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ABSTRACT: This review presents a comprehensive and forward-looking analysis of how Large Language Models
(LLMs) are transforming knowledge discovery in the rational design of advanced micro/nano electrocatalyst materials.
Electrocatalysis is central to sustainable energy and environmental technologies, but traditional catalyst discovery
is often hindered by high complexity, fragmented knowledge, and inefficiencies. LLMs, particularly those based
on Transformer architectures, offer unprecedented capabilities in extracting, synthesizing, and generating scientific
knowledge from vast unstructured textual corpora. This work provides the first structured synthesis of how LLMs
have been leveraged across various electrocatalysis tasks, including automated information extraction from literature,
text-based property prediction, hypothesis generation, synthesis planning, and knowledge graph construction. We
comparatively analyze leading LLMs and domain-specific frameworks (e.g., CatBERTa, CataLM, CatGPT) in terms
of methodology, application scope, performance metrics, and limitations. Through curated case studies across key
electrocatalytic reactions—HER, OER, ORR, and CO2RR—we highlight emerging trends such as the growing use
of embedding-based prediction, retrieval-augmented generation, and fine-tuned scientific LLMs. The review also
identifies persistent challenges, including data heterogeneity, hallucination risks, lack of standard benchmarks, and
limited multimodal integration. Importantly, we articulate future research directions, such as the development of
multimodal and physics-informed MatSci-LLMs, enhanced interpretability tools, and the integration of LLMs with self-
driving laboratories for autonomous discovery. By consolidating fragmented advances and outlining a unified research
roadmap, this review provides valuable guidance for both materials scientists and AI practitioners seeking to accelerate
catalyst innovation through large language model technologies.

KEYWORDS: Large language models; electrocatalysis; nanomaterials; knowledge discovery; materials design; artificial
intelligence; natural language processing

1 Introduction
Advanced electrocatalyst materials, particularly those engineered at the micro- and nano-scale, stand

at the forefront of solutions addressing critical global challenges in sustainable energy and environmen-
tal stewardship [1]. Their importance is underscored by their central role in enabling key technologies
such as fuel cells for clean power generation [2], water electrolyzers for green hydrogen production [3],
systems for converting greenhouse gases like CO2 into valuable chemicals via CO2 reduction [4], and
biomass/waste valorization through electrochemical upgrading of compounds such as waste glycerol [5],
bio-oil [6], and waste cooking oil [7] into value-added fuels and chemicals [8,9]. The efficiency, selectivity,
and durability of these electrochemical processes are fundamentally dictated by the performance of the
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electrocatalyst employed. Consequently, the development of catalysts exhibiting superior activity, enhanced
selectivity towards desired products, and robust stability under demanding operational conditions remains
a paramount objective in materials science and chemical engineering research. Micro/nano structuring
improves catalytic performance by increasing surface area and exposing more active sites, such as edges
and defects. Despite decades of research, the traditional path to discovering and optimizing electrocatalysts
is often arduous and inefficient [10–12]. Traditional discovery often depends on chemical intuition, time-
consuming experiments, and DFT-based simulations [13–15]. These approaches face significant hurdles. The
combinatorial chemical space encompassing potential catalyst compositions, structures, and morphologies
is astronomically vast, rendering exhaustive exploration practically impossible [12,14,16]. Furthermore, the
relationship between a material’s atomic-level structure, its electronic properties, and its ultimate catalytic
performance is exceptionally complex and often non-intuitive, making rational design challenging [11,12,17].
Although fundamental studies using model systems are insightful, they often face the “materials gap”
and “pressure gap”. This means findings from idealized conditions, such as single crystals under ultrahigh
vacuum, may not apply to real-world nanoparticle catalysts. The complex structure of nanocatalysts often
exceeds the ability of current tools to identify active sites or explain reaction mechanisms.

Recognizing these limitations, the scientific community is increasingly embracing a data-driven
paradigm, often referred to as the “fourth paradigm of science”, to accelerate materials discovery [13,18–20].
This approach leverages the power of Artificial Intelligence (AI) and Machine Learning (ML) techniques
to analyze large datasets, uncover hidden patterns, predict material properties, and guide experimental
efforts [10,17,20–23]. The exponential growth in both computational power and the availability of materials
data, generated through high-throughput simulations and automated experiments, has fueled this transition.
ML models have demonstrated success in predicting catalyst properties and screening candidate materials
based on structured datasets derived from simulations or experiments [17,20,23]. These traditional ML
approaches typically rely on numerical descriptors or graph-based representations derived from well-
structured input data, such as atomic coordinates or engineered features. While powerful, their utility is often
limited by the availability of high-quality, labeled datasets and their inability to fully leverage the rich but
unstructured scientific knowledge embedded in textual sources.

In contrast, LLMs represent a fundamentally different class of AI systems. Built on Transformer archi-
tectures and trained on vast corpora of unstructured text, LLMs are capable of understanding and generating
human language, making them especially suited for processing scientific literature. Unlike conventional
ML models that operate primarily on structured numerical input, LLMs can perform tasks such as text
mining, summarization, question answering, and entity-relation extraction directly from natural language.
These abilities enable LLMs to unlock and synthesize latent scientific insights from previously untapped
textual resources, offering a powerful complement to existing data-driven catalyst design strategies [24].
Transformer architecture and trained on massive corpora of scientific literature, LLMs excel at tasks such
as text mining, summarization, question answering, and entity-relation extraction. These capabilities are
particularly relevant to catalysis research, which is characterized by extensive unstructured knowledge
dispersed across publications, patents, and technical reports [25]. Recent work has demonstrated the
potential of LLMs to extract synthesis protocols and performance metrics from catalyst literature [26], build
structured databases from text, and even assist in predicting catalyst properties based on natural language
descriptions. For instance, LLM-based models such as SciBERT and CatBERTa have been used to extract
materials and adsorption energy data with high accuracy, and domain-specific models like CataLM have
been fine-tuned specifically for electrocatalytic materials. Furthermore, generative models such as CatGPT
have been trained to propose novel catalyst compositions and reaction mechanisms, enabling hypothesis
generation at scale. These developments illustrate how LLMs are being increasingly integrated into catalyst
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design pipelines—either as standalone tools for literature analysis or as components in multi-agent or
closed-loop discovery systems. By processing the language of science itself, LLMs are beginning to serve
not only as data extraction engines, but as active collaborators in the generation of knowledge and the
acceleration of catalyst innovation. This is vital because most scientific knowledge exists in unstructured
text, not in structured databases [19,27–29]. Traditional ML methods typically struggle to directly utilize
this vast textual resource, often requiring laborious manual data extraction or sophisticated, domain-specific
Natural Language Processing (NLP) pipelines. LLMs, however, offer a more direct route to harnessing this
knowledge, acting potentially as “second brains” for researchers by processing and synthesizing information
from literature at an unprecedented scale [29].

This review focuses specifically on the application of LLMs to drive knowledge discovery for the
purpose of designing advanced micro/nano electrocatalyst materials. Fig. 1 provides a schematic roadmap
outlining the core roles LLMs play in this context. LLMs assist in several key tasks: extracting synthesis
protocols and performance data from the literature, predicting catalytic properties using semantic under-
standing, generating hypothetical structures or mechanisms, and integrating knowledge via summarization
or knowledge graphs. By capturing the entire knowledge discovery cycle—ranging from data extraction to
hypothesis formulation—the figure visually reinforces the manuscript’s central thesis that LLMs are emerging
as comprehensive enablers in catalyst design.

Figure 1: Schematic overview of how LLMs can be applied for knowledge discovery in electrocatalyst design

2 Foundational Concepts: Advanced Electrocatalysis and LLMs
A comprehensive understanding of the LLM-driven approach to electrocatalyst design necessitates

familiarity with the fundamental aspects of both the target materials and the AI tools being employed. This
section provides foundational concepts for advanced micro/nano electrocatalyst materials and LLMs, setting
the stage for subsequent discussions on their intersection.

2.1 Advanced Micro/Nano Electrocatalyst Materials
Electrocatalysis is fundamentally the process by which the rate of an electrochemical reaction occurring

at an electrode-electrolyte interface is enhanced through the action of a catalytic material. These reactions
are central to numerous energy conversion and storage technologies, including fuel cells, electrolyzers,
and metal-air batteries, as well as environmental applications like CO2 conversion and pollutant degrada-
tion [30]. Advanced electrocatalysts are engineered with unique structural or compositional features, often
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at the micro/nanoscale (1–100 nm). Nanostructuring offers multiple benefits. It increases the surface area
available to reactants, introduces quantum confinement and modified electronic properties, and exposes
low-coordination sites like edges and corners that enhance catalytic activity [11,31]. These benefits lead to
higher activity, better selectivity, and improved atom efficiency, making nano-electrocatalysts valuable for
energy and environmental applications.

