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ABSTRACT: Computed Tomography (CT) reconstruction is essential in medical imaging and other engineering fields.
However, blurring of the projection during CT imaging can lead to artifacts in the reconstructed images. Projection
blur combines factors such as larger ray sources, scattering and imaging system vibration. To address the problem, we
propose DeblurTomo, a novel self-supervised learning-based deblurring and reconstruction algorithm that efficiently
reconstructs sharp CT images from blurry input without needing external data and blur measurement. Specifically, we
constructed a coordinate-based implicit neural representation reconstruction network, which can map the coordinates
to the attenuation coefficient in the reconstructed space for more convenient ray representation. Then, we model the blur
as a weighted sum of offset rays and design the Ray Correction Network (RCN) and Weight Proposal Network (WPN) to
fit these rays and their weights by multi-view consistency and geometric information, thereby extending 2D deblurring
to 3D space. In the training phase, we use the blurry input as the supervision signal to optimize the reconstruction
network, the RCN, and the WPN simultaneously. Extensive experiments on the widely used synthetic dataset show
that DeblurTomo performs superiorly on the limited-angle and sparse-view in the simulated blurred scenarios. Further
experiments on real datasets demonstrate the superiority of our method in practical scenarios.
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1 Introduction
Computed tomography (CT) reconstruction is a technology that converts X-ray projection data from

multiple angles into a 3D image and visualizes the internal structure of objects and is widely used in medical
diagnosis [1,2] and materials science [3]. High-resolution CT images are crucial in these fields, such as in
distinguishing small lesions in medical diagnosis.

However, high-quality CT reconstruction highly depends on sharp and clear X-ray projections. The
resolution of these projections is primarily affected by two main factors: the source blur caused by the
excessively large ray source aperture [4,5] and the scattering blur caused by ray scattering [6]. Reconstruction
algorithms that assume point sources and no scattering can lead to artifacts in CT images. Upgrading imaging
equipment with ray sources of smaller size and higher energy can achieve more precise results. However, the
high cost generally limits the available scenarios.
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Figure 1: (a) The attenuation coefficient distribution of the 3D scene is reconstructed by using the multi-view blurry
projections as input. (b) Comparison of reconstruction quality with other SOTA methods. The proposed method has
fewer artifacts and richer reconstruction details, far surpassing NAF [7] and SAX-NeRF [8] in terms of PSNR and SSIM
metrics

The most commonly used deblurring method is to restore the image in the projection domain, estimate
the blur kernel of the projection image by measurement and calculation [9–11], and then perform deconvolu-
tion to restore the clear projection image [12,13]. Nevertheless, the measurement process is cumbersome and
not always feasible. Another method is to model the system blur based on its principles and incorporate it into
the iterative reconstruction algorithm without the need for the blur measurement process [14–16]. However,
these methods do not consider the variation of system blur at different object positions and distance from
detectors in the imaging depth direction [17], and the discrete representation of the iterative reconstruction
algorithm is inconsistent with the continuous reconstruction object, which easily leads to artifacts [18].
Recently, much research has been done on deep-learning image restoration algorithms [17,19]. Still, due to
the general lack of dataset diversity, the generalization performance of such work cannot meet the needs of
complex CT reconstruction scenarios. Therefore, it is essential to construct a reconstruction algorithm that
can incorporate spatial information for blur modeling and reconstruct clear CT images without relying on
measurements and external datasets.

This work tries to solve the above problem using Implicit Neural Representation (INR) [20]. INR has
three characteristics: (a) INR uses neural networks to represent space as a continuous function, generating
corresponding physical properties (e.g., attenuation coefficients) at arbitrary coordinates without being
limited by resolution and can better fit continuous reconstruction scenes. (b) As a natural self-supervised
method, INR can complete reconstruction using only projection images, without external datasets. (c) Neural
networks in INR contain rich geometric information, which helps the model integrate relevant information
between blur and spatial. Based on the above characteristics, we believe that INR is suitable for solving the
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problem of blur reconstruction. However, incorporating spatial information for blur modeling and solving
the long training time are still challenging.

