, then the user was identified
to be genuine otherwise, be identified as an impostor. The decision function defined in Eq. (15) verified the
identity of users.

Decision (Sc) =
⎧⎪⎪⎨⎪⎪⎩

Accept (Genuine) , i f Sc > th
Re ject (Impostor) , otherwise

(15)

3.7 Implementation
The research utilized MATLAB 9.4 (R2018a) on a Hewlett-Packard G56 system with an Intel R© Core™

i5 Duo processor, Windows 10 Professional 64-bit OS, 2.7 GHz CPU, 6 GB RAM, and a 1 TB HDD.
An interactive GUI application with real-time biometric datasets was designed using MATLAB’s GUI
toolbox. The simulation process for optimizing the biometric access control system with CCSO in MATLAB
involved data collection (600 images), preprocessing, and dataset splitting (360 for training, 240 for testing).
Parameters were initialized, and CCSO optimized the system, with performance evaluation conducted using
various metrics, followed by parameter tuning and comparative analysis within the MATLAB environment.

3.8 Evaluation Measures
The performances of the investigated biometric systems were evaluated by calculating its FAR, FRR,

sensitivity, precision and recognition accuracy. The evaluation based on performance metrics was achieved
by employing confusion matrix. It contained True Positive (TP), False Positive (FP), False Negative (FN) and
True Negative (TN). The performance of the system was measured as follows:

FAR = FP
FP + TN

(16)

FRR = FN
FN + TP

(17)

Accuracy = TP + TN
FP + FN + TP + TN

(18)

4 Results and Discussion
The analysis of the performance of the developed CCSO technique in comparison to the CSO technique

is presented. The observations obtained from the techniques were thoroughly examined and discussed in
detail in this section. The performance evaluation of the biometric techniques was carried out using face,
fingerprint, and iris unimodal biometric data. The CSO technique is a parametric approach that heavily
relies on its parameter settings. Specifically, the FL parameter in CSO plays a crucial role in determining its
performance. To facilitate a fair comparison between the developed CCSO technique and the CSO technique,
both approaches were evaluated using FL values of 0.4. This choice of FL was motivated by previous studies,
including [27,28] which have shown that the range of FL ∈ [0.4, 1] can produce satisfactory results for most
optimization problems. Empirical evidence also supports the effectiveness of this FL value in practice. Table 1
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presents the initial parameter settings for both the CSO and CCSO techniques. Initially, these parameters
were configured to shape the performance of the proposed technique, impacting aspects such as solution
quality, computational time, exploration, diversity, and leadership dynamics within the swarm [29].

Table 1: Initial parameters setting of CSO and CCSO technique

The maximum number of iterations 100
Number of populations 50

Interval Random number 0.04
Ratio of rooster 0.15

Ratio of hen 0.70
Ratio of hen with chick 0.50

The result is obtainable in Table 2 depicts the performance of the techniques based on face biometric
traits at FL values of 0.2 and 0.4.

Table 2: Performance of techniques for face biometric

FL-Value Technique FAR (%) FRR (%) Accuracy (%) Time (s)

0.2 CSO 43.33 10.56 81.25 93.43
CCSO 33.33 6.67 86.67 64.61

0.4 CSO 31.67 12.22 82.92 92.57
CCSO 16.67 7.22 90.42 62.13

Table 2 presents the evaluation results of the CSO and CCSO techniques for FAR, FRR, accuracy, and
recognition time using face biometrics. Findings from the table indicate that the optimal level of performance
was realized at an FL value of 0.4. The results show that at FL value 0.4, the CSO technique achieved a FAR
of 31.67%, FRR of 12.22%, and accuracy of 82.92% at 92.57 s, while the CCSO technique achieved a FAR of
16.67%, FRR of 7.22%, and accuracy of 90.42% at 54.77 s. The results demonstrate that the CCSO technique
outperformed the CSO technique in terms of FAR, FRR, recognition accuracy, and time, with an average
recognition time of 0.228 s for the face biometric. The confusion matrices for the performance of CCSO
and CSO techniques with face biometrics are depicted in Fig. 5a,b, respectively. These figures present actual
classes as against the predicted classes.