The field encompasses a diverse array of material types, many of which are being explored using
LLM-driven approaches. Recent years have seen substantial advances in the rational design of micro/nano
electrocatalysts that exhibit improved intrinsic activity, selectivity, and stability. For example, single-atom
catalysts (SACs) with isolated metal atoms anchored on nitrogen-doped carbon matrices have demonstrated
record-low overpotentials for HER and OER [11,32]. Transition metal dichalcogenides (TMDs), especially
MoS2 and WS2, have been modified through phase engineering and defect creation to enhance ORR and
CO2RR performance [15,30,33]. High-entropy alloys (HEAs) have emerged as tunable electrocatalyst plat-
forms with compositional flexibility, showing promising results for multi-functional catalysis [12,17,34,35].
Metal-organic frameworks (MOFs) and their derivatives are now widely investigated for their hierarchical
porosity and tunable active sites, often serving as precursors for metal-N-C catalysts. Porous and hollow
nanostructures, such as yolk-shell and nanoframe morphologies, are increasingly favored for their ability
to enhance mass transport and facilitate intermediate desorption. Table 1 synthesizes recent advances
across various categories of micro/nano electrocatalyst materials, providing a comparative overview of their
unique structural features, target reactions, representative materials, and performance benchmarks. Metal
nanoparticles, often based on noble metals like Pt, Pd, or Au, or non-noble transition metals, can be used
either unsupported or dispersed on conductive supports like carbon materials, oxides, or nitrides [11,31].
Their catalytic properties are highly sensitive to size, shape, and composition. One-dimensional (1D)
nanostructures, such as nanowires, nanorods, and nanotubes, offer directed electron transport pathways
and high surface areas [15]. Two-dimensional (2D) materials, including graphene and its analogues, TMDs,
MXenes, and the more recently explored metallenes (ultrathin metal nanosheets), provide extremely high
surface exposure and unique electronic properties stemming from their reduced dimensionality [15,30,33].
High-entropy materials (HEMs), including HEAs and oxides, contain five or more main elements in nearly
equal ratios. Their disordered atomic structures produce unique synergistic effects and a vast compositional
space for catalyst design [12,17,34,35]. SACs represent the ultimate limit of atom efficiency, where individual
metal atoms are dispersed on a support material, providing well-defined active sites and potentially unique
catalytic behavior distinct from nanoparticles [11,32]. Other important classes include nanostructured
metal oxides, sulfides, phosphides, and (oxy)hydroxides, which are often investigated for reactions like
oxygen evolution [11,36], as well as porous materials like MOFs that can serve as catalyst precursors or
platforms [30,37].

Table 1: Summary of recent advances in micro/nano electrocatalyst materials

Catalyst type Key features Target reaction
(s)

Representative
materials

Performance
highlights

Refs.

Single-Atom
Catalysts (SACs)

Atomically
dispersed metals

on supports

HER, OER, ORR,
CO2RR

Fe–N–C, Co–N–C Overpotential <
50 mV (HER); High

TOF

[11,38]

Transition Metal
Dichalcogenides

(TMDs)

Layered 2D
structures, defect

engineering

HER, ORR,
CO2RR

MoS2, WS2 HER onset potential
~70 mV

[15,36,39]

High-Entropy
Alloys (HEAs)

Multicomponent
equiatomic alloys

HER, ORR PtPdNiFeCo,
AgPdRu

Adjustable binding
energies, low η10*

[12,17,40,41]

(Continued)
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Table 1 (continued)

Catalyst type Key features Target reaction
(s)

Representative
materials

Performance
highlights

Refs.

MOFs/Derived
carbon composites

Hierarchical
porosity, tunable

active sites

CO2RR, OER ZIF-8 derived
Co–N–C

FE(CO) > 90%
(CO2RR)

[36,42]

Nanoframes &
hollow structures

Enhanced surface
exposure, mass

transport

OER, ORR PtNi nanoframes,
Co3O4 hollow

spheres

High stability, η10 <

300 mV (OER)
[11,43]

Note: η10* refers to the overpotential required to achieve a current density of 10 mA⋅cm−2, which is a standard metric
for assessing electrocatalytic activity. Lower η10 values indicate higher catalytic efficiency, as less energy is required to
drive the target electrochemical reaction at a practical current density.

Evaluating the effectiveness of these diverse electrocatalysts requires standardized key performance
indicators (KPIs). Catalyst activity is often measured by overpotential (η), the extra voltage needed to reach
10 mA cm−2 current density. Lower overpotential signifies higher activity. Other key metrics include onset
potential, current density, Tafel slope for mechanism insight, and TOF per active site, though defining
active sites can be difficult [16,38]. Selectivity, crucial for reactions producing multiple products like CO2RR,
is measured by the Faradaic efficiency (FE), representing the percentage of electrons contributing to the
formation of the desired product [39,40]. Stability reflects a catalyst’s ability to retain performance and
structure during long-term use, often tracked by potential or current changes [38]. These KPIs are essential
for comparing different materials and guiding the design process.

These advanced electrocatalysts are indispensable for driving key electrochemical reactions central to
sustainable technologies. Prominent examples include the hydrogen evolution reaction (HER) and oxygen
evolution reaction (OER) involved in water splitting for hydrogen production; the oxygen reduction reaction
(ORR) and hydrogen oxidation reaction (HOR) critical for fuel cells; the carbon dioxide reduction reaction
(CO2RR) for converting CO2 into fuels and chemicals; the Nitrogen Reduction Reaction (NRR) for ammonia
synthesis; and the oxidation of fuels like ethanol or methanol in direct fuel cells [17,41,43]. However, the
rational design of these high-performance micro/nano electrocatalysts remains a formidable task due to
several intrinsic challenges [42]. The sheer complexity of these systems, involving the intricate interplay
between composition, size, shape, surface structure, defects, and support interactions, makes predicting
behavior difficult [11,12]. Establishing clear structure-property relationships that link these nanoscale features
to macroscopic catalytic performance (activity, selectivity, stability) is often elusive [12,17]. The Sabatier
principle states that effective catalysis requires moderate binding: too weak fails to activate, too strong
poisons the surface [1]. Finding materials that strike this delicate balance for complex multi-step reactions
is challenging. Precise synthesis control to reproducibly fabricate nanomaterials with desired structural
attributes remains a significant hurdle. Characterizing these materials under real conditions is difficult,
limiting understanding of their behavior and true active sites [38]. These challenges collectively highlight the
need for advanced tools, such as LLMs, capable of navigating complexity, extracting knowledge from vast
datasets, and accelerating the design cycle.

2.2 LLMs for Scientific Discovery
LLMs represent a significant advancement in artificial intelligence, characterized by their massive scale

(billions of parameters) and their ability to process and generate human-like text [24]. Their development
has been fueled by breakthroughs in neural network architectures, particularly the Transformer, increased
computational power, and the availability of vast amounts of training data.
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The core principles underlying most modern LLMs involve several key components. The transformer
architecture is fundamental, replacing the sequential processing of older recurrent neural networks (RNNs)
with parallel processing enabled by attention mechanisms. Self-attention allows the model to weigh the
importance of different words or tokens within an input sequence relative to each other, capturing contextual
relationships and long-range dependencies effectively [24]. Variations like sparse attention, flash attention,
and multi-query attention have been developed to improve efficiency and handle longer sequences. LLMs
typically undergo a two-stage training process. First is pre-training, where the model learns general language
understanding and world knowledge by training on enormous, diverse text corpora (often terabytes of
data) using self-supervised objectives like predicting the next word in a sequence or filling in masked
words. This phase imbues the model with broad linguistic competence. Second is fine-tuning, where the
pre-trained model is further trained on smaller, more specific datasets tailored to particular tasks or
domains. This adaptation stage includes instruction-tuning (training on instruction-response pairs to follow
commands) and alignment-tuning (often using reinforcement learning from human feedback, RLHF) to
make the model more helpful, honest, and harmless [44]. A remarkable aspect of LLMs is their emergent
abilities—capabilities like complex reasoning, planning, few-shot learning (performing tasks with only a few
examples), and zero-shot learning (performing tasks without examples) that appear as model scale increases
and were not explicitly programmed [45].

