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ABSTRACT: Food waste presents a major global environmental challenge, contributing to resource depletion,
greenhouse gas emissions, and climate change. Black Soldier Fly Larvae (BSFL) offer an eco-friendly solution due
to their exceptional ability to decompose organic matter. However, accurately identifying larval instars is critical for
optimizing feeding efficiency and downstream applications, as different stages exhibit only subtle visual differences. This
study proposes a real-time mobile application for automatic classification of BSFL larval stages. The system distinguishes
between early instars (Stages 1–4), suitable for food waste processing and animal feed, and late instars (Stages 5–6),
optimal for pupation and industrial use. A baseline YOLO11 model was employed, achieving a mAP50-95 of 0.811.
To further improve performance and efficiency, we introduce YOLO11-DSConv, a novel adaptation incorporating
Depthwise Separable Convolutions specifically optimized for the unique challenges of BSFL classification. Unlike
existing YOLO+DSConv implementations, our approach is tailored for the subtle visual differences between larval
stages and integrated into a complete end-to-end system. The enhanced model achieved a mAP50-95 of 0.813 while
reducing computational complexity by 15.5%. The proposed system demonstrates high accuracy and lightweight
performance, making it suitable for deployment on resource-constrained agricultural devices, while directly supporting
circular economy initiatives through precise larval stage identification. By integrating BSFL classification with real-
time AI, this work contributes to sustainable food waste management and advances intelligent applications in precision
agriculture and circular economy initiatives. Additional supplementary materials and the implementation code are
available at the following link: YOLO11-DSConv, Server Side, Mobile Application.

KEYWORDS: Deep learning; convolutional neural networks (CNNs); YOLO11-DSConv; black soldier fly larvae
(BSFL); real-time object detection

1 Introduction
Food waste is a pressing global issue, contributing significantly to greenhouse gas emissions and climate

change. When decomposed in landfills, food waste produces methane, a greenhouse gas approximately 28
times more potent than carbon dioxide in trapping heat [1]. Additionally, the entire life cycle of food–
from production to disposal-places a substantial burden on environmental resources. Tackling this problem
requires innovative, scalable, and sustainable approaches that not only mitigate environmental harm but also
recover value from waste streams.

Recent studies have demonstrated that real-time deep learning models, such as those used for bacterial
detection in water quality monitoring, can significantly enhance decision-making efficiency in biological
systems [2]. These advances highlight the potential of AI-powered methods in optimizing agricultural waste
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processing, particularly in applications such as BSFL-based recycling. One promising biological solution
involves the use of Black Soldier Fly Larvae (BSFL, Hermetia illucens), which exhibit remarkable efficiency in
decomposing organic matter. BSFL can transform food scraps into high-protein biomass suitable for animal
feed and other value-added applications, contributing to circular economy practices. Prior studies have
shown that BSFL can replace conventional protein sources such as fish meal in aquaculture, offering both
nutritional benefits and sustainability advantages [3]. Additionally, advancements in rearing techniques have
improved waste conversion rates and the nutritional quality of larvae [4], while optimized feeding conditions
have enhanced their bioconversion performance [5]. BSFL products are now increasingly considered suitable
for human consumption and pet food, further underscoring their versatility and global relevance [6].

To fully leverage the benefits of BSFL in large-scale applications, accurate classification of larval growth
stages is essential. Early-stage larvae (Stages 1–4) are ideal for animal feed production, while later stages
(Stages 5–6) are more appropriate for pupation and cosmetic or industrial uses. However, distinguishing
these stages based on subtle morphological differences remains a technical challenge. To address this, we
propose a novel machine learning–based system capable of automatically classifying BSFL growth stages.
Leveraging YOLO11 [7], a high-performance object detection framework, the system achieved a preliminary
mAP50-95 of 0.811. We further enhanced the model by introducing YOLO11-DSConv, which integrates
Depthwise Separable Convolutions (DSConv) to improve computational efficiency, reaching an mAP50-95
of 0.813. While DSConv has been applied to YOLO variants in general object detection contexts, our work
makes several distinct contributions: 1) We present the first application of DSConv-enhanced YOLO specif-
ically optimized for the unique challenges of BSFL classification, where visual differences between stages are
subtle yet biologically significant; 2) We provide a complete end-to-end system architecture that bridges the
gap between model development and practical agricultural deployment; 3) We introduce a specialized dataset
of 21,600 annotated BSFL images across six growth stages under varied conditions; and 4) We demonstrate
direct integration with circular economy practices through precise identification of optimal larvae for
different applications. This architecture significantly reduces model complexity while maintaining strong
accuracy, making it suitable for real-time applications in resource-constrained agricultural environments. To
ensure usability in field conditions, we implemented the proposed model into a mobile application developed
using Flutter. Users can capture and upload BSFL images for on-device inference, enabling efficient, real-time
classification even in offline scenarios common in farming environments. By integrating AI-based detection
with BSFL farming practices, this work contributes to sustainable waste management, supports circular
agriculture, and demonstrates a scalable technological solution to the global food waste crisis.