This paper proposes DeblurTomo, a self-supervised implicit neural representation-based deblurring
reconstruction algorithm, introducing INR into CT reconstruction deblurring for the first time. Specifically,
we construct a reconstruction network by combining a multiresolution hash encoder and a multilayer
perceptron (MLP), significantly reducing the training time. Moreover, we model the projection blur in
3D space and design a Ray Correction Network (RCN) and Weight Proposal Network (WPN) to generate
corrected rays by integrating multi-view and spatial information to approximate the blurring process. The
corrected rays have high flexibility, but they tend to bring distortion to both the corrected rays and the 3D
scene simultaneously. We propose constraint loss by constraining one of the corrected rays near the assumed
ray, preserving its flexibility while preventing unexpected offsets in the corrected rays. Extensive experiments
on several datasets demonstrate the effectiveness of the proposed method, as shown in Fig. 1 and Section 4.
Contributions are summarized as follows:

• We propose a novel framework to reconstruct high-quality CT images from blurry inputs.
• We propose the ray correction and weight proposal networks, which can effectively approximate various

types of physical blurring processes and extend 2D deblurring to 3D space.
• Extensive evaluations are conducted under multiple challenging real and synthetic datasets(blurry, noisy,

sparse view and limited angle), demonstrating the effectiveness of the proposed method.

2 Related Work

2.1 Traditional Computed Tomography
The analytical method is the most commonly used reconstruction algorithm, which reconstructs the

projection data by filtering and back-projecting. The typical representative is the (Filtered Back-Projection)
FBP proposed by Feldkamp et al. [21] and its 3D cone beam variant FDK, which has the advantages of fast
reconstruction speed, but it is difficult to handle highly ill-posed problems such as sparse-view and limited-
angle.

Iterative algorithms usually use iterative optimization to minimize the difference between measured and
predicted data [22], and can also combine regularization terms to optimize the iterative framework. Iterative
reconstruction algorithms have shown promising results in sparse-view [23,24] and limited angles [25,26]
imaging, but these methods suffer from the drawback of complex hyperparameter tuning, and their discrete
representation methods are prone to artifacts [18].

In practical applications, in addition to medical diagnosis and industrial detection, a novel cultural
heritage representation form is designed by combining 3D imaging and tomography [27,28].

2.2 Blur Reduction in Computed Tomography
CT image blur restoration methods can be divided into projection domain deconvolution, iterative

image deblurring, and deep learning.
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The projection domain deconvolution method directly deblurring the projection image, which
calculates the projection image blur kernel through measurement [10,11], and then performs deconvolu-
tion [5,12,13]. Joshi et al. [10] utilized the sharp edges of objects in the image for blur estimation. Mohan [11]
estimated blur from X-ray images of tungsten plates with sharp edges, modeled the blur as a convolution of
multiple blur kernels and proposed a deconvolution method. However, blur measurements are not always
feasible. Although blind deconvolution [29] can avoid blur measurement, it is also easy to amplify noise and
cause artifacts.

The iterative image deblurring methods model the system blur and incorporate it into the iterative
reconstruction algorithm. Tilley et al. [14] modeled the blur based on the iterative method of statistical model
and performed the deblurring reconstruction by regularization and least-squares method. Reference [15] uti-
lized the correlation between blur and noise for modeling, combined with the Gaussian likelihood objective
function for reconstruction. Reference [16] modeled the Shift-Variant focal spot blur and incorporated it into
the model-based iterative reconstruction algorithm, which achieved better results than the reconstruction
algorithm without considering blur. However, these methods do not consider the changes in system blur at
different object positions and distances from the detector in the imaging depth direction [17].

Deep learning methods usually use super-resolution (SR) techniques for deblurring in the image
domain [30–32], but it is challenging to obtain datasets and cannot be used in unknown scenes [33]. We
believe that a deblurring reconstruction algorithm suitable for arbitrary scenes is necessary.

2.3 Implicit Neural Representations
In the field of 3D vision, scenes are usually represented by discrete methods (voxels, pixels, and point

clouds). NeRF proposed by Mildenhall et al. [20] uses a neural network (usually an MLP) to represent the
scene as a function that maps coordinates to physical properties of interest (color, density, etc.). Compared
with discrete representation methods, this representation method is continuous and more accurately
represents the continuous physical world. Subsequent work has refined NeRF in detail [34,35] and expanded
its applications [36], further demonstrating the superiority of INR.