These underlying principles grant LLMs a suite of capabilities highly relevant to scientific knowledge
discovery, particularly from the vast body of scientific literature. IE is a key capability, allowing LLMs to
identify and extract specific pieces of information from unstructured text, such as experimental parameters,
material compositions, property values, and synthesis steps [19,24,29,46,47]. This includes tasks like Named
Entity Recognition (NER) to identify relevant terms and Relation Extraction to understand how they
are connected [19]. Knowledge synthesis and summarization enable LLMs to condense information from
lengthy articles or multiple sources, generate literature reviews, and identify key findings, helping researchers
grapple with information overload. Question answering (Q&A) allows users to pose specific questions and
receive answers based on the LLM’s internal knowledge or provided documents. Techniques like retrieval-
augmented generation (RAG), where the LLM retrieves relevant information from an external database
or corpus before generating an answer, enhance factual grounding and accuracy [25,48]. LLMs can also
contribute to hypothesis generation by analyzing existing literature to identify knowledge gaps, inconsis-
tencies, or potential correlations that might suggest new research avenues or material candidates [49,50].
Furthermore, many LLMs possess strong code generation abilities, capable of writing code snippets for data
analysis, simulation setup, or even controlling automated laboratory equipment based on natural language
prompts [51,52]. Finally, their core text generation capability can assist researchers in drafting manuscripts,
reports, or documentation [47,53]. Fig. 2 serves as a conceptual framework illustrating the multilayered
architecture of LLMs—from transformer-based attention mechanisms to fine-tuning strategies—and maps
these capabilities to practical functions in scientific discovery. The figure highlights key tasks such as
named entity recognition, summarization, question answering, and code generation, all of which are crucial
for mining and synthesizing information from scientific literature. This visual contextualizes how LLMs
act as both knowledge extractors and generators, thereby facilitating end-to-end integration into research
workflows, including literature analysis, database construction, and experimental planning.
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Figure 2: Schematic illustration of how LLMs, through their core architecture and training processes, enable key
capabilities such as IE, summarization, and code generation, thereby supporting various stages of scientific knowledge
discovery, from literature analysis to hypothesis formulation and manuscript preparation

Collectively, these capabilities position LLMs as powerful tools for a new knowledge discovery paradigm
in materials science and other scientific fields. Traditional knowledge discovery often relies on structured
databases, which cover only a fraction of published knowledge, or manual literature surveys, which are slow
and limited in scope. LLMs offer the potential to bridge this gap by directly processing and interpreting
the primary source of scientific knowledge—the unstructured text of publications—at scale. By extracting,
synthesizing, and reasoning over this vast textual information, LLMs can potentially accelerate the identifi-
cation of structure-property relationships, suggest novel materials, optimize experimental procedures, and
ultimately speed up the cycle of scientific discovery in complex fields like electrocatalyst design.

3 LLM Methodologies in Micro/Nano Electrocatalyst Research
The application of LLMs in the domain of micro/nano electrocatalyst research is rapidly evolving, with

various methodologies being developed and tested to leverage their unique capabilities. These methodologies
broadly fall into categories focused on extracting existing knowledge, predicting properties based on that
knowledge, generating new hypotheses or plans, and synthesizing information across the literature.

3.1 IE from Electrocatalysis Literature
In the pursuit of accelerating electrocatalyst discovery, one of the most formidable challenges lies in the

accessibility of materials data. Unlike structured databases, a significant proportion of valuable knowledge
remains embedded in the unstructured text of scientific publications, patents, and supplementary materials.
IE using LLMs has emerged as a transformative solution to this problem. By converting free-text content
into structured, machine-readable formats, LLMs enable the creation of comprehensive datasets that capture
key experimental and material parameters—thereby forming the foundation for downstream tasks such as
property prediction, hypothesis generation, and synthesis planning [54,55]. The overarching goal is to create
comprehensive, machine-readable datasets detailing materials, synthesis methods, experimental conditions,
properties, and performance metrics from the vast electrocatalysis literature [54].
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NER and relation extraction are fundamental tasks in this process. NER involves identifying specific
entities within the text, such as catalyst materials (e.g., ‘Pt nanoparticles’, ‘Cu-based alloys’, ‘perovskite
oxides’), precursors, reaction products (e.g., ‘H2’, ‘CO’, ‘CH4’), performance metrics (e.g., FE, overpotential,
current density, Tafel slope), experimental parameters (e.g., temperature, pressure, electrolyte compo-
sition, potential range), synthesis operations (e.g., ‘calcination’, ‘electrodeposition’), and characterization
techniques [19,40,54,55]. Relation Extraction then identifies the semantic links between these entities,
for example, connecting a specific catalyst material to its measured FE for a particular product under
defined conditions.

The effectiveness of IE in electrocatalysis relies heavily on the capabilities of the underlying LLMs.
Early efforts employed general-purpose models such as GPT-o1 and GPT-4o, which—when guided by
carefully designed prompts—proved capable of extracting synthesis parameters and performance metrics
with high accuracy from large corpora [37,46,54]. Examples include SciBERT [40], MatSciBERT [44,54], and
CataLM [44], which is specifically tailored for electrocatalytic materials using the Vicuna-13B model as a base
and trained on domain literature and expert annotations [44]. Comparative studies have shown promising
results; for instance, GPT-4 outperformed a rule-based method (ChemDataExtractor) in extracting band
gap information from materials science literature, demonstrating better handling of complex material names
and interdependency resolution, although weaknesses in hallucination and identifying specific value types
were noted [46]. In the context of CO2 reduction electrocatalysis, a framework combining BERT embeddings
with a BiLSTM-CRF architecture showed strong performance in recognizing key entities [56].

To enhance accuracy and mitigate issues like hallucination, various techniques are employed. Prompt
engineering involves carefully crafting the input query to elicit the desired structured output from the
LLM [37,46,54]. Fine-tuning adapts the model’s parameters using domain-specific labeled data [44]. RAG
approaches, often utilizing vector databases built from literature embeddings (e.g., using SciBERT), retrieve
relevant context before generation, grounding the LLM’s output and improving factual accuracy [25,54].
The ChatExtract method employs a conversational approach, using follow-up prompts to verify extracted
data and introduce uncertainty checks, achieving high precision and recall for materials data extraction with
models like GPT-4 [36].

These extraction efforts are enabling the creation of valuable resources. Several projects have focused
on building specialized corpora, such as the benchmark and extended corpora for the CO2 electrocatalytic
reduction process, containing thousands of manually verified or automatically extracted records detailing
materials, methods, products, efficiencies, and conditions [54]. Such corpora serve as vital training and
evaluation datasets for future NLP models in the field.

Beyond simple entity and property extraction, LLMs are being used to parse complex experimental
synthesis procedures. This involves identifying the sequence of actions (e.g., mixing, heating, washing,
annealing), associated parameters (temperature, time, concentration, atmosphere), starting materials, and
target products described in narrative text [54,57,58]. Sequence-to-sequence Transformer models have
been developed to convert these unstructured descriptions into structured “action sequences”, providing a
machine-readable representation of the synthesis protocol that can be used for analysis, comparison, or even
guiding automated synthesis platforms [54]. Examples include extracting synthesis parameters for inorganic
materials [59] and MOFs [37].

While most current efforts focus on text, the challenge of extracting information from multimodal
sources like tables and figures is recognized [27]. Early work includes extracting data from tables
in conjunction with text, with specialized models like MaTableGPT emerging [58]. The future likely
involves multimodal LLMs capable of interpreting images (plots, micrographs), tables, and text simulta-
neously [25,42]. LLM-driven IE is not simply a technical exercise in data extraction; it is a foundational
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enabler for the entire AI-driven catalyst discovery pipeline. From generating structured corpora and parsing
synthesis protocols to integrating text with knowledge graphs and multimodal inputs, IE continues to evolve
into a pivotal capability that underpins knowledge accessibility in electrocatalysis research. The narrative arc
of these efforts demonstrates a clear trajectory: from isolated data extraction to the construction of intelligent,
interconnected research ecosystems.

3.2 Property Prediction and Structure-Property Relationships
A central goal in materials science is to predict the properties of a material based on its composition and

structure. LLMs are introducing novel approaches to this challenge in electrocatalysis, moving beyond tra-
ditional methods that rely solely on explicit structural inputs or computationally expensive simulations [60].
These new methodologies leverage the ability of LLMs to understand and process textual information or to
generate meaningful numerical representations (embeddings) from scientific language.

One promising direction involves text-based property prediction, where models predict properties
directly from natural language descriptions of the material or catalytic system. CatBERTa, a model based on
the RoBERTa Transformer encoder, exemplifies this approach [61]. CatBERTa, a domain-specific adaptation
of the RoBERTa Transformer encoder, exemplifies the use of text-based property prediction in electro-
catalysis. By encoding structured textual representations of adsorption systems (e.g., catalyst surface facets,
adsorbates, site types), it enables semantic learning without needing explicit atomic coordinates. The model
demonstrated comparable or superior performance to conventional GNNs like CGCNN on benchmark
datasets such as OC20. A particularly impactful finding was CatBERTa’s ability to minimize systematic
error when evaluating energy differences among chemically similar systems, making it useful for high-
throughput screening. However, its reliance on well-formatted text input can limit applicability in cases
where such structured language representations are unavailable. It takes human-interpretable text strings as
input, which can include information like the chemical symbols of the adsorbate and bulk catalyst, the crystal
facet’s Miller index, the type of adsorption site, and potential atomic properties. CatBERTa is fine-tuned
to predict adsorption energies, a key descriptor for catalytic activity [61]. Fig. 3 illustrates the architecture
and operational flow of CatBERTa, a domain-specific LLM fine-tuned for predicting adsorption energies in
catalysis. The conversion of structural descriptors into textual inputs enables the model to derive embeddings
using a Transformer encoder, which is then processed via a regression head to output predicted energy values.
This framework is particularly powerful because it leverages semantic representations of material features,
enabling effective prediction even in cases where atomic coordinates may be incomplete or unavailable.
The visual aids in understanding the interpretability advantage and prediction mechanics of text-based
LLM models in materials science. Its performance has been shown to be comparable to some established
Graph Neural Networks (GNNs) like CGCNN and SchNet, particularly on certain subsets of data, achieving
Mean Absolute Errors (MAE) in the range of 0.35–0.82 eV depending on the dataset and input features. A
notable strength of CatBERTa is its ability to significantly cancel systematic errors when predicting energy
differences between chemically similar systems, outperforming GNNs in this aspect. This suggests its utility
in comparative studies and screening. Other work has also explored using text descriptions generated by tools
like Robocrystallographer as input for transformer models (BERT, MatBERT) to classify materials based on
properties like formation energy and band gap, achieving high accuracy [60].
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Figure 3: Overview of CatBERTa: (a) Transformation of structural data into a textual format; The structural data
undergoes conversion into two types of textual inputs: strings and descriptions; (b) Visualization of the fine-tuning
process. The embedding from the special token “<s>” is input to the regression head, comprising a linear layer and an
activation layer; (c) Illustration of the Transformer encoder and a multihead attention mechanism [61]