2 Related Work and Background

2.1 Black Soldier Fly Larvae (BSFL) in Waste Management
Black Soldier Fly Larvae have received increasing attention for their potential in sustainable agriculture

and organic waste management. Their exceptional capacity to convert organic waste into high-protein
biomass and nutrient-rich frass makes them a key player in circular bioeconomy systems. Early studies
by Sheppard et al. [8] demonstrated BSFL’s effectiveness in simultaneously reducing waste volumes and
producing valuable by-products for animal feed and fertilizer. Building upon this foundation, Van Huis
et al. [6] emphasized their potential to address global protein shortages in livestock production. More recent
work by Amrul et al. [9] and Magee et al. [10] further optimized rearing conditions and substrates, making
BSFL suitable for industrial-scale applications.

As interest in circular agriculture grows, BSFL farming is increasingly viewed as an essential strategy
for sustainable food systems. While much of the existing research focuses on biological performance and
environmental optimization, there is a growing trend toward integrating BSFL production with digital
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technologies such as computer vision and deep learning. These technologies are being explored to automate
critical tasks, including larval stage classification and substrate monitoring, which are vital for scaling up
BSFL-based waste management systems efficiently.

2.2 Deep Learning Applications in Agriculture
In parallel with biological advancements, machine learning—particularly Convolutional Neural

Networks (CNNs), has significantly transformed agricultural practices, enabling precise monitoring,
automation, and decision support. CNN-based approaches have proven effective in tasks such as disease
detection, yield prediction, and pest surveillance. For instance, Yang et al. [11] applied a computer vision–
driven cybernetic system to poultry farming, achieving notable reductions in operating costs. Recent work by
Hung et al. [12] further demonstrated that integrating SPD convolution and SE attention into YOLOv7-tiny
can significantly improve small-object detection, such as hornet monitoring in agricultural environments.

Numerous studies [13–17] have demonstrated CNNs’ versatility across diverse agricultural domains,
from detecting rice plant diseases [13] to classifying flowers [15] and enhancing crop monitoring through
IoT-based platforms [17]. Reviews by Kamilaris and Prenafeta-Boldú [14] and Lu et al. [16] have summarized
key trends and challenges, including the scarcity of labeled datasets, environmental variability, and the need
for models deployable on edge devices. Recent studies have emphasized the role of computer vision and
CNN-based methods in various smart agriculture tasks, including disease diagnosis, yield estimation, and
pest detection, reinforcing the adaptability of deep learning approaches in complex farming environments.

CNNs have also proven adaptable to domains beyond agriculture, reinforcing their robustness.
However, deploying CNNs in resource-limited agricultural settings particularly for real-time object
detection—demands lightweight architectures capable of maintaining high accuracy with reduced compu-
tational loads. This necessity has led to growing interest in efficient models such as YOLO variants and
architectures based on Depthwise Separable Convolutions (DSConv).

2.3 Object Detection Models for Real-Time Inference
Object detection has evolved from two-stage region-based pipelines to one-stage models that offer real-

time performance. Fast R-CNN [18] and Faster R-CNN [19] improved detection speed by refining region
proposal mechanisms. Redmon et al. [20] introduced YOLO (You Only Look Once), a unified framework
that formulates object detection as a single regression problem, achieving substantial gains in inference speed
while maintaining accuracy.

Recent iterations of the YOLO architecture, particularly YOLOv8 [21], have incorporated advanced
modules such as Spatial Pyramid Pooling-Fast (SPPF) to enhance multi-scale feature extraction capabilities.
These architectural improvements have demonstrated significant practical utility in agricultural applications;
notably, Pookunngern and Tsai [22] successfully implemented a YOLO-based framework for precise classi-
fication of BSFL growth stages, thereby facilitating automated larval-stage monitoring and contributing to
the advancement of intelligent waste management systems.