In CT reconstruction, INR can alleviate the artifacts produced by discrete representation in traditional
iterative reconstruction [18]. Unlike NeRF, INR in CT reconstruction only needs to learn a mapping
function from coordinates to attenuation coefficients and does not require color and perspective information.
Moreover, CT focuses more on the entire reconstructed space than surface information. Therefore, there
are still many challenges in using INR for CT reconstruction [37]. Zha et al. [7] and Rückert et al. [38]
combined voxel grid representation to reduce reconstruction time and improve accuracy. SAX-NeRF [8]
utilized the Transformer to capture the intrinsic relationship of spatial structure. However, none of these
methods consider the blur problem in CT imaging.

The INR deblurring modeling method in natural scenes [34] has been inspiring to us, but it does not
account for ray scattering. We model the principle of blur in CT imaging systems and combine spatial depth
information and geometric information for blur correction. To our knowledge, the proposed Deblurtomo is
the first to use INR for deblurring reconstruction.

3 Method
CT blur arises from discrepancies between actual and assumed ray paths, and we aim to correct this

for accurate reconstruction. We optimize the assumed rays and obtain multiple corrected rays to fit the real
rays. The specific scheme is shown in Fig. 2. First, we construct a self-supervised implicit representation
reconstruction algorithm as the basic scheme for reconstruction (see Section 3.2). Then, we propose the
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Ray Correction Network (RCN) and the Weight Proposal Network (WPN) to optimize the assumed
ray, obtaining multiple corrected rays and their corresponding weights to fit the real blurring process
(see Sections 3.3 and 3.4). Finally, the corrected rays are rendered using the reconstruction network, and
weighted sums are performed to obtain the predicted blurry projection values supervised by measurement
projection images (see Section 3.5).

Figure 2: Overview of DeblurTomo pipeline. The ray correction network calculates multiple corrected rays via the
encoding E p

q of the pixel index value (pid x ). The weight proposal network utilizes E p
q , and depth features S p

q to generate
weights for corrected rays. The reconstruction network integrates and renders the corrected rays and performs a
weighted sum to obtain the final rendered projection image. During the reconstruction phase, it only needs to query the
corresponding attenuation coefficient of the spatial coordinates in the reconstruction network to obtain the corrected
CT image

3.1 Problem Formulation
The principle of X-ray imaging is the key to formulating the reconstruction problem. The X-ray passes

through the target object and attenuates, and the detector measures the attenuated X-ray to obtain a 2D
projection image. According to Beer’s law [39], the attenuation of rays is related to the thickness of the object
and the attenuation coefficient, and the continuous form can be expressed as:

Î(p)
Î0(p)

= exp(−∫
t f

tn
μ(rp(t))dt) , (1)

where Î(p) is the projection value of the pixel coordinate p, and Î0(p) represents the intensity of the ray
source. μ(rp(t)) represents the attenuation coefficient at the ray position. rp(t) = op + td p, where op is the
coordinate of the source and d p is the direction vector from the source to the detector pixel. t f and tn
represent the far and near ends of the reconstructed space on rays, respectively. Î(p) and Î0(p) are known.
CT reconstruction algorithm calculates the spatial distribution of the attenuation coefficient μ(x) through
the known multi-view projections and Beer’s law. Discretization of Eq. (1) can be expressed as:

I(p) = − ln( I(p)
I0(p)

) =
N
∑
i=0

μ(rp(ti))δi , (2)

where N is denoted as the number of samples on the ray, and δi = ti+1 − ti is the distance between i and i + 1
sampling points.
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3.2 Reconstruction Network
Ray Sampling

Due to the impenetrability of natural light, imaging in natural scenes comes from the reflection of light
on the surface of objects, so it is necessary to use ”coarse” and ”fine” networks to concentrate the sampling
points of light on the surface of objects [20]. CT imaging can restore the internal information of objects.
Therefore, we use stratified sampling to evenly divide the intersection of rays and reconstruction space into
N regions, sampling one point in each region to ensure that the sampling points can evenly cover the entire
reconstruction space and reduce the sampling bias caused by uneven ray coverage in CT.
Position Encoder

In theory, an MLP can fit any function. However, the network is more inclined to learn low-frequency
information [20] uses high-frequency functions to encode spatial coordinates, maps spatial coordinates
to higher-dimensional frequency spaces, guides the network to learn high-frequency information, and
improves the resolution of rendered images. However, there is more noise in CT images, and the high-
frequency function can easily guide the network to learn this noise, causing the network to converge too
slowly, or even fail to converge.