Another approach utilizes embedding-based prediction. This involves representing materials, proper-
ties, or concepts as dense numerical vectors (embeddings) learned by NLP models trained on large text
corpora. The relationships between these vectors can then be exploited for prediction. For instance, one
study trained a Word2Vec model on materials science abstracts and used the cosine similarity between
material composition vectors and property term vectors (e.g., ‘conductivity’, ‘dielectric’) as objectives for
Pareto optimization [14]. This allowed the prediction and screening of candidate electrocatalyst compositions
(e.g., Ag-Pd-Pt, Ag-Pd-Ru) for specific reactions like HER, OER, and ORR, purely based on latent knowledge
extracted from text, with predictions matching experimental activity trends well [14]. Similarly, another
approach combined word embeddings derived from literature (capturing semantic information) with graph
embeddings derived from a constructed knowledge graph (capturing structural relationships) [40]. This
hybrid embedding was fed into a deep learning model to successfully predict the FE of Cu-based catalysts
for CO2 reduction, demonstrating the power of integrating textual semantics with structured knowledge
(Fig. 4) [40].
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Figure 4: (a) (Top) Stacked histograms of various Cu-based electrocatalysts in articles published in the last dozen years.
(Bottom) Stacked histograms of the percentage of Cu-based electrocatalysts in articles normalized by year; (b) Overall
representation of materials, products, and methods for CO2 reduction. The size of the balls indicates the number of
corresponding papers; (c) Alluvial plot showing the development of Cu-based alloy electrocatalysts across the last 30
years [40]

A potential advantage of text-based LLM approaches is interpretability. Unlike many complex ML mod-
els often termed “black boxes”, text-based models offer avenues for understanding the prediction process.
The attention mechanisms inherent in Transformer models like CatBERTa can be analyzed to reveal which
parts of the input text (specific words or tokens, such as those related to the adsorbate or interacting atoms)
the model focuses on when making a prediction [61]. This provides insights into the features the model
deems important. Furthermore, using human-readable text descriptions as the primary input representation
itself enhances interpretability, allowing researchers to more easily relate the model’s input to their domain
knowledge [60]. This contrasts with GNNs where interpretation often relies on analyzing learned graph
features or using post-hoc methods like SHAP or LIME [17]. When compared with GNNs and traditional
ML, LLM-based property prediction offers distinct characteristics. GNNs excel at capturing fine-grained
structural information when precise atomic coordinates are available [61,62]. Traditional descriptor-based
ML relies on carefully engineered features derived from physical or chemical principles [22,23]. LLMs,
particularly text-based ones, operate on a different modality, leveraging semantic understanding and
contextual information from language. This allows them to potentially incorporate qualitative knowledge,
handle incomplete structural information, and utilize human-interpretable inputs. However, they might lack
the explicit structural resolution of GNNs, leading to trade-offs in accuracy depending on the specific task
and available data [61]. The choice between these approaches depends on the nature of the available data
(structured coordinates vs. text descriptions), the importance of interpretability vs. raw predictive power, and
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the specific property being predicted. LLM-based methods provide a complementary pathway, enriching the
toolkit for understanding and predicting electrocatalyst behavior.

3.3 Hypothesis Generation and Synthesis Planning
Beyond analyzing existing knowledge, LLMs are increasingly being explored for their generative

capabilities—their potential to propose novel materials, structures, or experimental plans, thereby acting as
creative partners in the scientific discovery process [10,27,48–50,58,63]. This represents a significant shift
towards using AI not just for prediction but also for exploration and innovation in electrocatalyst design.

One application is the generation of novel material compositions or structures. Inspired by the success
of LLMs in generating text and code, researchers are training them on representations of materials to suggest
new candidates. CatGPT, for example, is a GPT-based model trained on millions of catalyst structures
(represented as tokenized strings of lattice parameters, atomic symbols, and coordinates) from the Open
Catalyst database [64,65]. It can autoregressively generate string representations of new inorganic catalyst
structures, including surface and adsorbate atoms. Fine-tuning CatGPT on a smaller dataset specific to the
two-electron oxygen reduction reaction (2e-ORR) enabled the discovery of five novel and promising 2e-ORR
catalyst candidates, demonstrating the potential for targeted discovery. Ensuring the chemical and structural
validity of generated structures remains a challenge, requiring specialized validity metrics or post-generation
filtering [64,65]. Other work explores generating crystal structures using LLMs trained on crystallographic
information file (CIF) formats [66].

Frameworks are also being developed to leverage LLMs for generating scientific hypotheses. MOOSE-
Chem is a multi-agent system that uses LLMs to tackle the complex task of hypothesis generation in
chemistry [49]. MOOSE-Chem is a novel multi-agent LLM system developed to simulate the multi-step
process of hypothesis generation in chemistry. It decomposes this process into document retrieval, knowl-
edge synthesis, and hypothesis formulation. Notably, MOOSE-Chem was shown to independently rediscover
hypotheses similar to those in high-impact 2024 papers, based on literature only available up to 2023. This
demonstrates its potential to uncover latent connections in existing literature. However, its effectiveness
heavily depends on the quality of the retrieval module and the diversity of the source documents. It breaks
the process down into stages: retrieving relevant “inspiration” papers from literature based on a background
question, synthesizing novel hypotheses by combining the background and inspirations and evaluating
the quality of the generated hypotheses. Using LLMs trained on data up to 2023, MOOSE-Chem was
able to rediscover hypotheses from high-impact chemistry papers published in 2024 with high similarity,
showcasing the potential of LLMs to autonomously generate scientifically valid and novel ideas. Another
approach, LLM-Feynman, combines LLM reasoning with optimization techniques to discover interpretable
scientific formulae and theories from data, successfully rediscovering physics formulae and deriving accurate
formulae for materials properties like synthesizability and ionic conductivity [50].

LLMs are also proving adept at synthesis planning and optimization, moving beyond simply extracting
procedures to actively proposing or refining them. The ChemCrow agent, powered by GPT-4 and equipped
with 18 expert-designed tools, demonstrated the ability to autonomously plan and conceptually execute
the synthesis of organic molecules, including organocatalysts [10]. In the realm of inorganic nanomate-
rials, a framework was developed using fine-tuned open-source LLMs for the synthesis of quantum dots
(QDs) [59,67,68]. A dedicated QD synthesis planner framework was recently introduced, combining a
fine-tuned LLM for protocol generation with a property prediction module. This system takes as input
the desired properties (e.g., emission wavelength, particle size) and a masked base protocol, and outputs
optimized synthetic recipes. The generated protocols underwent computational validation, expert review,
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and experimental testing. Impressively, 3 of 6 proposed protocols succeeded in advancing the multi-
objective Pareto front. This study illustrated the feasibility of integrating LLMs into closed-loop design cycles,
though challenges remain in ensuring generalizability and robustness across materials domains. This system
integrates a protocol generation model (taking target properties and a masked reference protocol as input)
and a property prediction model. Generated protocols are validated computationally, assessed for novelty,
evaluated by humans, and finally tested experimentally. This LLM-driven approach successfully generated
QD synthesis protocols that improved target properties and updated the Pareto front for multi-objective
optimization [68]. LLMs have also been used to suggest element libraries for exploring HEAs electrocatalysts
for the ORR, providing a starting point for high-throughput experimental screening [34]. Furthermore,
LLMs can predict suitable precursors for synthesizing target inorganic materials based on patterns learned
from the literature [59] and assist in designing continuous flow microreactor systems [69].

Finally, LLMs can provide design recommendations or suggest specific experimental strategies. The
CataLM model, for instance, was evaluated on a control method recommendation task for electrocatalytic
materials, leveraging its fine-tuned knowledge base [44]. In a study on electrochemical C-H oxidation,
LLMs were prompted to generate Python code that iteratively optimized reaction conditions to improve
yields, demonstrating a collaborative human-AI approach to synthesis optimization (Fig. 5) [51]. These
examples highlight the potential of LLMs to not only generate static plans but also participate in dynamic
optimization loops.

