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ABSTRACT: Edge computing (EC) combined with the Internet of Things (IoT) provides a scalable and efficient
solution for smart homes. The rapid proliferation of IoT devices poses real-time data processing and security challenges.
EC has become a transformative paradigm for addressing these challenges, particularly in intrusion detection and
anomaly mitigation. The widespread connectivity of IoT edge networks has exposed them to various security threats,
necessitating robust strategies to detect malicious activities. This research presents a privacy-preserving federated
anomaly detection framework combined with Bayesian game theory (BGT) and double deep Q-learning (DDQL). The
proposed framework integrates BGT to model attacker and defender interactions for dynamic threat level adaptation
and resource availability. It also models a strategic layout between attackers and defenders that takes into account
uncertainty. DDQL is incorporated to optimize decision-making and aids in learning optimal defense policies at the
edge, thereby ensuring policy and decision optimization. Federated learning (FL) enables decentralized and unshared
anomaly detection for sensitive data between devices. Data collection has been performed from various sensors in a
real-time EC-IoT network to identify irregularities that occurred due to different attacks. The results reveal that the
proposed model achieves high detection accuracy of up to 98% while maintaining low resource consumption. This
study demonstrates the synergy between game theory and FL to strengthen anomaly detection in EC-IoT networks.
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1 Introduction
The Internet of Things (IoT) has experienced rapid expansion in various applications, including

consumer electronics, agriculture, transportation systems, industry, and healthcare, which aim to enhance
comfort and improve the human lifestyle. The IoT systems interconnect smart nodes that exchange data
through the internet or a private network. Edge computing (EC) has emerged as a novel paradigm shift in
data computation and storage, bringing data near to the end user, leading to the development of IoT edge
computing. The distribution of computing nodes across the network minimizes the computational load on
the centralized data center and significantly decreases the latency in data exchange [1].
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In a smart home environment, EC-IoT can be utilized to control appliances over the Internet remotely.
The immense development of IoT devices and the massive data traffic generation in edge networks create
additional traffic load due to resource and bandwidth shortages. Although this paradigm offers exceptional
features and improved Quality of Service (QoS), it also presents massive privacy and data security risks [2].
Nearly 80% of IoT devices are wide open to possible cyberattacks, emphasizing their noteworthy exposure
to security breaches. Hackers may gain unauthorized access to private information and control appliances in
smart homes due to security vulnerabilities in IoT devices, highlighting a major issue for IoT expansion [3].

An intrusion detection system (IDS) can monitor network traffic for IoT networks to detect anomalies
and intrusions [4,5]. Several simulation-based studies have been conducted to develop IDS frameworks
using available datasets [6–8]. The computational resources available to IoT devices are very limited, so
hacked IoT devices are undetected in most cases. Malicious devices are only detected when they are not
functioning, causing several security and privacy issues in IoT networks [9]. Security methods, including
IDS, authentication, and access control, cannot provide complete security systems in EC-IoT networks;
therefore, a detailed framework is needed that not only detects anomalies, but also provides the necessary
security measures [10,11].

There has been increasing interest in using the latest Artificial Intelligence (AI) and Machine Learning
(ML) methods for anomaly detection solutions in IoT edge computing. The deep learning (DL) framework
offers an advanced framework for various application scenarios, enabling the discovery of unexpected
activities and the design of robust anomaly detection models. The operation of Deep Neural Networks
(DNNs) is based on a multilayer hierarchical structure, where each subsequent layer is capable of creating
more advanced feature sets than the previous layer. As a result, these frameworks are effective for data
visualization and representation.

Existing ML/DL models for anomaly detection are most effective at achieving high accuracy, but they
face challenges in complex edge computing environments. Federated learning (FL) and Bayesian game theory
are optimistic and supportive technologies that utilize edge resources to allow privacy-aware cooperative
learning in edge IoT networks [12]. To address this issue, FL has been utilized to analyse sensor data locally for
various anomalies. An anomaly score is computed for each device, and its participation in FL is determined
using predefined thresholds. The utilities of attackers and defenders are evaluated using Bayesian game
theory, and the double deep Q-learning (DDQL) dynamically adjusts the detection policies to provide an
effective response to threats.

In this article, Section 2 provides a brief review of the literature, while a detailed methodology for
the proposed framework is presented in Section 3. In Section 4, the results are discussed in detail, and the
conclusions and future recommendations are given in Section 5.