Therefore, we use a multi-resolution hash encoder [40], which describes the reconstruction space as
multiple resolutions of voxel grids, each storing learnable features. The position of each grid is encoded with
a spatial hash function, and the voxel grids of different resolutions are mapped into the corresponding hash
table. Trilinear interpolation is used to obtain sampling point features.
Attenuation Coefficient Prediction

The goal of the reconstruction is to learn a spatial coordinate-to-attenuation coefficient mapping
function FΦ ∶ x → μ, we represent FΦ as a multi-resolution hash encoder and a simple MLP. Φ denotes the
learnable parameters. The MLP consists of 4 fully connected layers with 32 channels, and each layer uses the
ReLU activation function.

Finally, use FΦ to predict the attenuation coefficient at the ray sampling point and then integrate the
attenuation coefficient to predict the projection image by using Eq. (2). Since this process is differentiable,
we can use the projection image as a supervisory signal to optimize Φ (see Section 3.5). At this point, we
have successfully constructed a CT reconstruction algorithm based on implicit neural representation. Still,
due to the blur of the projection image, we need to perform additional methods for correction.

3.3 Ray Correction Network (RCN)
In CT imaging systems, projection blur mainly comes from the large size of the ray source and scattering

on the propagation path [14], as shown in Fig. 3. In addition, detector effects and vibration of the imaging
device are other causes of blur [11]. So, the projection blur can usually be expressed as the convolution of the
sharp image and the blur kernel:

B = I ∗ K , (3)

where B represents the degraded image, I represents the sharp image, and K represents the blur kernel (Point
Spread Function). It can be seen that the image blur operation replaces the value of each pixel in the image
with the weighted average of its neighboring pixel values. Inspired by [34], we further consider the physical
process of blur in 3D space. That is, blur can be regarded as a pixel collecting the energy of multiple offset



Comput Mater Contin. 2025;84(2) 2417

rays. Therefore, we can construct a sparse blur kernel:

Bp =
M
∑
i=0

w p
i ⋅ I

p
i ,

M
∑
i=0

w p
i = 1, (4)

where M is the number of sparse kernel points of pixel point p. For the convenience of expression, let q =
{0, 1, . . . , M}, then I p

q and w p
q respectively represent the set of the pixel point p offset ray intensity and its

corresponding weight. Next, we need to model these offset rays to calculate I p
q .

Figure 3: Schematic diagram of the principle of source blur and scattering blur. The solid gray line represents the
assumed X-ray, and the gray dashed line represents the offset X-ray

We propose a Ray Correction Network (RCN) that uses an MLP to fit these offset rays from blurry
images. For source blur, we consider the predicted ray offsets at the detector and the ray source in a 2D plane.
Unlike natural scenes, CT scenes need to consider the scattering of rays, so the RCN also needs to predict
an offset from where the ray starts. Let pid x represent the pixel index value and γ(⋅) represent the frequency
encoder [20], then RCN can be expressed as:

{Δd p
q , Δop

q , Δt p
q} = RCN(γ(pid x)). (5)

pid x is the necessary information for RCN. We map pid x to high-frequency space, hoping that RCN can
generate different correction rays according to different pixels (spatially-variant blur).

The output of the RCN constitutes the corrected rays, where Δd p
q and Δop

q represents the offset of the
ray on the detector and the ray source, respectively, Δt p

q represents the offset of the starting position of the
ray. The generated corrected ray can be expressed as:

rp
q(t) = (op + Δop

q) + (t + Δt p
q) ⋅ (d p + Δd p

q ). (6)

It can be observed that rp
q(t) can represent any offset ray. Therefore, this blur modeling approach is not

limited to source blur and scattering blur in theory. Therefore, this blur modeling method can theoretically
represent any blur caused by ray offset (system vibration, coordinate offset, etc.) and is not limited to source
and scattering blur.