Figure 5: (Continued)
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Figure 5: (A) Design and assembly of the 24-well electrochemical platform and the schematic overview of the
electrochemical C(sp3)−H oxidation process using the electrocatalyst; (B) Semantic literature analysis for reaction data
mining using a language model with natural language prompts. Performance is evaluated by comparing the ground
truth with LLM-assigned labels and examining the impact of prompt quality; (C) Overview of training data preparation
and machine learning models used for predicting electrochemical C−H oxidation reactivity (Task 1) and selectivity
(Task 2). Models with different architectures are evaluated for accuracy and AUC [51]

The application of LLMs in hypothesis generation and synthesis planning is still nascent but holds
immense promise for accelerating the creative and planning aspects of electrocatalyst research. Key chal-
lenges include ensuring the scientific validity and synthesizability of generated outputs and effectively
integrating these AI-driven suggestions with experimental validation and refinement.

3.4 Knowledge Synthesis and Integration
The exponential growth of scientific literature presents a significant challenge for researchers seeking

to stay abreast of developments and synthesize existing knowledge [29]. LLMs, with their advanced natural
language understanding and generation capabilities, offer powerful tools to manage this information deluge,
integrate findings from disparate sources, and present synthesized knowledge in accessible formats [52].

One direct application is automated literature review and summarization. LLMs can process large
numbers of research papers on a specific topic (e.g., propane dehydrogenation catalysts, CO2 reduction
catalysts) and generate comprehensive summaries or structured reviews [29,70]. These automated systems
can significantly reduce the cognitive load on researchers and accelerate the process of understanding the
state of the art. However, ensuring the factual accuracy and proper citation integrity of these generated
reviews is critical. Multi-tier quality control strategies, potentially involving validation against multiple LLMs
or expert verification, are necessary to mitigate the risk of hallucinations—the generation of plausible but
false information—which is a known issue with current LLMs, especially in specialized domains. Studies
have shown that with careful quality control, hallucination risks in generated reviews can be reduced
significantly [29].

LLMs can also facilitate knowledge integration through knowledge graphs (KGs). KGs provide a
structured way to represent entities (like materials, properties, and reactions) and the relationships between
them [40]. LLMs can be employed in the construction of these KGs by automatically extracting entities and
relationships from text. Furthermore, LLMs can interact with existing KGs, allowing researchers to query this
structured knowledge base using natural language [25]. The synergy between the semantic understanding
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of LLMs and the structured representation of KGs is particularly powerful. For example, combining word
embeddings (capturing textual context) with graph embeddings (capturing relational structure from a KG of
Cu-based CO2RR catalysts) led to improved prediction of FE, demonstrating how LLMs can leverage both
unstructured and structured knowledge sources.

By processing vast amounts of extracted data or interacting with KGs, LLMs can assist in trend
analysis and insight generation. They can help identify historical developments in catalyst research, pinpoint
emerging materials or synthesis techniques, and uncover correlations between different factors influencing
catalytic performance (e.g., relationships between catalyst composition, regulation methods, and product
selectivity in CO2RR) [40,70]. This ability to synthesize information across numerous studies can potentially
reveal hidden connections or patterns that might be missed through manual review [19].

The development of intelligent Q&A systems tailored for electrocatalysis is another promising direction.
These systems, often built using LLMs fine-tuned on domain literature or grounded using RAG techniques
with extracted data or KGs, allow researchers to ask specific questions and receive informative answers
supported by evidence from the literature [25,37]. An example is the development of a data-grounded chatbot
for answering questions about MOF synthesis procedures [37].

In essence, LLMs are emerging as crucial tools for knowledge management and synthesis in the rapidly
expanding field of electrocatalysis. By automating literature reviews, facilitating the construction and use
of knowledge graphs, enabling trend analysis, and powering intelligent Q&A systems, they help researchers
navigate, understand, and build upon the collective knowledge embedded within scientific publications,
ultimately fostering a more integrated and accelerated discovery process.

4 Applications, Performance Analysis, and Comparative Insights

4.1 Case Studies across Electrocatalytic Reactions and Materials
The versatility of LLMs is reflected in their application across the major electrocatalytic reactions

critical for energy and environmental technologies. For the HER, which is fundamental to water splitting
for hydrogen fuel production, LLMs and related NLP/ML techniques are being used to accelerate the
discovery of efficient, low-cost catalysts, often aiming to replace expensive platinum-group metals [15,71].
ML frameworks have been developed to screen large numbers of candidate alloys, identifying promising
high-performance materials like AgPd, whose potential was subsequently verified experimentally and com-
putationally under realistic conditions (Fig. 6) [72]. Research specifically targets low-dimensional materials
like nanoparticles, nanotubes, and nanosheets, leveraging ML to predict their HER performance based on
various descriptors [15]. Text mining combined with Word2Vec embeddings and Pareto optimization has
been applied to predict HER-active candidate compositions based on their textual similarity to relevant
properties like conductivity [14]. LLMs are also envisioned to provide direct design guidance for HER
catalysts [42]. High-throughput experimental methods combined with data-driven strategies, potentially
guided by LLM-suggested element libraries, are accelerating the discovery of HER-active HEAs [73].

The OER, the typically sluggish anodic counterpart to HER in water splitting, is another key target.
LLMs are being applied for predictive analytics, for example, in the context of (oxy)hydroxide-based OER
catalysts [36]. While details are emerging, this suggests LLMs are used for tasks like extracting performance
data from literature or predicting activity based on compositional or textual features for these materials. ML,
often coupled with high-throughput experiments or simulations, is actively used to discover and optimize
OER catalysts, including perovskite oxides, where active learning approaches have identified compositions
with exceptionally low overpotentials. Text mining and embedding-based approaches, similar to those used
for HER, are also applied to predict promising OER candidate compositions [14]. LLMs are expected to
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play a role in providing design guidance for OER catalysts as well [42]. Interpretable ML models are being
developed to unify activity prediction across multiple reactions, including OER, using intrinsic material
properties [39].

Figure 6: An ML framework for high-throughput screening of electrocatalysts. In the left of the section “Constructing
Adsorption Database”: Adsorption sites for binary alloys, including ontop, bridge, and hollow sites, denoted by black
star, red “+”, and blue “×”, respectively [72]

The ORR is crucial for fuel cells and metal-air batteries. LLM-based generative models like CatGPT
have been fine-tuned specifically for discovering catalysts for the selective two-electron ORR pathway,
which produces H2O2, a valuable chemical [64,65]. The model successfully generated novel candidate
structures validated by further analysis. In another approach, an LLM provided an initial element library to
guide the high-throughput experimental discovery of Pt-based quinary HEAs for ORR [34]. This involved
microscale precursor printing and rapid screening with scanning electrochemical cell microscopy (SECCM),
demonstrating a powerful synergy between LLM guidance and automated experimentation. Text mining
and embedding-based methods are also used for predicting ORR candidates [14], and LLMs are anticipated
to offer design guidance [42]. ML models are also being developed to optimize HEA compositions for ORR
activity [35].

The CO2RR aims to convert CO2 into valuable fuels and feedstocks, mitigating greenhouse gas
emissions. This area has seen significant LLM application, particularly in knowledge extraction and synthesis.
LLM-enhanced methods have been used to create large corpora detailing CO2RR electrocatalysts (beyond
just Cu-based systems) and their synthesis procedures by extracting information like materials, products,
Faradaic efficiencies (FE), and experimental conditions from thousands of papers [54]. NLP tools have been
used to analyze trends in non-Cu catalysts from literature, identifying emerging materials like perovskites
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and bismuth oxyhalides [70]. A notable study constructed a knowledge graph specifically for Cu-based
CO2RR catalysts using a SciBERT-based framework [40]. This KG not only visualized development trends
but was also used, by combining word and graph embeddings, to predict the FE for specific products,
showcasing the integration of structured and unstructured knowledge. LLMs are also expected to provide
design guidance for CO2RR catalysts [42].

Beyond these specific reactions, LLMs are being applied to broader tasks in catalyst research relevant
to electrocatalysis. This includes text mining and prediction for MOF synthesis using ChatGPT, LLM-
driven synthesis planning for QDs which can have electrocatalytic applications [68], IE for single-atom
heterogeneous catalysts [58], and assisting in the exploration of electrochemical C-H oxidation reactions
through literature mining and code generation for ML model training [51]. These case studies illustrate the
diverse ways LLMs are beginning to impact the field, from large-scale data aggregation to targeted material
prediction and synthesis planning across various important electrocatalytic systems. Table 2 categorizes the
application of LLMs across major electrocatalytic reactions such as HER, OER, ORR, and CO2RR, organizing
them by task type (e.g., property prediction, synthesis planning, knowledge extraction) and highlighting
specific use cases and insights. For example, in the case of CO2RR, LLMs have been utilized for corpus
creation, trend analysis, and FE prediction using hybrid embedding techniques. For HER and OER, LLM-
guided screening has facilitated the identification of promising alloy compositions. This table crystallizes how
LLMs function as modular tools across the catalyst discovery landscape, tailored to the nuances of different
electrochemical reactions.