2.4 Depthwise Separable Convolutions (DSConv) in Lightweight AI
Improvements in CNN efficiency have been significantly driven by Depthwise Separable Convolutions

(DSConv), which decompose standard convolutions into a depthwise filtering step followed by a pointwise
combination step. This architecture, popularized by Chollet’s Xception network [23] and MobileNet [24],
reduces the number of parameters and operations while preserving accuracy.
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Subsequent studies have expanded DSConv’s applicability. Haase and Amthor [25] examined intra-
kernel correlations to improve MobileNet performance, and Kaiser et al. [26] demonstrated DSConv’s
suitability for sequence modeling tasks. Bai et al. [27] introduced FPGA accelerators for DSConv to achieve
high-throughput inference, while Lu et al. [28] proposed GPU-level optimizations for edge deployment.

In the agricultural domain, where real-time analysis is required in often resource-constrained environ-
ments, DSConv enables compact, efficient models that perform well on mobile and embedded systems. When
combined with frameworks like YOLO, DSConv contributes to real-time systems for applications ranging
from pest detection to smart waste monitoring [29]. Its advantages in reducing model size and computational
burden without sacrificing performance make it ideal for precision agriculture scenarios that demand local
inference and low-latency decision-making.

In summary, integrating BSFL-based waste management with modern AI techniques offers a promising
direction for sustainable agricultural innovation. BSFL provide a biologically efficient means of valorizing
organic waste, while deep learning models—particularly lightweight CNNs using DSConv—enable scalable,
automated monitoring solutions. The convergence of these domains opens opportunities for real-time,
data-driven decision-making in agricultural systems, furthering global goals in resource efficiency and
food security. While several studies have explored the integration of DSConv with YOLO architectures for
general object detection tasks [30], our work differs in several key aspects. First, existing YOLO+DSConv
adaptations have primarily focused on general-purpose detection scenarios, whereas our approach is
specifically tailored to the unique challenges of BSFL classification, where visual differences between growth
stages are subtle yet biologically significant. Second, prior works have largely emphasized model architecture
improvements in isolation, while our contribution extends beyond model optimization to include a complete
system architecture designed for practical deployment in agricultural settings. Third, our implementation
is specifically optimized for resource-constrained environments common in farming applications, with
particular attention to offline functionality and edge deployment scenarios. These distinctions position our
work not merely as an incremental improvement to existing YOLO+DSConv adaptations, but as a novel
application-specific solution addressing the unique challenges at the intersection of deep learning, precision
agriculture, and circular economy initiatives.

3 System Architecture and Methodology

3.1 System Overview
The proposed system, illustrated in Fig. 1, is a robust and scalable mobile application designed to classify

and detect the growth stages of BSFL in real time. Its architecture integrates a state-of-the-art object detection
model, efficient server-side infrastructure, and a user-friendly mobile interface to deliver accessible and
actionable insights.

The front end of the system is a cross-platform mobile application developed using Flutter, which
supports native performance on Android devices while maintaining compatibility across web and desktop
platforms. Users can capture or upload images of BSFL through a streamlined interface. The results, including
the predicted larval stage and bounding box information, are immediately displayed in the app, making
the system accessible to non-technical users. On the back end, the system utilizes Flask—a lightweight
Python-based web framework—to efficiently manage HTTP requests. To enhance scalability and minimize
performance bottlenecks, load balancing mechanisms distribute incoming traffic across multiple server
instances. The Gunicorn WSGI server acts as a middleware layer between the mobile application and the
Flask API, ensuring smooth and concurrent request handling.
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Figure 1: System architecture of the proposed BSFL detection application

This architecture builds upon the real-time classification framework proposed in [22], which demon-
strated the practical efficiency of Flask-based pipelines in similar tasks. In our system, we improve upon that
framework by internally upgrading the object detection model. While the initial implementation relied on
YOLO11 [7]—which achieved a baseline mAP50—95 of 0.811—we enhanced performance and computational
efficiency by introducing YOLO11-DSConv. This modified version replaces standard convolutions with
Depthwise Separable Convolutions (DSConv), significantly improving both inference speed and scalability
while maintaining high detection accuracy.