3.4 Weight Proposal Network (WPN)
The weight of correction rays is crucial to constructing the sparse blur kernel, and the blur is strongly

related to the reconstructed spatial information [41,42]. Therefore, we designed WPN to obtain the weight
(w p

q ) of each corrected ray by fusing the depth features of the ray and the pixel position encoding. Let
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γ(pid x) = E p
q ∈ Rl×M represents the pixel position encoding, l represents encoding length, WPN can be

expressed as follows:

w p
q =WPN(E p

q , S p
q), (7)

where S p
q ∈ RC×N×M is the feature of N sampling points on the ray extracted from the penultimate layer in

the reconstruction network, and C is the feature depth, which contains rich implicit spatial information.
We put the obtained weights w p

q(t) and corrected rays rp
q(t) into Eq. (2) to calculate the predicted

blurred projection image:

Ĩ(p) =
M
∑

i
w p

i ⋅
N
∑

j
FΦ(rp

i (t j))δ j . (8)

The detailed architecture of the WPN is shown in Fig. 4. Inspired by CurveNet [43], first, we impose
Attentive Pooling operator [44] on S p

q in different axis, that is, scaling in a self-attention style in the
axis, and summing along the axis to obtain the inter-correction rays feature vector f p

ra y ∈ RC×N and inter-
sampling points feature vector f p

sam pl e ∈ R
C×M . Then use E p

q after adjusting the feature dimension by MLP
to perform matrix multiplication and Softmax operations with f p

ra y and f p
sam pl e respectively to calculate the

mapping scores of rays and sampling points. Subsequently, f p
ra y and f p

sam pl e are transformed by the two MLP
branches and then matrix multiplied with the mapping score, similar to the attention operation, to obtain
the fine-grained feature of inter-correction rays ( f̂ p

ra y) and inter-sampling points (( f̂ p
sam pl e ). Next, these two

fine-grained features are concatenated and input into MLP to obtain the final mixed feature f p
mix ∈ RC×M .

Finally, after performing the global average pooling function (GAP(⋅)) and Softmax operation (σ(⋅)) on the
feature f p

mix , the corrected ray weight can be obtained. The formula is as follows:

w p
q = σ(GAP( f p

mix)),
M
∑
i=0

w p
i = 1. (9)

Figure 4: Weight Proposal Network (WPN) architecture
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3.5 Loss Functions
The loss function includes reconstruction loss and constraint loss. The reconstruction loss is the mean

square error between the predicted projection value and the measured projection value. The constraint loss
is used to prevent unreasonable deviation of the corrected ray.

Ltotal = ∑p∈B ∥I(p) − Ĩ(p)∥2
2 + λcLconstraint , (10)

where I(p) and Ĩ(p) represent measured projection value and predicted projection value, respectively. B
represents the set of pixels in the batch.

Since the corrected rays have a high degree of freedom, it is easy to distort the corrected rays and the
CT scene simultaneously. Therefore, we design the constraint loss to constrain the corrected rays:

Lconstraint = ∣Δt p
v ;0∣ + ∣Δd p

v ;0∣ + λo ∣Δop
v ;0∣ , (11)

where subscript 0 is a fixed element of q. We constrain one of the corrected rays to be near the assumed ray.
λo and λc are loss weights, which are set to 10 and 0.1, respectively, in this paper.

4 Experiments

4.1 Experimental Settings
Dataset

We perform experimental evaluations on synthetic and real datasets, respectively. The real dataset is
taken by a Nikon industrial CT scanner. Since blur-free CT images (Ground truth) cannot be obtained in the
real dataset, we only use the real dataset for visual qualitative evaluation. To facilitate evaluation, we selected
the projection data of four objects: pepper, orange, ceramic coral, and pomegranate, which have relatively
complex internal structures.