Table 2: Overview of LLM applications in specific electrocatalytic reactions

Reaction LLM task Specific examples/Refs. Key insights/Findings
for reaction

HER Property
prediction/Design

ML framework for alloy
discovery (AgPd) [72]; ML for

low-dim catalysts [15]; Text
mining/Word2Vec

prediction [14]; LLM design
guidance [42]; HEA discovery

w/HT expts [73]

Acceleration of alloy
screening; Prediction

based on text similarity;
Guidance for catalyst

design

OER Property
prediction/Design

LLM predictive analytics for
(oxy)hydroxides [36]; ML/AI

for perovskites [36]; Text
mining/Word2Vec

prediction [14]; LLM design
guidance [42]; Interpretable ML

for activity [39]

Prediction for specific
material classes;

Text-based candidate
screening; Design

guidance

ORR
Structure

generation/Design
CatGPT fine-tuned for 2e-ORR

catalyst discovery [65]
Discovery of novel
2e-ORR candidates

Element
selection/Design

LLM generating element library
for Pt-HEA discovery +HT

expts [34]

LLM-guided
high-throughput

discovery workflow

(Continued)
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Table 2 (continued)

Reaction LLM task Specific examples/Refs. Key insights/Findings
for reaction

Property
prediction/Design

Text mining/Word2Vec
prediction [14]; LLM design

guidance [42]; ML optimization
for HEAs [35]

Text-based candidate
screening; Design

guidance

CO2RR
IE/Corpus creation LLM-enhanced corpus creation

(general CO2RR) [54]; NLP
review of non-Cu catalysts [70]

Large-scale data
aggregation; Trend
analysis beyond Cu

KG Construction/FE
Prediction

KG for Cu-based catalysts
(SciBERT); FE prediction via

word + graph embeddings [40]

Structured knowledge
representation;

Prediction integrating
semantics & structure

Design guidance LLM design guidance [42] Guidance for catalyst
design

General/Other
Synthesis planning LLM for QD synthesis [68];

ChatGPT for MOF
synthesis [37]

Optimization of
nanomaterial synthesis

protocols
IE LLM for MOF synthesis [37];

LLM for single-atom
catalysts [58]; LLM for C-H

oxidation lit. mining [51]

Data extraction for
specific catalyst
types/reactions

Property prediction CatBERTa for adsorption
energy [61]

Text-based prediction of
fundamental catalytic

properties

4.2 Comparative Analysis of LLM Approaches
As LLMs become more integrated into electrocatalysis research, understanding the nuances between

different models, training strategies, and application frameworks is crucial for selecting and developing
effective tools.

Regarding model architectures, the field utilizes both BERT-based encoders (like SciBERT, RoBERTa
used in CatBERTa, MatBERT) primarily for understanding and classification tasks, and GPT-style decoders
or encoder-decoders for generative tasks like text generation, hypothesis generation, or synthesis plan-
ning [40,44,46,61,68]. BERT-based models excel at extracting semantic meaning and have shown strong
performance in NER and property prediction from text [40,60,61]. GPT-based models, with their strong
generative capabilities, are increasingly used for proposing synthesis routes, generating novel structures, or
acting as conversational agents [37,49,65,68]. The choice of architecture often depends on the primary goal,
whether it is analyzing existing text or generating new information.

Training strategies significantly impact performance. While general-purpose LLMs like GPT-4 can
perform reasonably well on some tasks using sophisticated prompt engineering [37,46], studies consistently
show that domain-specific pre-training or fine-tuning yields substantial improvements for specialized scien-
tific tasks [10,44,54,60]. Models like MatBERT (pre-trained on materials science literature) [60], CatBERTa
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(fine-tuned RoBERTa for catalyst energy prediction) [61], and CataLM (Vicuna fine-tuned on electrocatalysis
literature and expert data) [44] demonstrate enhanced understanding of domain terminology and con-
cepts, leading to higher accuracy in tasks like NER, property prediction, and recommendation [44,60,61].
Parameter-Efficient Fine-Tuning (PEFT) techniques are also being adopted to adapt large models to specific
tasks more efficiently, as seen in the QD synthesis planning framework [68]. The trade-off lies between the
versatility of large general models and the specialized accuracy of fine-tuned models, with the latter often
preferred for demanding scientific applications where domain knowledge is critical.

The type of input data processed by the LLM also differentiates approaches. Many applications focus
purely on textual input, leveraging LLMs’ core strength in NLP [60,61]. CatBERTa predicts energy from tex-
tual descriptions [61], and MOOSE-Chem generates hypotheses from background questions and literature
text [49]. Other methods integrate structured data or embeddings. The Cu-CO2RR KG study combined word
embeddings from text with graph embeddings from the structured KG for FE prediction [40]. Word2Vec
embeddings derived from abstracts were used as numerical inputs for Pareto optimization [14]. The future
direction clearly points towards multimodal inputs, integrating text with figures, tables, and potentially
experimental data streams, although this remains a significant developmental challenge [27,42].

Finally, LLMs are being applied both as standalone tools and as components within larger integrated
workflows. Standalone applications might involve using an LLM directly for Q&A, summarization, or predic-
tion based on a prompt [37,61]. Integrated approaches are becoming more common and powerful. Examples
include using LLM-based IE to populate databases that feed into downstream ML models [56], employing
LLMs to generate code for ML model training or optimization [51], combining LLMs with knowledge
graphs [40], and embedding LLMs within autonomous laboratory frameworks to guide experiments [34].
These integrated systems leverage the LLM’s language and reasoning capabilities while connecting them
to other computational tools or physical experiments, amplifying their impact. The trend suggests a move
towards more sophisticated, integrated systems where LLMs act as orchestrators or intelligent interfaces
within broader scientific discovery pipelines. Table 3 presents a systematic comparison of various LLM
frameworks applied to IE tasks within electrocatalysis. It categorizes each model by the specific task (e.g.,
band gap extraction, synthesis parameter identification), the source and size of input data, and the resulting
output format. Additionally, the table evaluates each model’s effectiveness and limitations based on published
benchmarks and practical deployment. For instance, GPT-4 demonstrates strong performance in general
extraction tasks but suffers from hallucination and high computational costs. In contrast, domain-specific
models like CataLM and SciBERT-BiLSTM-CRF offer improved accuracy in materials entity recognition
within defined contexts (e.g., CO2RR), albeit at the cost of requiring domain-specific training data. This
comparative analysis highlights the trade-offs between generalizability and domain accuracy in current
LLM-powered IE pipelines.

Table 3: Overview of LLMs applied to electrocatalyst information extraction

Model/Framework Task Input data
(Source, Size)

Output format Comparative evaluation:
effectiveness, efficiency,

and limitations

Refs.

GPT-4 Band gap
extraction

415 random
materials

science articles
(manual eval)

Band gap values,
materials

Effectiveness: 88%
accuracy. Efficiency: High
GPU demand (e.g., A100).

Limitations: Prone to
hallucination,

general-domain model.

[46]

(Continued)
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Table 3 (continued)

Model/Framework Task Input data
(Source, Size)

Output format Comparative evaluation:
effectiveness, efficiency,

and limitations

Refs.

ChatGPT
(GPT-3.5/4)

MOF synthesis
extraction

Peer-reviewed
MOF articles
(~800 MOFs)

26k+ synthesis
parameters
(structured)

Effectiveness: F1 90%–99%.
Efficiency: Fast inference
with engineered prompts.

Limitations:
Context-length sensitivity,
depends on prompt clarity.

[37]

SciBERT +
BiLSTM-

CRF/BERT-
BiLSTM-CRF

CO2RR entity
recognition

835
publications

(benchmark);
372 full texts
(extended)

Entities (Material,
Method, Product,

FE, etc.)

Effectiveness: Micro-F1
~82%. Efficiency: Moderate
training cost. Limitations:

Requires annotated
corpora, limited to CO2RR

context.

[56]

LLMs
(General) +

NLP
Techniques

CO2RR corpus
creation &
synthesis
extraction

5941
documents
(metadata);

2776 full texts

Benchmark corpus
(7k records);

Extended corpora
(77k + 30k records);

Action sequences

Effectiveness:
Comprehensive corpus

created. Efficiency: Costly
pretraining + fine-tuning.

Limitations: Requires large,
domain-specific data.

[54]

ChatExtract
(Conversa-
tional LLM,
e.g., GPT-4)

General
materials data

extraction

Research
papers (test sets

mentioned)

Extracted data
points

Effectiveness: ~90%
precision/recall. Efficiency:
Lightweight conversational

method. Limitations:
Hallucination possible,

context-sensitive.

[36]

NLP Tools
(General)

CO2RR
literature

review
(non-Cu)

7292 published
articles

Trends, emerging
materials

(perovskites,
Bi-oxyhalides),

common elements,
electrolytes

Effectiveness: Qualitative
trend mapping. Efficiency:

Text-only mining; low
compute need. Limitations:

Lacks structured
extraction.