The results in Fig. 5a reveal that the CCSO technique accurately identified 167 face datasets as genuine,
but 13 datasets were wrongly identified as imposters. Interestingly, the technique also misclassified 10
imposter datasets as genuine but correctly identified 50 as imposters. Moving on to Fig. 5b, the CSO
technique correctly classified 158 genuine face datasets but misclassified 35 as imposters. Moreover, the
technique accurately identified 41 imposter datasets but wrongly classified 19 as genuine.
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Figure 5: Performance of CCSO and CSO techniques with face

Table 3 illustrates the performance of the techniques using fingerprint biometric traits at FL values of 0.2
and 0.4. The results obtainable in Table 3 also revealed that at FL value 0.4 for the fingerprint biometric, the
CSO technique achieved a FAR of 25.00%, FRR of 10.00%, and accuracy of 86.25% at 63.96 s, while the CCSO
technique achieved a FAR of 23.33%, FRR of 3.33%, and accuracy of 91.67% at 27.35 s. The results demonstrate
that the CCSO technique outperformed the CSO technique in terms of FAR, FRR, recognition accuracy, and
time, with an average recognition time of 0.114 s for the fingerprint biometric. The confusion matrices for
the performance of CCSO and CSO techniques with face biometrics are depicted in Fig. 6a,b, respectively.

Table 3: Performance of techniques for fingerprint biometric

FL-Value Technique FAR (%) FRR (%) Accuracy (%) Time (s)

0.2 CSO 30.00 11.67 83.75 64.08
CCSO 20.00 8.33 88.75 28.86

0.4 CSO 25.00 10.00 86.25 63.96
CCSO 23.33 3.33 91.67 27.35

Figure 6: Performance of CCSO and CSO techniques with Fingerprint
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According to the results shown in Fig. 6a, the CCSO technique accurately classified 174 face datasets
as genuine, with only 6 misidentified as imposters. Notably, the method also correctly flagged 40 imposter
datasets, while 14 were mistakenly categorized as genuine. In Fig. 6b, the CSO technique correctly identified
162 genuine datasets, but incorrectly classified 18 as imposters. Fig. 6a,b presents actual classes as against the
predicted classes. Additionally, the CSO method accurately identified 45 imposter datasets, but erroneously
classified 15 as genuine. Table 4 presents the results of the techniques’ performance based on iris biometric
traits at FL values of 0.2 and 0.4.

Table 4: Performance of techniques for iris biometric

FL-Value Technique FAR (%) FRR (%) Accuracy (%) Time (s)

0.2 CSO 41.67 10.00 82.08 165.90
CCSO 21.67 8.89 87.92 114.61

0.4 CSO 28.33 11.11 84.58 163.94
CCSO 15.00 6.67 91.25 113.92

Table 3 illustrates that, at an FL value of 0.4, the CSO technique yielded a FAR of 28.33%, an FRR of
11.11%, and an accuracy of 84.58% in 163.94 s. In comparison, the CCSO method achieved better performance,
with a FAR of 15.00%, FRR of 6.67%, and accuracy of 91.25% in only 113.92 s. The average recognition
time for the iris biometric was 0.114 s, with the CCSO method surpassing the CSO technique in all
aspects of performance, including recognition accuracy, FAR, FRR, and processing time. The outcomes are
displayed in Fig. 7a revealed that the CCSO technique correctly identified 168 genuine face datasets and
committed only 12 misidentifications. Impressively, the method accurately recognized 51 imposter datasets
while only mistakenly classifying 9 as genuine. By contrast, Fig. 7b indicated that the CSO technique correctly
classified 160 genuine datasets but erroneously flagged 20 as imposters. This presents actual classes as against
the predicted classes. Moreover, the CSO method accurately identified 43 imposter datasets but wrongly
classified 17 as genuine.