The synthetic dataset comes from the LIDC-IDRI dataset [45] and the OSV dataset [46], which contains
CT data on various parts of the human body (Chest, Jaw, Foot and Abdomen). In order to simulate a real blur
scene, we use a 2D anisotropic Gaussian kernel to filter the synthetic projection. The Gaussian blur function
is represented as follows:

Kv(x , y) = 1
2π(ηv

X ⋅ ηv
X)

exp
⎛
⎝
− 1

2
((x − ξv

X)
2

ηv
X

2 + (y − ξv
Y)

2

ηv
Y

2 )
⎞
⎠

, (12)

where Kv represents the blur kernel of the projection with index v. ηv
X and ηv

Y represent the variance of
Gaussian function on the x and y axes, respectively, ξv

X and ξv
Y represent the offsets of the centre coordinates

of the Gaussian function, simulating coordinate offset. ηv
X and ηv

Y are randomly selected between [6,9], and
ξv

X and ξv
Y are randomly selected between [−3, 3] for each view to simulate scenarios where the blur projection

varies with different viewing angles. Besides, we add Gaussian noise with a standard deviation of 3 to each
projection. This blur projection synthesis method is based on shift-invariant convolution, which ignores the
shift-variance characteristics of the blur, but it is an appropriate approximation in most cases [15].

In addition, we selected 50 projections from CT images at different angles to verify the algorithm’s
reconstruction quality under sparse views.
Implementation Details

The proposed method is based on PyTorch, and all experiments are done on a single RTX 4090 GPU.
We use Adam optimizer with default parameters. The initial learning rate is set to 1e-3, and the learning
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rate is reduced to 1e-6 using the cosine decay strategy. The number of iterations for each scene is 20k, and
the number of rays in each batch is 1024. The first 2k iterations only optimize the reconstruction network
to initialize the scene. The CT resolution determines the sampling point of each ray. The hyperparameter
settings of the multi-resolution hash encoder are kept consistent with [40]. In the reconstruction stage, we
only need to query the attenuation coefficient at any position in the space to complete the reconstruction.
In this paper, the quality of the reconstructed image is evaluated by peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM). Higher PSNR and SSIM values are preferable.

4.2 Comparisons
We compare our proposed method with five classical reconstruction methods: FDK [21], SART-TV [47],

ASD-POCS [48], NAF [7] and SAX-NeRF [8]. Among them, FDK is the most commonly used analytical
reconstruction method in commercial reconstruction software. SART-TV and ASD-POCS are of classical
iterative reconstruction methods. NAF and SAX-NeRF are SOTA self-supervised reconstruction algorithms
also based on implicit neural representations. At the same time, we introduce the current state-of-the-art
X-ray image deblurring algorithm (LR [49] and RLSD [11]). For fairness, the reconstruction and deblurring
algorithms we selected are not data-driven.

Due to the challenges of high radiation dose and limited scanning angle in practical applications of
CT, we conducted experiments with sparse views and limited viewing angles. Table 1 shows the quantitative
experimental results of all methods on synthetic datasets. It can be seen that the method proposed in this
paper achieves the best results on all datasets. The average SSIM of each dataset in full view and limited angle
is improved by 4.29% and 2.61%, respectively, compared with the second-best method. In addition, it can be
seen that the single X-ray image deblurring technology helps improve the reconstruction quality. However,
obtaining completely accurate blur kernel parameters in real scenes is tricky.

Table 1: Quantitative comparison of sparse-view and limited-angle reconstruction results on synthetic CT data. The
best results are in bold and the second-best results are underlined (PSNR/SSIM)

Methods Angle = 360○ Angle = 80○

Chest Jaw Foot Abdomen Chest Jaw Foot Abdomen
FDK 22.33/0.6940 28.07/0.7965 25.67/0.7007 26.15/0.7239 14.85/0.3780 23.69/0.5969 19.11/0.3786 16.58/0.5204

SART-TV 22.04/0.7268 28.46/0.8348 26.65/0.8685 28.92/0.8772 19.42/0.6004 25.63/0.7584 23.42/0.8168 23.95/0.7849
ASD-POCS 22.62/0.7340 28.45/0.8386 26.54/0.8678 28.75/0.8763 19.05/0.5847 25.57/0.7578 23.20/0.8059 23.62/0.7749

NAF 20.84/0.7104 28.44/0.8307 26.64/0.8693 28.43/0.8675 19.60/0.6379 26.01/0.7566 23.97/0.8333 25.71/0.8209
SAX-NeRF 22.68/0.7321 28.50/0.8397 26.53/0.8733 28.39/0.8760 20.55/0.6577 25.91/0.7591 23.83/0.8368 25.23/0.8285