[70]

CataLM
(Fine-tuned
Vicuna-13B)

Entity
extraction

(Electrocataly-
sis)

Domain
literature,

expert
annotations

Entities (Material,
Method, Product,

FE, etc.)

Effectiveness: High
domain-specific accuracy.
Efficiency: PEFT applied
for tuning. Limitations:

Performance drops outside
domain.

[44]

Transformer
(ACE)

Information
extraction

(SACs)

Literature Structured data Effectiveness: Focused and
relevant SAC data.
Efficiency: Narrow

application. Limitations:
Unclear generalizability,

lacks metric benchmarks.

[58]

4.3 Performance Evaluation and Benchmarking
Assessing the performance of LLMs in the specialized domain of electrocatalysis requires appropriate

metrics and rigorous evaluation, although standardized benchmarks are still largely lacking [16,22]. The
metrics used vary depending on the specific task being performed. For IE tasks like NER and relation
extraction, standard NLP metrics such as Precision, Recall, and F1-score are commonly employed [36,37].
These metrics quantify the accuracy of identifying entities and relationships compared to a ground truth
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(often manually annotated data). For instance, the ChatGPT-based MOF synthesis extraction achieved F1
scores of 90%–99% using careful prompt engineering, while the BERT-BiLSTM-CRF model for CO2RR
entity recognition reached micro-average F1 scores of around 82% [56]. The ChatExtract method reported
precision and recall close to 90% for materials data extraction.

In property prediction, common regression metrics are used when predicting continuous values like
adsorption energy or FE. MAE is frequently reported, indicating the average absolute difference between
predicted and true values [60,61,72]. CatBERTa reported MAEs between 0.35 and 0.75 eV for adsorption
energy prediction, depending on the dataset and input features [61]. The R2 is also used to measure the
proportion of variance explained by the model [50]. For classification tasks (e.g., predicting synthesizability
or classifying materials based on properties), accuracy and metrics like the Matthews correlation coefficient
are used [60].

Evaluating generative and planning tasks requires different approaches. For hypothesis generation,
metrics might include similarity scores to known valid hypotheses or expert evaluation of novelty and
feasibility [49]. For structure generation, validity checks (e.g., detecting overlapping atoms, and ensuring
chemical sensibility) are crucial, alongside assessing the novelty and predicted properties of the generated
structures [64]. For synthesis planning (e.g., LLM-driven QD synthesis), success can be measured by the rate
at which generated protocols lead to successful experiments, improve target properties, or advance the Pareto
front in multi-objective optimization [68]. The QD synthesis work reported that 3 out of 6 LLM-generated
protocols updated the Pareto front.

Beyond accuracy metrics, efficiency is also a key evaluation criterion. This can involve measuring the
reduction in time required for tasks like literature review (e.g., seconds per article for automated review
generation [29]) or the potential reduction in computational or experimental cost achieved by using LLM
predictions to guide efforts [56].

Despite these reported successes, a significant benchmarking gap exists. There is a lack of standardized,
publicly available benchmark datasets and evaluation protocols specifically designed for testing LLMs on
various tasks within electrocatalysis or even the broader field of materials science [16,22]. This makes
it challenging to directly compare the performance of different models and methodologies developed in
separate studies. Establishing such benchmarks would be crucial for driving progress and ensuring rigorous
assessment of new LLM approaches. Current evaluations often rely on specific internal datasets or compar-
isons against limited baselines, highlighting the need for community-wide efforts in developing standardized
evaluation frameworks. Table 4 summarizes the predictive performance of different LLM-based frameworks
in estimating key electrocatalytic properties such as adsorption energy and FE. The models are organized
by input type (e.g., textual descriptions, word or graph embeddings), predicted properties, target catalyst
systems, and quantitative performance metrics (e.g., MAE, accuracy). For example, CatBERTa—trained
on structured textual inputs like composition and surface features—achieved an MAE of 0.35–0.75 eV for
adsorption energy predictions, making it a compelling alternative to more computationally demanding
Graph Neural Networks. Other models, such as those using hybrid word-graph embeddings, demonstrated
strong performance in FE prediction tasks for Cu-based CO2RR catalysts. The table emphasizes how LLMs
can complement or even rival traditional methods by enabling property prediction from semantically rich,
yet structurally limited, inputs. These insights are particularly relevant for scenarios where experimental
or atomic-scale data is sparse or unavailable. Table 5 highlights key frameworks and models that harness
the generative and planning capabilities of LLMs within the realm of electrocatalyst research. It details
each framework’s core task (e.g., hypothesis generation, structure proposal, synthesis optimization), material
focus, the LLM’s specific role (e.g., retriever, generator, predictor), and outcomes or validation methods. For
instance, MOOSE-Chem uses a multi-agent architecture for autonomous hypothesis formation in chemistry,
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while CatGPT excels at proposing valid catalyst structures for 2e-ORR through fine-tuned autoregressive
generation. Other systems like the LLM-Feynman framework demonstrate symbolic regression abilities,
rediscovering known physical laws, while QD-focused models successfully improved experimental synthesis
outcomes using Pareto optimization. This table illustrates the growing sophistication of LLM-enabled
systems capable of creativity, planning, and real-world lab guidance, bridging the gap between literature
mining and experimental realization.

Table 4: Performance comparison of LLMs for electrocatalyst property prediction

Model/Framework Input type Predicted
property

Material
system/Reaction

Performance
metric/Value

Comparative
evaluation:

effectiveness,
efficiency, and

limitations

Refs.

CatBERTa
(RoBERTa-

based)

Textual
description

(Composition,
Structure
features)

Adsorption
energy

General catalysts
(OC20 dataset)

MAE: 0.75 eV (100k
data); MAE: 0.35 eV

(high-accuracy subset)

Effectiveness: MAE
0.35–0.75 eV.

Efficiency: Requires
moderate fine-tuning.

Limitations: Less
precise than GNNs for

local atomic
interactions.

[61]

Word2Vec +
Pareto

Optimization

Word
embeddings

(from Abstracts)

Similarity to
‘Conductiv-

ity’/‘Dielectric’
(proxy for
activity)

Candidate
Compositions
(e.g., AgPdPt,

AgPdRu)/HER,
OER, ORR

Predicted
high-performing

compositions matched
experimental trends

Effectiveness: High
match with experiment.
Efficiency: Lightweight;

corpus-based.
Limitations: Relies on

textual semantic
similarity, lacks explicit

structural context.

[14]

LLM (SciBERT)
+ KG

Embeddings +
DL

Word
embeddings +

Graph
Embeddings

FE Cu-based
Catalysts/CO2RR

Demonstrated FE
prediction capability

Effectiveness: Good FE
prediction. Efficiency:

Requires graph
construction.

Limitations: Dependent
on quality of both text

and KG data.

[40]

Transformer
(MatBERT)

Textual
Description

(Robocrystallog-
rapher)

Energy above hull,
Band gap, SLME,

Spin-orbit
spillage, Magnetic

moment
(Classification)

General inorganic
materials

Accuracy > GNNs
(ALIGNN) for 4/5
properties; High

accuracy even with
small datasets

Effectiveness: High
classification accuracy.
Efficiency: Pretrained

model with lightweight
fine-tuning.
Limitations:

Performance depends
on

Robocrystallographer
input quality.

[60]

Table 5: LLM-driven hypothesis generation and synthesis planning examples

Framework/Model Task Material focus LLM role Key
outcome/Validation

Comparative
evaluation:

effectiveness,
efficiency, and

limitations

Refs.

MOOSE-Chem Hypothesis
generation

General chemistry Retrieval,
synthesis, ranking

(Multi-agent)

Rediscovered novel
hypotheses from 2024

papers with high
similarity

Effectiveness: High
novelty similarity.

Efficiency: Multi-agent
but scalable.
Limitations:

Performance depends
on retriever quality.

[49]

(Continued)



Comput Mater Contin. 2025;84(2) 1943

Table 5 (continued)

Framework/Model Task Material focus LLM role Key
outcome/Validation

Comparative
evaluation:

effectiveness,
efficiency, and

limitations

Refs.

CatGPT
(GPT-based)

Structure
generation

Inorganic
catalysts

(OC20)/2e-ORR
Catalysts

Generator Generated valid catalyst
structures; Discovered 5

novel 2e-ORR
candidates after

fine-tuning

Effectiveness:
Discovered 5 new

candidates. Efficiency:
Heavy compute during

generation. Limitations:
Validity filtering

needed post-generation.

[65]

LLM-Feynman Formula/Theory
discovery

Physics, materials
science

(Synthesizability,
ionic conductivity,

bandgap)

Symbolic
regression,
interpreter

Rediscovered >90%
physics formulae;

Derived interpretable
formulae for materials
properties (Acc > 90%,

R2
> 0.8)

Effectiveness: >90%
formula rediscovery.
Efficiency: Symbolic
regression efficient.

Limitations: May not
scale to highly complex

systems.

[50]

LLM-driven
framework

(Fine-tuned
Open LLM +

PEFT)

Synthesis plan-
ning/Optimization

Quantum Dots
(QDs)

Generator,
Predictor

Generated 6 protocols;
3 updated Pareto front;

All improved ≥ 1
property; Validated

experimentally

Effectiveness: All
generated protocols

improved some targets.
Efficiency: PEFT used.