Figure 7: Performance of CCSO and CSO techniques with iris

In view of the performance with the unimodal biometrics, it was revealed that the CCSO technique
achieved improved performance with less FAR, FRR, and recognition time and increased recognition
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accuracy than the CSO technique. The CCSO technique demonstrated better accuracy in identifying genuine
datasets compared to the CSO technique. However, both techniques had their limitations, with occasional
misclassifications of genuine and imposter datasets. The choice between these techniques would depend on
the specific requirements of the biometric access control system, balancing security and convenience factors.
Further refinements and parameter adjustments might be necessary to improve the performance of these
techniques in practice. In this study, the fingerprint biometric among others has the best performance while
the face biometric has the least performance.

Face variation and the quality of some of the acquired facial images, such as blurriness, resolution,
and noise, may account for the lowest performance of face biometrics when compared to other biometrics
in this study. This is in line with the submission of [30,31]. Also, the iris biometric has the highest
recognition time among others while the fingerprint biometric has the least recognition time. These findings
can be attributed to the fact that iris recognition involves more complex processes which involves more
computational resources and time. This is supported by [30,32]. The reduction in iris biometric performance
may be attributed to the visible area of the iris region being affected by the eyelids and eyelashes [33].
Furthermore, the fingerprint biometric outperformed both face and iris biometric in time of accuracy and
speed of recognition. Empirical evidence [34,35] suggested that fingerprint biometrics outperform both
face and iris biometrics in terms of accuracy and speed of recognition, primarily due to the high degree of
uniqueness, stability, and resolution of fingerprint patterns, and their robustness to various environmental
and physiological factors.

The remarkable reduction in recognition time that the CCSO technique has achieved is primarily
attributable to the ingenious incorporation of the cultural evolution strategy into the CSO technique. The
computational complexity of CCSO arises from its hierarchical belief space and swarm-based optimization
process. Its complexity is approximately O(N⋅T), where N is the population size and T is the number of
iterations, consistent with other swarm intelligence algorithms [36]. This structure ensures efficiency and
scalability for large datasets.

By skilfully improving the balance between the exploration and exploitation phases of the technique, this
innovative approach has managed to accelerate the recognition process to unprecedented levels, as attested
by [37]. The CCSO technique is exceptional because it artfully combines the fast convergence speed of the
CSO technique [38] with the unmatched global optimizing ability that is enhanced by the introduction of
cultural algorithm operators [25]. In an access control system, achieving a low FAR and FRR is crucial for
maintaining high security while still providing a user-friendly experience. The introduction of the CCSO
technique has demonstrated the potential to significantly reduce both FAR and FRR, resulting in an optimal
Equal Error Rate (EER) that strikes the perfect balance between security and usability.

The effectiveness of the CCSO technique in reducing both FAR and FRR can be attributed to its powerful
combination of exploration and exploitation capabilities, which allow it to optimize the search process in
a dynamic and adaptive way. This not only improves the accuracy of the access control system but also
enhances its overall efficiency, resulting in a more seamless and user-friendly experience for authorized users.
The achievement of a suitable EER is paramount to ensuring that the access control system provides the
highest degree of protection possible, while still maintaining a level of user-friendliness that does not hinder
productivity. By leveraging the advanced optimization capabilities of the CCSO technique, organizations can
ensure that their access control system strikes the perfect balance between security and usability, providing
a robust and reliable security framework that is designed to meet the needs of today’s fast-paced and
ever-changing business environment.