This refinement significantly reduces computational complexity by separating the convolution
operation into depthwise and pointwise steps, resulting in a lighter, faster model. Quantitatively, YOLO11-
DSConv-x achieves a 15.5% reduction in model size (from 114.4 to 96.7 MB) and a 15.4% reduction in
parameters (from 56.833 to 48.089 million) compared to the standard YOLO11x. Unlike general-purpose
DSConv implementations, our adaptation is specifically optimized for the unique challenges of BSFL
classification, where visual differences between growth stages are subtle yet critical for proper waste
management applications. Despite its reduced resource demands, YOLO11-DSConv achieved an mAP50-95
score of 0.813, excelling in detecting objects of various sizes and complexities. The system operates seamlessly,
beginning with the user capturing and uploading images via the mobile application. These images are
transmitted to the server, where the YOLO11-DSConv model performs the classification. The server then
returns detailed results, including detected growth stages, confidence scores, and bounding boxes, which
are displayed to the user instantly. What distinguishes our implementation from existing YOLO+DSConv
adaptations is the complete integration into an end-to-end system specifically designed for agricultural
applications. The workflow ensures high accuracy and scalability, making the system suitable for large-scale
deployments in farming environments where resource constraints and connectivity challenges are common.
By integrating our specialized YOLO11-DSConv model, scalable server architecture, and an intuitive mobile
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application, this system directly optimizes BSFL utilization in waste recycling and supports the circular
economy through precise identification of optimal larvae for different applications. The incorporation of our
tailored Depthwise Separable Convolutions further enhances computational efficiency, enabling deployment
on resource-constrained devices common in agricultural settings. This architecture highlights the system’s
adaptability for diverse applications, including agricultural monitoring, environmental sustainability, and
industrial automation, representing a significant advancement beyond incremental model improvements.

3.2 YOLO11-DSConv Architecture
The YOLO11-DSConv model introduces a significant improvement in object detection by addressing

the computational limitations of traditional convolutional neural networks (CNNs) in resource-constrained
environments. Through the integration of Depthwise Separable Convolutions (DSConv), the model achieves
reduced complexity while preserving, or even enhancing, detection accuracy.

DSConv decomposes a standard convolution operation into two stages: a depthwise convolution that
performs spatial filtering independently on each input channel, followed by a pointwise convolution that uses
a 1× 1 kernel to combine the filtered features across channels. This separation substantially lowers the number
of parameters and floating-point operations (FLOPs), resulting in a lightweight yet powerful architecture
suitable for real-time inference.

Depthwise Separable Convolutions
In our YOLO11-DSConv model, we replace standard convolutions with Depthwise Separable Convolu-

tions (DSConv) to reduce computational complexity while maintaining detection accuracy. Mathematically,
a standard convolution operation with input X, kernel K, and output Y can be represented as:

Y = X ∗ K (1)

In DSConv, this operation is decomposed into two steps:
1. Depthwise convolution, which applies a separate filter to each input channel:

Z = X ∗d Kd (2)

where ∗d denotes the depthwise convolution operation.
2. Pointwise convolution, which uses 1 × 1 convolutions to combine the outputs:

Y = Z ∗ Kp (3)

where Kp represents 1 × 1 convolution kernels. This decomposition significantly reduces the computational
complexity from O(D2

k ⋅M ⋅ N ⋅ D
2
F) to O(D2

k ⋅M ⋅ D
2
F +M ⋅ N ⋅ D2

F), where Dk is the kernel size, M is the
number of input channels, N is the number of output channels, and DF is the feature map size. For our
BSFL classification task, this results in a 15.5% reduction in model size (from 114.4 to 96.7 MB) and a
15.4% reduction in parameter count (from 56.833 to 48.089 M) compared to the standard YOLO11 model,
while maintaining comparable or slightly better detection accuracy. In our implementation, we applied a
comprehensive substitution strategy, replacing all standard convolutional layers throughout the backbone,
neck, and head components with their DSConv equivalents. This approach was chosen to maximize
computational efficiency across the entire model architecture.

As depicted in Fig. 2, the YOLO11-DSConv architecture retains the classic backbone-neck-head struc-
ture of YOLO11, with DSConv replacing conventional convolutional layers. The backbone, composed of
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DSConv layers and C3k2 modules, effectively captures spatial and semantic features with reduced compu-
tational overhead. These features are then passed to the neck, which fuses multi-scale information through
modules such as Spatial Pyramid Pooling-Fast (SPPF) and the Convolutional Block with Parallel Spatial
Attention (C2PSA), enhancing attention to critical regions in complex backgrounds. The refined features
are subsequently routed to the detection head, which outputs bounding boxes, confidence scores, and class
probabilities through three output layers optimized for objects at varying scales.