Limitations: Dependent
on accurate property

predictor.

[59]

LLM
(unspecified)

Element selection Pt-based
high-entropy

alloys
(HEAs)/ORR

Generator
(Element library)

Provided element
library guiding

high-throughput
experimental screening

(SECCM)

Effectiveness: Enabled
targeted HT screening.

Efficiency: Fast
suggestion generation.

Limitations: No
accuracy benchmark

reported.

[34]

LLM
(unspecified) +

Code
Generation

Synthesis
optimization

Electrochemical
C-H Oxidation

Code generator
(for ML

optimization)

Iteratively improved
reaction yields based on

prompts; Optimized
conditions for 8

drug-like substrates

Effectiveness: Improved
multi-objective

outcomes. Efficiency:
Code auto-generation

fast. Limitations:
Prompt dependency
and generalizability.

[51]

ChemCrow
(GPT-4 + Tools)

Synthesis
planning

Organic
molecules (incl.

Organocatalysts)

Planner, tool-user
(Agent)

Autonomously planned
and executed syntheses

Effectiveness:
Demonstrated

successful planning.
Efficiency: Combined

with external tools.
Limitations:

Hallucination and
chaining logic errors

possible.

[10]

CataLM
(Fine-tuned
Vicuna-13B)

Control method
recommendation

Electrocatalytic
Materials

Recommender Validated on
recommendation task

using domain
knowledge

Effectiveness: Relevant
method suggestions.

Efficiency: Fast
inference. Limitations:

Domain-specific tuning
required.

[44]

5 Challenges, Limitations, and Future Outlook
While the application of LLMs in electrocatalyst research holds significant promise, the field faces

substantial challenges and limitations that must be addressed to realize its full potential. Concurrently,
exciting future directions are emerging, pointing towards more powerful and integrated AI-driven
discovery workflows.



1944 Comput Mater Contin. 2025;84(2)

5.1 Current Challenges and Limitations
Several key hurdles currently impede the widespread and reliable application of LLMs in electrocatalyst

design. A fundamental issue lies with data. Despite the vastness of scientific literature, accessing high-quality,
comprehensive, and standardized data remains difficult [10,16,22]. LLM training requires large datasets,
but electrocatalysis data can be sparse for specific materials or reactions, heterogeneous due to varying
experimental conditions and reporting standards, and potentially biased due to the tendency to underreport
negative results [13,22,27]. Extracting complete information is further complicated by knowledge fragmented
across multiple publications and supplementary materials, which current LLMs struggle to synthesize
effectively [27].

The interpretability and explainability of LLMs pose another significant challenge. Many state-of-the-art
models function as “black boxes”, making it difficult to understand why they make a particular prediction or
suggestion [22]. This lack of transparency hinders scientific understanding, trust in the model’s output, and
the ability to extract generalizable design principles [10]. While techniques like attention analysis or post-hoc
explanations offer some insight [61], achieving true mechanistic understanding from LLM outputs remains
an open research area.

Hallucinations and factual inaccuracy represent a critical barrier to the reliable use of LLMs in
science [27,46,50,54]. LLMs can generate text that sounds scientifically plausible but is factually incorrect,
unsubstantiated, or physically inconsistent. This risk is potentially amplified in specialized domains like
electrocatalysis where the training data might be less comprehensive compared to general text [29]. Rigorous
validation and mitigation strategies, such as RAG, careful prompting, and expert verification, are essential
but add complexity to the workflow [29,36].

Current LLMs also exhibit limitations in domain knowledge grounding and reasoning [27,50]. While
they possess vast general knowledge, their understanding of fundamental materials science and electro-
chemistry principles can be shallow. They struggle with complex numerical reasoning, unit conversions,
understanding intricate chemical notations (e.g., varied formulae, crystallographic information like CIF
files), and applying core concepts like crystal symmetry or reaction stoichiometry correctly [27]. This limits
their ability to perform deep, physically grounded reasoning. The predominantly text-based nature of most
current LLMs restricts their ability to process multimodal data. Scientific publications in materials science
heavily rely on figures (micrographs, diffraction patterns, performance plots), complex tables, and chemical
structure diagrams to convey crucial information. LLMs that cannot interpret these visual or tabular formats
miss a significant portion of the available knowledge.

Finally, even with advanced AI predictions, the experimental validation bottleneck persists [10,27].
Any catalyst candidate or synthesis plan proposed by an LLM must ultimately be tested in the laboratory, a
process that remains resource-intensive and time-consuming. LLMs primarily accelerate the in silico stages
of discovery and design.

5.2 Future Research Directions
Addressing the current limitations and harnessing the full potential of LLMs in electrocatalysis

necessitates focused research efforts along several key directions.
A critical need is the development of specialized Materials Science LLMs (MatSci-LLMs). This involves

moving beyond general-purpose models towards architectures pre-trained or extensively fine-tuned on vast
corpora of materials science literature, textbooks, and databases. Such models would possess deeper domain
knowledge, better understand specialized terminology and notations (including chemical formulas and
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crystallographic data), and exhibit improved reasoning capabilities grounded in materials science principles.
Examples like MatSciBERT, CataLM, and CatBERTa represent early steps in this direction [44,61].

The development of multimodal LLMs is arguably one of the most crucial future directions. Models
capable of seamlessly integrating and reasoning over information from text, tables, figures (plots, images,
schematics), chemical structures, and potentially experimental data streams (e.g., spectra) will unlock a
much larger fraction of scientific knowledge and enable more holistic analysis [27,42].

Improving reasoning capabilities and grounding LLM outputs in fundamental physical and chemical
laws is essential for generating scientifically valid and reliable predictions or hypotheses. Integrating LLMs
with physics-informed AI principles, where physical constraints or knowledge are incorporated into the
model architecture or training process, holds significant promise [10,17,22].

Enhancing interpretability and explainability (XAI) remains paramount for building trust and extract-
ing scientific insights [22,60,74]. Future work should focus on developing robust XAI techniques tailored for
LLMs in scientific domains, allowing researchers to understand the basis of model predictions and identify
potential failure modes.

Continued research into mitigating hallucinations is vital for scientific applications where factual accu-
racy is non-negotiable. This includes refining techniques like RAG, developing better-prompting strategies,
improving fine-tuning methods focused on factuality, incorporating self-evaluation mechanisms within
LLMs, and utilizing multi-agent frameworks for cross-validation [49].

The community needs to establish standardized datasets and benchmarks for evaluating LLMs on
various electrocatalysis-related tasks [16,22]. This will enable objective comparison of different models and
methodologies, track progress more effectively, and identify areas needing further improvement.

A highly promising future direction is the integration of LLMs with autonomous experimentation
platforms or Self-Driving Laboratories (SDLs) [75]. In such closed-loop systems, LLMs could analyze
previous results, consult literature knowledge, propose the next set of experiments, generate the necessary
code to control robotic hardware, interpret incoming data, and iteratively refine the search for optimal
catalysts or synthesis conditions. This synergy between AI-driven decision-making and automated execution
has the potential to dramatically accelerate the pace of discovery.

6 Conclusion
The integration of LLMs into the field of electrocatalysis represents a nascent but rapidly advancing

frontier with the potential to reshape materials discovery and design. This review has highlighted the
diverse methodologies being employed, spanning automated information extraction from the vast scientific
literature, novel approaches to property prediction based on textual data and embeddings, the generation
of hypotheses for new materials and synthesis routes, and the synthesis of knowledge scattered across
countless publications. Case studies across critical reactions like HER, OER, ORR, and CO2RR demonstrate
tangible progress, with LLMs contributing to the creation of valuable datasets, the prediction of catalytic
performance, and even the suggestion of novel catalyst candidates and optimized synthesis protocols. Models
specifically adapted to the materials science domain, such as CatBERTa and CataLM, alongside innovative
frameworks like MOOSE-Chem and LLM-driven synthesis planners, showcase the growing sophistication
of these tools. However, significant challenges remain. Issues surrounding data availability and quality,
the inherent “black-box” nature and potential for hallucinations in LLMs, limitations in deep scientific
reasoning and multimodal data processing, and the persistent need for experimental validation must
be rigorously addressed. Overcoming these hurdles will require concerted efforts in developing domain-
specific and multimodal models, enhancing interpretability and factual grounding, establishing standardized



1946 Comput Mater Contin. 2025;84(2)

benchmarks, and fostering collaborative research practices. The fusion of LLMs with physics-informed AI,
their incorporation into autonomous experimental workflows within self-driving laboratories, and their role
as sophisticated collaborators alongside human researchers promise to significantly accelerate the pace of
innovation. By effectively harnessing the ability of LLMs to process, synthesize, and generate knowledge from
the ever-expanding body of scientific literature, we can anticipate a future where the rational design and
discovery of advanced micro/nano electrocatalyst materials—crucial components for a sustainable energy
landscape—is achieved with unprecedented speed and efficiency.
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