2 Literature Review
Anomaly detection is crucial for securing IoT edge networks in smart homes, agriculture, and health-

care. Limited memory size, resource deficiency, and computing power are the major challenges for effective
and secure communication in edge networks. Anomaly detection has been performed in IoT systems using
machine learning (ML), deep learning (DL), and federated learning (FL) models, which have produced
effective performance results [13,14]. These models have been widely used to reduce false alarm rates using
local functions and provide easy computational resources [15,16].

Multiple IoT objects are a dynamic strategy used in smart homes with edge processing to deal with
adverse situations. A stochastic game network (SGN) is another approach for handling anomaly detection
in IoT edge networks, where IoT devices act as players with a set of predefined actions. The IoT edge and
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SGN have been integrated to create a complete smart home environment, enhancing scalable and operable
solutions. Anomaly detection in the industrial Internet of Things (IIoT) environment is also a challenging
task, as IoT devices are exposed to threats to sensitive data [17,18]. Wang et al developed a reliable FL
framework for IIoT networks with local model training using deep RL.

Denial of service (DoS), distributed denial of service (DDoS), and Web attacks are various cyberattacks
that cause remote intrusion in an edge environment. Attackers can target other systems by entering the
system, exploiting, and propagating malicious alerts through the network [19,20]. Intrusion detection
systems (IDS) currently using ML/DL models for anomaly detection are best at achieving high accuracies,
but faces problems in a complex edge computing system. Recently, a hybrid model has been presented using
the chi-square test and Ig-Chi to improve the accuracy of the detection process in complex IoT networks [21].
The architecture was designed in a simpler fashion that can be used and deployed by the car manufacturers.
The model was tested on real-time data and performed well in critical situations.

An innovative hierarchical adversarial attack (HAA) method was presented to comprehend the black-
box confrontational attack scheme, aiming at the graph neural network (GNN) [22]. An intelligent approach,
built on a saliency map method, was considered to produce adversarial samples by efficiently classifying
and adjusting features with minimal perturbations. Guo et al. presented an energy-efficient model for time
series data [23]. A Subgraph Generation Algorithm (SGA) was utilized to explore the correlations between
sensor data. Anomaly detection was performed using a computational light strategy, and dependency graphs
were generated. An adaptive ensemble random fuzzy (AERF) algorithm is suggested to detect anomalies
in a cloud-based system [24]. The AERF selects samples randomly to enhance the range of base classifiers,
enabling efficient handling of disorders caused by irregular sample distribution.

Anomaly detection for real-time surveillance using DNN was performed, focusing on multi-target
detection [25]. A-YONet, a combination of YOLO and MTCNN systems, was utilized and deployed in an
edge-cloud environment. Two real-time datasets, namely public and home-based, were utilized for the exper-
iments and validation. Anomaly detection for both energy efficiency and privacy preservation was performed
in a smart cyber system [26]. Privacy was preserved by covering the abnormal activities of participants while
still accomplishing an energy-efficient system for data upload by presenting a suitable amount of additional
content. A novel framework for both risk management and anomaly detection was proposed, utilizing edge
computing and machine learning models [27]. A practical safety method was employed to confirm the
well-being of seafarers, protect vessels, and maintain a secure maritime environment.

Solutions for anomaly detection have been proposed for IoT edge computing environments. This
includes utilizing MCUs and TinyML in the Internet of Things, employing various techniques, and
utilizing hardware- or software-based edge computing environments [28–32]. A dual defense self-balanced
framework with federated learning has been proposed for a lightweight defect procedure in [33]. Various
privacy and learning rates are applied during the model aggregation stage to oppose attacks. In [34], the
FedShufde framework was proposed to defend user privacy in edge IoT networks. The attackers were
prevented from accessing the user’s private information, including UAV flight conditions, location, and
address. It is worth mentioning that significant improvements have been achieved in solving these complex
problems. Data and network security were enhanced, with a focus on practical applications and consistent,
decentralized trust procedures. Table 1 presents a comparison of various deep learning (DL) models for
anomaly detection in IoT environments. The proposed framework has also been mentioned for reference.
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Table 1: Literature review summary

Year Reference Algorithm/model Findings
2021 [24] Hierarchical federated

learning
Anomaly detection strategy for IIoT,

achieved high throughput, high anomaly
detection accuracy, and low latency

2022 [18] Federated learning game Multiaccess edge computing for IIoT,
improved accuracy against attacks

2023 [11] Transformer-based model IDS for IoT-based smart home, 97.95%
accuracy for binary classification and 95.78%

for multiple classifications
2023 [13] Transformer neural network 99% accuracy for intrusion detection in

MQTT- enabled IoT networks
2024 [9] Deep learning approach IDS for IoT networks, 99.89% detection

accuracy in binary classification tasks
2024 [23] Cuckoo search-optimized

deep CNN
Phishing attack detection in IoT ecosystem,

91% detection accuracy
2024 [28] Deep forest Implemented layered intrusion detection

model in IoT consumer electronics, achieved
better accuracy results.