Figure 2: YOLO11-DSConv model structure for BSFL classification

The model was trained under the same experimental conditions as YOLO11, including a batch size of 16,
an input resolution of 640 × 640 pixels, and 200 training epochs. YOLO11-DSConv achieved an mAP50–95
of 0.813, outperforming the original YOLO11 model, which achieved a score of 0.811.

This performance gain reflects YOLO11-DSConv’s enhanced capability to detect objects of diverse
sizes and complexity, while maintaining high processing speed. Its compact architecture enables real-
time deployment on resource-limited platforms such as smartphones, drones, and edge-based IoT devices.
The model is also well-suited for large-scale applications—including autonomous navigation, industrial
inspection, and agricultural monitoring—where cost-efficiency and low-latency inference are essential.
Overall, the YOLO11-DSConv model represents a notable advancement in lightweight object detection,
offering a balance of speed, accuracy, and scalability for diverse real-world use cases.

3.3 Workflow and Deployment Scenarios
The proposed system is designed to balance user simplicity with back-end scalability. The workflow

begins when a user captures or uploads an image of BSFL through the mobile application. The image is
transmitted to the server via RESTful API calls managed by Flask. Upon receiving the request, the YOLO11-
DSConv model processes the image to detect and classify the BSFL growth stage. The server then returns
a structured response containing bounding box coordinates and the predicted larval category. These results
are immediately displayed within the mobile application through an intuitive interface, enabling real-time
feedback for end users.
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3.3.1 Horizontal Scaling
To support high concurrency and maintain responsiveness under load, the system employs horizontal

scaling at the server layer. Multiple instances of the Flask application, managed by the Gunicorn WSGI
server, are distributed behind an Nginx load balancer. Incoming requests are evenly distributed to prevent
bottlenecks. As demand increases, new instances can be dynamically deployed either on-premises or in cloud
environments, allowing the system to scale seamlessly.

3.3.2 Lightweight Model Deployment
The compact design of the YOLO11-DSConv model-achieved through a reduced number of parameters

and a smaller model size compared to the standard YOLO11 [7]-further contributes to its scalability. Because
each server instance runs the model in memory, the lightweight footprint allows for more concurrent
inferences per server. This is especially advantageous in resource-limited scenarios, such as embedded
platforms or edge devices, where memory and compute resources are constrained.

3.3.3 Edge and Offline Scenarios
In remote or bandwidth-limited environments—such as farms without stable internet connections—

offline or near-edge deployment is essential. YOLO11-DSConv’s lightweight architecture enables local
inference on modest hardware (e.g., single-board computers), allowing for real-time detection without
dependence on central servers or cloud connectivity. Overall, the system architecture ensures rapid and
reliable detections on user devices, while its server-side infrastructure supports dynamic scaling to accom-
modate growing workloads. By combining an optimized detection model with robust load balancing
and flexible deployment strategies, the system demonstrates adaptability across both centralized and
decentralized agricultural applications.

To facilitate real-world deployment in agricultural settings, we have implemented a complete
server-client architecture that enables practical field application of our BSFL classification system. Our
implementation consists of two main components (actual photographs and experimental results of the
deployed system are presented later in Section 4.3):

1) Server-side Infrastructure: The backend system hosts our YOLO11-DSConv model and processes
incoming image requests. The server is built using Flask and Gunicorn for scalability, with the model loaded
in memory for efficient inference. When an image is received, the server performs preprocessing, runs
the YOLO11-DSConv inference, and returns classification results along with size and quantity information.
The complete YOLO11-DSConv model implementation is publicly available at https://zenodo.org/records/
15044013 (accessed on 16 June 2025), and the server-side code is publicly available at https://zenodo.org/
records/15044077 (accessed on 16 June 2025).

2) Mobile Application Interface: We developed a user-friendly mobile application using Flutter that
allows users to capture BSFL images directly in farming environments. The application handles image capture
with automatic quality checks, secure transmission to the server, and intuitive display of classification results.
The mobile application source code is publicly available at https://zenodo.org/records/15044108 (accessed on
16 June 2025).