Table 5 presents the result of inferential statistical analysis using paired sample t-tests between CCSO
and CSO techniques based on accuracy, FAR, FRR, and computation time. The result revealed significant
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differences across all metrics evaluated at a 95% confidence level (p < 0.05). The results show that CCSO
significantly outperformed CSO in accuracy (mean difference = 5.98%, t = 4.715, p = 0.005), reduced FAR
(−11.67%, t = −3.378, p = 0.043), FRR (−4.08%, t = −4.029, p = 0.010), and significantly less computation
time (−38.73 s, t = −9.721, p = 0.000). The incorporation of cultural algorithm operators in the model of CSO
is commensurate to the gain in accuracy and reduction of error rate and computation time achieved over
CSO significantly. This validates the application of CCSO for feature optimization in biometric applications.
The method was more computationally efficient and more accurate than CSO. This demonstrated that, when
compared to other approaches, CCSO provides robust and scalable solutions to challenges associated with
high-dimensional data effectively.

Table 5: t-test statistical comparison between CCSO and CSO techniques at 0.05 significance level

Techniques Measures Mean Difference t Value p-Value
CCSO vs. CSO Accuracy 5.98 4.715 0.005

FARa −11.67 −3.378 0.043
FRRb −4.08 −4.029 0.010

C_Timec −38.73 −9.721 0.000

Note: a: False Acceptance Rate; b: False Rejection Rate; c: Computation time.

The inclusion of cultural algorithm operators in the CSO technique has been substantiated by the
demonstrably superior performance attained in this investigation. Analysis of the tables presented in this
study unambiguously indicates that the CCSO technique consistently outperformed the CSO technique in
terms of accuracy. The compelling results of this research offer compelling evidence that the incorporation
of cultural algorithm operators in the CSO framework can greatly enhance its optimization capabilities.
The systematic integration of cultural learning mechanisms with the CSO algorithm has engendered a
dynamic synergy that optimizes the balance between exploration and exploitation, leading to improved
optimization performance. The authors compared state-of-the-art reviews of the proposed method in
similar studies. Table 6 depicts the comparison results of the developed technique with other state-of-the-
art methods.

Table 6: Comparison with state-of-the-art methods

Ref Method Recognition performance
[19] FFNNPSO 90.0%
[39] HSA-ANN 94.0%
[15] PCA-SVM 89.0%, 91.0%, and 87.0% for Face, Iris and Fingerprint.
[40] PSO 93.0%

Proposed CCSO 90.42%, 91.67%, and 91.25% for Face, Fingerprint and Iris.

Note: HSA-ANN attained the higher performance at 94.0%, while PSO demonstrated robust
performance at 93.0%. PCA-SVM exhibited inconsistent performance across modalities, with
the lowest score being 87.0% for Fingerprint. The proposed CCSO approach regularly surpasses
PCA-SVM in all three modalities, demonstrating Face: 90.42% compared to 89.0%. Fingerprint:
91.67% compared to 87.0%, Iris: 91.25% compared to 91.0%.
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The result presented in Table 5 reveals that the results achieved by the proposed CCSO are not only
competitive but also well-matched with the accuracy levels achieved by established optimization techniques
in previous studies. The implications of CCSO’s competitive performance are significant. It underscores
CCSO’s potential to effectively enhance biometric access control systems, offering comparable accuracy to
established techniques while potentially improving processing speed.

The CCSO technique directly addresses key research gaps in the need for scalable and efficient optimiza-
tion methods for biometric systems [41]. Traditional swarm intelligence techniques like CSO are limited by
slower convergence rates and higher computational costs, particularly in high-dimensional datasets. CCSO
advances the state of the art by introducing cultural algorithm operators that enhance the optimization
process through hierarchical belief spaces. These operators facilitate better exploration-exploitation balance,
reducing false acceptance and rejection rates (FAR and FRR) while improving recognition accuracy and
reducing computational time. The results demonstrate CCSO’s effectiveness in optimizing unimodal bio-
metric systems, with performance improvements over CSO across face, fingerprint, and iris biometrics.
These advancements underscore CCSO’s role in addressing scalability and efficiency gaps, positioning it
as a superior alternative for real-time biometric system optimization. Cultural algorithm operators are
central to optimizing CSO in the proposed CCSO framework. These operators are inspired by cultural
evolution and utilize a hierarchical belief space to guide swarm behavior. In biometric applications, these
components enable CCSO to adaptively refine feature selection and matching criteria. This adaptability
improves the system’s accuracy, reduces misclassification rates, and enhances computational efficiency. This
suggests that CCSO can be a valuable addition to the toolkit of optimization methods for biometric systems,
offering a promising avenue for enhancing security surveillance measures and operational efficiency in
various domains.