2025 [10] Five-dimensional gray wolf
optimizer for generative

adversarial network

Implemented the model on three datasets
and achieved accuracy levels, from 94% to

100%
2025 Our

work
Bayesian game federated
reinforcement learning

Anomaly detection in IoT edge computing,
achieved upto 98% detection accuracy

3 Methodology
The proposed framework primarily focuses on privacy-preserving federated anomaly detection

(PPFAD) for various attack types, including Denial-of-Service (DoS), Man-in-the-Middle (MitM), IP
spoofing, and Brute Force Attacks in the EC-IoT environment. A comprehensive, real-time dataset has
been collected using sensor readings from multiple locations. The missing values were handled using
preprocessing methods, and data was partitioned for Federated Learning (FL). The proposed framework
utilizes Federated Learning (FL), Bayesian Game Theory (BG), and Reinforcement Learning (RL) for
privacy-preserving anomaly detection. FL supports the distributed training of device-specific data for local
models and aggregation with global models. Participation is controlled in each training session through an
adjusted threshold of anomaly values, ensuring efficient resource utilization. BG helps both attackers and
defenders achieve optimal defense policies. Double Deep Q-Network (DDQN) optimizes anomaly detection
by learning from different attack patterns. This integrated approach is helpful for efficient anomaly detection
and addressing the key challenges of consumer electronics in IoT edge computing. This section presents the
detailed methodology for the proposed framework.

3.1 Data Collection
The dataset collection for this research was conducted in a residential environment focused on a sensor-

based IoT edge network. Real-time data monitoring has been implemented, which includes features for
detecting anomalies. The data collected over 24 h captured various operational situations, including both
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normal and abnormal activities. The distributed sensor setup confirms that the data from each sensor node
remains localized, supporting the FL framework. The selected features are detailed in Table 2, which covers
key metrics such as packet size, flow duration, and flow rate, demonstrating the presence of the attack.
The selected features capture key network characteristics for attack identification. Features such as packet
size, flow duration, and source/destination IP addresses were extracted in real-time using lightweight packet
capture tools. Flow rate and connection count were computed using session monitoring. The reputation score
was derived from an average of past anomaly scores, while the Trust level was computed using a weighted
combination of anomaly and reputation scores. BG and DDQL integration for the privacy-preserving
strategy enables the cooperative development of an anomaly detection framework for accurately identifying
threats in an IoT edge network. The data that support the findings of this study are openly available in Dataset.

Table 2: Feature list for model implementation

Sr. No. Features
1 Packet size
2 Flow duration (sec)
3 Flow rate
4 Source IP
5 Destination IP
6 Source port
7 Destination port
8 Connection count
9 Anomaly score
10 Reputation score
11 Trust level

3.2 Federated Learning in PPFAD
Federated Learning (FL) is a decentralized method where multiple local nodes directly train the model

and only share model updates with the central server, which is critical for data security. It is important for an
IoT edge environment where sensor data is sensitive and cannot be shared openly. The IoT devices, such as
sensor nodes in an edge computing environment generate data where FL trains local models without sharing
the sensitive data.

Each device node selects its local dataset and participates by training a local model that may comprise
attack patterns. The central server receives the model updates from the participating devices, combines them,
and creates a global model. The aggregation is performed using Federated Averaging (FedAvg), ensuring
that each model update is contributed to the global model. The proposed algorithm for this process has been
presented in Algorithm 1. Mathematically, the process can be expressed as

θt+1 = 1
N

N
∑
i=1

θt
i (1)

where θt
i represents the model parameters from device i at time t, N is the total number of participating

devices in the federated round, and θ(t+1)
i shows the global model after aggregation. The weight aggregation

can be expressed as
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Wg =
N
∑
i=1

ni

n
Wi (2)

where Wg shows the global model weight, Wi represents the ith edge node weight, and ni is the number of
data samples at the ith node. The model is trained using input data, a loss function, and target data as

min
Wi

L(Wi , Xi , Yi) (3)

The adaptive federation is implemented on each device based on the severity of the anomalies. Devices
with high anomaly scores or a history of frequent attacks are prioritized for participation in the FL round.
This enables the global model to respond quickly to changing attack patterns and enhance anomaly detection
accuracy.