The cloud transmission process has been optimized for agricultural environments where network
connectivity may be unstable. Our testing shows average response times of 1.2 s under standard 4G
connections, 2.5 s under limited 3G connectivity, and the system includes a local caching mechanism that
allows continued operation during temporary connection loss. When connectivity is restored, the cached
results are synchronized with the server. For situations where internet connectivity is completely unavailable,

https://zenodo.org/records/15044013
https://zenodo.org/records/15044077
https://zenodo.org/records/15044108
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we have implemented an offline mode that deploys a compressed version of the YOLO11-DSConv model
directly on the mobile device. While this version has slightly reduced accuracy (approximately 3% lower
mAP), it ensures continuous operation in remote farming locations. Initial feedback from users indicates
high satisfaction with the system’s responsiveness and accuracy in field conditions. Areas identified for future
improvement include enhanced batch processing capabilities for large-scale operations and integration with
farm management systems for automated record-keeping.

4 Experimental Results and Analysis

4.1 Dataset Preparation and Labeling Strategy
As shown in Fig. 3, the dataset used in this study was specifically curated and annotated to support

effective model training. The actual sizes of the BSFL across different growth stages are also illustrated
in Fig. 4, with a reference scale provided for direct comparison. The training set consists of 21,600 images,
each annotated with one or more instances of BSFL categorized into six distinct growth stages: larva stage
1 through larva stage 6. The dataset contains multiple larvae per image and was compiled from a diverse
range of sources, including web scraping, locally curated image collections, and various camera systems.
This diversity in data sources ensures wide variability in image characteristics such as viewing angles,
lighting conditions, and background complexity—thereby enhancing the model’s generalizability across
real-world scenarios.

Figure 3: Overview of the BSFL dataset with six larval stages

Figure 4: Actual Size of BSFL at different growth stages. The scale below each larvae serves as a reference ruler (in
centimeters)



2464 Comput Mater Contin. 2025;84(2)

All images underwent specific preprocessing steps including auto-orientation of pixel data (with EXIF-
orientation stripping) and standardization to a resolution of 640 × 640 pixels. To enhance model robustness,
we applied data augmentation to create 3 versions of each source image using: 50% probability of horizontal
flip, equal probability of 90-degree rotations (none, clockwise, or counter-clockwise), and random brightness
adjustment between −25 and +25 percent. While specialized feature selection technique such as those
proposed by Parsaei et al. [31] could potentially enhance model performance, our experiments showed that
these preprocessing and augmentation methods provided robust results for our BSFL classification task.

To ensure label consistency across the six larval stages with their subtle visual differences, we collabo-
rated with experienced BSFL cultivation specialists during the annotation process. These experts, with their
extensive practical knowledge of BSFL morphological development, provided critical validation of image
labels, ensuring that the subtle visual differences between consecutive larval stages were accurately identified
and consistently labeled throughout the dataset.

4.2 Quantitative Performance Comparison
Table 1 presents the quantitative evaluation results of YOLO11 [7] and its DSConv-enhanced variant in

classifying and detecting BSFL across six larval stages. All models were trained under identical conditions,
including 200 epochs, a batch size of 16, and an input resolution of 640 × 640 pixels. Both the original YOLO11
and YOLO11-DSConv achieved a high mAP50 of 0.995, demonstrating robust detection performance across
all configurations.

Table 1: Performance comparison between YOLO11 and YOLO11-DSConv

Models mAP50 (All) mAP50-95 (All) Model Size (MB) Params (Million)
YOLO11n 0.995 0.807 6.1 2.904
YOLO11s 0.995 0.810 19.2 9.415
YOLO11m 0.995 0.813 40.5 20.034
YOLO11l 0.995 0.811 51.2 25.283
YOLO11x 0.995 0.811 114.4 56.833

YOLO11-DSConv-n 0.995 0.808 4.9 2.315
YOLO11-DSConv-s 0.995 0.810 17.0 8.347
YOLO11-DSConv-m 0.995 0.812 33.3 16.484
YOLO11-DSConv-l 0.995 0.811 43.3 21.396
YOLO11-DSConv-x 0.995 0.813 96.7 48.089

Notably, the YOLO11-DSConv architecture offers significant improvements in computational efficiency
due to the integration of Depthwise Separable Convolutions. For instance, YOLO11-DSConv-x reached the
highest mAP50-95 of 0.813 with a reduced model size of 96.7 MB and 48.089 million parameters, compared
to YOLO11x’s 114.4 MB and 56.833 million. This efficiency makes it particularly well-suited for deployment
in real-time, resource-constrained environments. Likewise, YOLO11-DSConv-m achieved a strong trade-
off between accuracy and resource usage (mAP50-95 of 0.812), making it a practical candidate for scalable
agricultural implementations.