SART-TV+LR 23.75/0.7632 28.88/0.8262 27.43/0.8702 29.47/0.8789 19.91/0.6256 25.91/0.7614 23.62/0.8187 24.14/0.7881
ASD-POCS+LR 24.05/0.7709 29.03/0.8366 27.39/0.8715 29.37/0.8805 19.44/0.6095 25.85/0.7620 23.39/0.8089 23.80/0.7789

NAF+RLSD 20.72/0.7276 28.54/0.8091 27.20/0.8708 29.15/0.8677 19.72/0.6660 26.15/0.7487 24.26/0.8347 25.79/0.8217
SAX-NeRF+RLSD 23.39/0.7638 29.02/0.8462 27.26/0.8801 29.22/0.8815 21.20/0.6852 26.21/0.7647 24.07/0.8369 25.99/0.8325

DeblurTomo 24.25/0.8504 30.09/0.8893 27.69/0.8934 29.93/0.9101 21.37/0.7142 26.99/0.7969 24.70/0.8618 26.27/0.8506

Fig. 5 presents the visualization results of each method on the synthetic dataset. It can be seen that the
result of FDK has obvious artifacts with a small number of viewing angles. Single X-ray image deblurring
technology does not consider the correlation between multi-view projections. In addition, although single
X-ray image deblurring technology can visually make the projected image clearer, it also increases noise and
ringing artifacts [11], and has limited improvement in the quality of the reconstructed image. Our method
is much more satisfactory at optimizing noise and artifacts than other methods, whether in full or limited
viewing angles and does not require prior information about blur kernels.
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Figure 5: Qualitative comparison of sparse-view and limited-angle reconstruction results on synthetic CT data

In real datasets, single X-ray image deblurring algorithms cannot be used due to missing blur prior
information. As seen from Fig. 6, SAX-NeRF uses the transformer to model ray correlation to guide the
network in learning intricate spatial information. Still, the presence of blurry input introduces biases in the
learned information. In addition, the Masked Local Global strategy of SAX-NeRF is not compatible with
the projection size of the real dataset, which affects its performance to a certain extent. SART-TV uses TV
regularization to eliminate the influence of noise on the reconstruction quality to a certain extent, but it
isn’t easy to deal with artifacts caused by blurring. Our method achieves the highest visual clarity and the
lowest noise and artifacts. The RCN and WPN of the proposed method utilize blur physical prior knowledge
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to correct for spatial bias, enabling the reconstruction network to recover the most detailed information in
blurred scenes. The proposed method outperforms other methods regarding noise and artifact removal.

Figure 6: Qualitative comparison of each method on real CT data

4.3 Ablation Study
We conducted ablation experiments on DeblurTomo on a synthetic dataset to study the impact of its

critical components on reconstruction quality, and the experimental results are shown in Table 2.

Table 2: Quantitative ablation experiments for key components. (PSNR/SSIM)

Baseline Hash. RCN Cons. WPN Chest Jaw Foot Abdomen Average
✓ 17.67/0.5193 23.85/0.6847 23.03/0.8233 12.91/0.2759 19.37/0.5758
✓ ✓ 20.99/0.6162 27.98/0.8214 26.43/0.8723 26.62/0.8453 25.51/0.7888
✓ ✓ ✓ 20.63/0.6830 20.90/0.4754 23.65/0.8295 19.45/0.7126 21.16/0.6751
✓ ✓ ✓ ✓ 22.30/0.7240 29.12/0.8679 27.18/0.8872 28.67/0.8896 26.82/0.8422
✓ ✓ ✓ ✓ 22.76/0.7390 29.53/0.8771 27.07/0.8856 27.74/0.8688 26.78/0.8426
✓ ✓ ✓ ✓ ✓ 24.25/0.8504 30.09/0.8893 27.69/0.8934 29.93/0.9101 27.99/0.8858

Hash Encoder
Compared with frequency encoder [20] (Baseline), the Hash encoder pays more attention to recon-

structing the internal structure of space. Frequency encoder maps spatial coordinates to a high-dimensional
space, driving the network to learn high-frequency changing spatial information. However, in CT images,
the spatial information transformation is smoother. Many methods use regularization to smooth the space
to remove noise. So, high-frequency features are redundant for the reconstruction network and can easily
lead to overfitting. As shown in Table 2, after using the Hash encoder, SSIM is improved by 21.3%.
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RCN and WPN
RCN and WPN are key parts of the ray correction. As can be seen from Fig. 7, after using RCN and

WPN, the artifacts and noise of the reconstructed image are significantly reduced. In fact, RCN can also
generate weights, that is, adding a weight generation branch to RCN. In order to test the effectiveness of
WPN, we compared the results of the weights predicted by RCN and the weights predicted by WPN. When
RCN is not used simultaneously with WPN in Table 2, RCN adds a weight branch for weight prediction. It
can be seen that after using WPN, SSIM improves by an average of 4.36% on all datasets.