5 Conclusions
The study shows that the CCSO technique is a promising optimization tool for the development of

efficient and realistic biometric access control systems. The CCSO technique addresses the challenges of the
CSO technique and offers superior accuracy and computational efficiency, making it an attractive option
for biometric access control systems. The results achieved in this study emphasize the practical significance
of CCSO in biometric recognition, offering not only improved accuracy but also faster processing times—a
crucial factor in access control systems. The results suggest that CCSO could be instrumental in enhancing
security surveillance measures across various domains where biometric access control systems are deployed.
However, it is important to consider factors such as computational resources and scalability in implementing
CCSO in larger-scale applications. Consequently, the adoption of the CCSO technique can significantly
improve the security and efficiency of biometric access control systems, and its demonstrated effectiveness
marks a promising advance in the evolution of optimization algorithms, inspiring further innovation in the
field. The main contributions of this study are highlighted as follows:

• Integration of cultural algorithm operators into the CSO model for enhancing biometric access control.
• Emphasis on the importance of the cultural-based CSO technique for biometric access control,

encompassing face, fingerprint, and iris traits.
• Validation of the cultural-based CSO against the conventional CSO technique for biometric access

control, covering face, fingerprint, and iris traits.

These contributions address key research gaps by improving scalability and efficiency in high-
dimensional biometric data through cultural algorithm integration. The study provides a unified framework
for optimizing face, fingerprint, and iris traits while validating the cultural-based CSO’s superior per-
formance over the conventional model, showcasing enhanced accuracy, reduced error rates, and faster



Comput Mater Contin. 2025;84(3) 5729

processing for biometric access control systems. Future research should explore integrating CCSO with
recent advancements in multi-modal learning to enhance biometric system performance, such as temporal
biometric data fusion architectures inspired by TriChronoNet, hyper-relational interaction modeling for
cross-modal feature correlation analysis, vision transformer approaches for multi-source biometric feature
extraction, and mobile-optimized multimodal deep learning frameworks for real-time processing. Addition-
ally, testing CCSO with larger datasets to evaluate scalability, enhancing security through multibiometric
system optimization, and assessing operational efficiency across diverse deployment scenarios remain crucial
research priorities.
Limitations and Future Works

The following are a few GSA’s drawbacks for feature fusion in a multimodal biometric system:
Parameters sensitivity: Several GSA’s parameters, including the gravitational constant, population size,

and iterations, need to be fine-tuned. Finding the ideal collection of parameters might be difficult because
the performance of GSA can be sensitive to them. Limited exploration: GSA may not adequately explore the
search space, which can result in less-than-ideal solutions. This constraint can be particularly problematic in
multimodal biometric systems if the feature spaces of the various modalities are intricately intertwined and
complex. A future study can also examine CCSO’s resilience to adversarial assaults, hardware acceleration to
speed up processing, and algorithmic improvements to boost performance and convergence. New algorithms
such as the Farmland fertility algorithm, Mountain Gazelle Optimize, African Vultures Optimization
Algorithm, and Artificial Gorilla Troops Optimizer may also be considered in the future. Finally, evaluating
user experience, energy efficiency, and prospective uses beyond access control, such as in healthcare or
finance, may offer additional CCSO security and operational efficiency prospects.
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