To visually highlight the trade-off between detection accuracy and model complexity, Fig. 5 illustrates
the relationship between mAP50-95 and parameter count across the YOLO11 and YOLO11-DSConv variants.
The figure clearly shows that the proposed YOLO11-DSConv-x offers the best accuracy-to-complexity
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ratio among the tested models, emphasizing its advantage for precision agriculture under limited hard-
ware resources.

Figure 5: Performance–efficiency comparison of YOLO11 and YOLO11-DSConv variants. YOLO11-DSConv-x (high-
lighted in the red dashed box) achieves the highest accuracy with significantly fewer parameters, highlighting its
suitability for real-time deployment in resource-constrained agricultural applications

To further contextualize our model’s performance, Table 2 compares YOLO11-DSConv-x against several
state-of-the-art object detection models. Both YOLOv9e [32] and YOLO11-DSConv-x achieved the highest
mAP50-95 (0.813). However, YOLO11-DSConv-x required fewer parameters (48.089 vs. 57.381 M) and less
storage (96.7 vs. 117.3 MB), making it a more efficient choice for practical use.

Table 2: Evaluation of YOLO variants and baseline models in detection performance and efficiency

Models mAP50 (All) mAP50-95 (All) Model size (MB) Params (Million)
YOLOv8x [21] 0.995 0.812 136.7 68.129
YOLOv9e [32] 0.995 0.813 117.3 57.381
YOLOv10x [33] 0.995 0.809 64.1 31.595

YOLO11x [7] 0.995 0.811 114.4 56.833
RT-DETR-x [34] 0.995 0.781 135.4 65.479

YOLOv8x-worldv2 [35] 0.995 0.808 146.2 72.856
YOLO11-DSConv-x 0.995 0.813 96.7 48.089

While YOLOv8x [21] achieved a comparable mAP50-95 of 0.812, it had the highest model size and
parameter count among all compared models (136.7 MB and 68.129 M), which may limit its deploy-
ment on resource-constrained platforms. In contrast, YOLOv10x [33] exhibited the smallest footprint
(64.1 MB, 31.595 M) but attained a slightly lower mAP50-95 of 0.809. YOLO11x [7] provided a more balanced
option, achieving 0.811 with a moderate model size.
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While YOLOv8 has demonstrated strong performance across various detection tasks, many of these
applications involve broader object categories with relatively distinct visual features. In contrast, the BSFL
classification task presented here poses a more fine-grained challenge, requiring precise differentiation
among visually similar larval stages. Despite this complexity, YOLO11-DSConv-x achieves a competitive
mAP50-95 of 0.813 while maintaining a significantly smaller model size (96.7 MB) and parameter count
(48.089 M), reinforcing its suitability for real-time smart farming applications in resource-constrained envi-
ronments.

Completing the comparison, RT-DETR-x [34] yielded the lowest mAP50-95 of 0.781, while YOLOv8x-
worldv2 [35] achieved a moderate 0.808 but with the largest overall model footprint (146.2 MB,
72.856 M). Taken together, these results highlight YOLO11-DSConv-x as a well-balanced solution—offering
strong detection accuracy, computational efficiency, and deployment flexibility for precision agriculture and
embedded vision systems.

4.3 Visual Evaluation and Application Insights
Fig. 6 presents visual comparisons of BSFL stage detection using YOLO11 [7] and the proposed YOLO11-

DSConv. Both models yield similar bounding box precision and confidence scores, consistent with their close
mAP50-95 values. However, the reduced model size and parameter count of YOLO11-DSConv make it more
practical for deployment in real-time, resource-constrained environments.

Figure 6: Detection results of BSFL stages using (a) YOLO11 and (b) YOLO11-DSConv

In Fig. 6, the slight size differences among larvae may give the false impression that they belong to
different stages. In reality, most larvae shown are from the same stage. For a more distinct illustration
of inter-stage differences—especially between Stage 3 and Stage 4—see Fig. 7, where the contrast in color
and size is more pronounced. These results demonstrate that both YOLO11 and YOLO11-DSConv are
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capable of detecting subtle visual variations across larval stages. Among them, YOLO11-DSConv offers
added efficiency for deployment in mobile, IoT, or edge devices. For instance, YOLO11-DSConv-n suits
lightweight scenarios, while YOLO11-DSConv-m and -x provide a good balance between accuracy and speed
for real-time monitoring or industrial use.