Baseline+Hash. Baseline+Hash.+RCN+WPN Reference

Figure 7: Reconstruction results of Jaw dataset with and without RCN and WPN. Artifacts and noise are reduced by
RCN and WPN

Fig. 8 shows the reconstruction results without both WPN and constraint loss, with WPN and without
constraint loss, and with both WPN and constraint loss. As seen from the left two columns of subfigures
in Fig. 9, when the constraint loss on the correction rays is absent, WPN combined with spatial geometric
information can prevent the corrected rays from diverting to a certain extent and reduce the reconstruction
error. Therefore, WPN fusion spatial information is essential to improve the reconstruction quality.

Without WPN and Cons. Without Cons. With Cons.(Ours) Reference

Figure 8: Reconstruction results on Abodomen dataset without using both WPN and Constraint loss, with WPN and
without Constraint loss, and with both WPN and Constraint loss
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Figure 9: Comparison of reconstruction quality between different numbers of kernel points

Furthermore, we tested the effect of different numbers of kernel points on the reconstruction qual-
ity. Fig. 9 shows that as the number of kernel points increases, the reconstruction quality rises steadily.
Increasing the number of kernel points enables the network to better approximate the blur process, albeit at
the cost of higher computational resources. Considering this trade-off, we set the number of kernel points
to 5 (M = 5).
Constraint Loss

As mentioned in Section 3.5, the constraint loss can prevent the predicted corrected ray and CT scene
from being distorted simultaneously. As can be seen from Fig. 8, not adding constraint loss can easily cause
the reconstructed image to be blurred in detail, although the blur is improved after adding WPN. In general,
using Constraint loss can effectively improve the reconstruction quality.

5 Discussion
Previous experimental results show demonstrate that DeblurTomo significantly outperforms baseline

methods across both real and synthetic CT datasets. In addition, DeblurTomo also demonstrates several
other advantages. First, unlike most learning-based methods that require clean real data or pre-trained
networks, DeblurTomo relies entirely on the blurred projection itself, which makes it more applicable to
real-world clinical or industrial environments. Second, by embedding blur correction directly into the
reconstruction process through RCN and WPN, DeblurTomo avoids the two-step deblurring and then
reconstruction method, which usually amplifies noise or introduces inconsistencies between views. Third,
the design of DeblurTomo is not limited to a specific kernel type or known blur model. Its learnable formula
enables it to adapt to various unknown or shifted blur conditions, making it widely applicable.

However, the method also has some limitations. While the correction mechanism is highly flexible, it
can lead to coupled deformation of both the reconstructed scene and the corrected rays, especially when the
constraint loss is insufficient to regularize the solution. Moreover, increasing the number of kernel points
improves blur modeling accuracy, but at the cost of significantly higher computational complexity and
memory consumption.

For future work, we plan to incorporate Gaussian splatting techniques to reduce the need for frequent
sampling-point queries and improve reconstruction speed. We also aim to integrate more physical priors,
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such as ray source size, source-to-detector distance, and object geometry, to constrain the correction process
further and improve blur modeling accuracy.

6 Conclusion
This paper proposes the first self-supervised implicit neural representation CT deblurring reconstruc-

tion algorithm. We model the blur as multiple offset rays according to the physical process of blur and fit
these rays through multi-view consistency and geometric information. This method helps to calibrate the
3D scene and reduce artifacts in the reconstructed image. Experiments on multiple real and synthetic CT
datasets show that DeblurTomo outperforms other existing methods in blurry scenes. Although our method
is currently used on CT images, we believe similar blur modeling methods can be applied to other medical
imaging scenarios such as Magnetic Resonance Imaging and Positron Emission Tomography.
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