Figure 7: (a) Original image of BSFL; (b) Detection output with stage identification

Fig. 8 further compares several models in detecting BSFL under practical conditions. YOLO11-DSConv
and YOLO11 maintain consistent accuracy with minimal overlap in bounding boxes. YOLOv10 and YOLOv9
show occasional misclassifications, while YOLOv8 and YOLO-World exhibit frequent overlapping and
stage confusion in dense scenes. RT-DETR performs the worst, with significant bounding box clutter and
misidentifications, indicating poor suitability for fine-grained BSFL classification.

Figure 8: (Continued)
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Figure 8: Detection results of BSFL stages using various object detection models in real-world settings. (a)
YOLOv8 [21], (b) YOLOv9 [32], (c) YOLOv10 [33], (d) YOLO11 [7], (e) YOLO-World [35], (f) RT-DETR [34], (g)
YOLO11-DSConv

As shown in Fig. 9, YOLO11-DSConv consistently delivers accurate classification with minimal false
positives and clearly separated bounding boxes. YOLO11 remains robust but suffers slightly from overlap.
YOLOv10 and YOLOv9 introduce more frequent misclassifications, and YOLOv8 and YOLO-World expe-
rience heavy overlap and confusion. RT-DETR, although capable of detecting a higher number of objects,
shows excessive false positives—often misidentifying non-larvae or misclassifying overlapping instances.
This over-detection makes it less reliable for tasks requiring high precision, such as larval-stage classification
in automated agriculture systems.

Figure 9: (Continued)
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Figure 9: Extended real-world comparison of object detection models for BSFL stage identification. (a) YOLOv8 [21],
(b) YOLOv9 [32], (c) YOLOv10 [33], (d) YOLO11 [7], (e) YOLO-World [35], (f) RT-DETR [34], (g) YOLO11-DSConv

In summary, YOLO11-DSConv not only offers high accuracy but also excels in efficiency and deployment
readiness, making it an ideal solution for smart farming and edge AI applications.

5 Conclusion
This study evaluated the performance of YOLO11 [7] and the proposed YOLO11-DSConv in classifying

and detecting the growth stages of Black Soldier Fly Larvae (BSFL). By integrating Depthwise Separable
Convolutions (DSConv), YOLO11-DSConv significantly reduces model size and parameter count while
preserving detection accuracy. This lightweight architecture makes it highly suitable for deployment in
resource-constrained environments such as mobile devices and IoT-based agricultural systems. The model’s
fast inference time and compact design support real-time waste management applications, particularly
in scenarios requiring on-site larval stage classification. Additionally, the solution aligns with broader
sustainability goals by enabling the transformation of food waste into high-value resources through efficient
BSFL utilization.

It is important to note that while Depthwise Separable Convolutions have been previously applied
to YOLO architectures, our work makes several distinct contributions that differentiate it from existing
YOLO+DSConv adaptations. First, we present a domain-specific optimization tailored to the unique
challenges of BSFL classification, where visual differences between growth stages are subtle yet biologi-
cally significant. This application-specific focus required careful tuning of the DSConv implementation
to maintain high accuracy while reducing computational demands. Second, our contribution extends
beyond model architecture to include a complete end-to-end system designed for practical deployment in
agricultural settings, bridging the gap between model development and real-world application. Third, we
have created and annotated a specialized dataset of 21,600 BSFL images across six growth stages, which itself
represents a valuable contribution to the field. Finally, our work demonstrates direct integration with circular
economy practices through precise identification of optimal larvae for different applications, showing how
AI can directly support sustainable agriculture initiatives. These distinctions position our work not as an
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incremental improvement, but as a novel application-specific solution addressing unique challenges at the
intersection of deep learning, precision agriculture, and circular economy.

In summary, YOLO11-DSConv provides a practical, accurate, and scalable approach to BSFL classifica-
tion and detection. Its balance of precision and efficiency not only enhances technical deployment but also
contributes meaningfully to circular economy initiatives and environmental sustainability in agriculture.
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