Participation =
⎧⎪⎪⎨⎪⎪⎩

1 if anomaly score ≥ τ
0 if anomaly score < τ

(4)

where τ indicates the anomaly score of the threshold, 1 and 0 is the device participation for the next federated
round. The framework aims to minimize the false positive (FP) and false negative (FN) rates and the
optimization can represented by a loss function L(θ) in terms of weights λFP and λF N as

L(θ) = λFP ⋅ FP + λF N ⋅ FN (5)

Algorithm 1: Federated learning for anomaly detection
Input: Global model parameters θ, number of devices N, dataset Di for each device i
Output: Updated global model θ
for each federated round t = 1, 2, . . . do

Randomly select a subset of devices S ⊆ {1, 2, . . . , N} with sufficient resources
for each device i ∈ S in parallel do

Download global model θt
Train local model using local dataset Di:

θt+1
i ← θt − η∇L(Di ; θt)

Send updated local model θt+1
i to the server

end for
Aggregate local models to update global model:

θt+1 ← 1
∣S ∣ ∑

i∈S
θt+1

i

end for
Return: Final global model θ

Privacy is further enhanced by incorporating differential privacy into the federated learning (FL)
framework. Sensitive information can be protected by incorporating noise into the model updates. The
differential privacy can be expressed as

Dnoisy = Dtrue + N(μ, σ 2) (6)

where Dnoisy shows the noisy model update, and N(μ, σ 2) is the added noise to the model with variance σ 2,
and mean μ, respectively.
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3.3 Bayesian Game Theory in PPFAD
In a Bayesian Game, players have insufficient information about the actions, types, and strategies.

Algorithm 2 shows the detailed scenario for implementing the Bayesian game theory. Let tD present the
defender’s type, having the network and the intrusion detection mechanism information, and tA be the
attacker’s type, having the information of the attacker’s nature. The player i (defender or attacker) has a belief
function bi that shows the probability distribution bD(tA) assigned by the defender about the attacker type
given as

bD(tA) = P(tA∣x) (7)

where bD(tA) represents the attacker’s type belief, and x is the observed outcomes regarding attack attempts
or network traffic. The defender’s expected utility UD is the payoff ’s weighted average received under various
strategies for taking action aD in state s is given as

UD(aD , tA) = ∑
tA∈TA

P(tA ∣ aD)[ ⋅ RD(aD , tA) ⋅ CD(aD , tA)] (8)

where tA shows the set of possible attacker types, P(tA) is the probability of attacker type (tA), RD(aD , tA)
and CD(aD , tA) are the defender’s reward and cost for action aD . Similarly, the attacker’s expected utility can
be expressed as

UA(aA, tD) = ∑
tD∈TD

P(tD ∣ aA)[RA(aA, tD) − DA(aA, tD)] (9)

The temporal utility with a discount factor can be expressed as

U t
D(aD , tA) =

∞

∑
t=1

βt ⎛
⎝ ∑tA∈TA

P(tA ∣ at
D) ⋅ RD(at

D , tt
A) − CD(at

D , tt
A)
⎞
⎠

(10)

The expected utility can be maximized using the Bayesian Nash equilibrium, and the optimized
defender’s equilibrium condition can be expressed as

a∗D , a∗A = arg max
aD ,aA

∑
tA∈TA

∑
tD∈TD

P(tA, tD) ⋅ [RD(aD , tA) + RA(aA, tD)] − [CD(aD , tA) + CA(aA, tD)] (11)

The multi-objective Bayesian utility for the defender can be given as

UD(aD , tA) =
n
∑
i=1

wi ⋅ ( ∑
tA∈TA

P(tA) ⋅ RD , i(aD , tA) − CD , i(aD , tA)) (12)

The Game-theoretic learning dynamics for the reward and action can be expressed as

Rt
D(aD) = UD(at

D , tA) −max
a′D

UD(a′D , tA) (13)

at+1
D = at

D + η ⋅ Rt
D(aD) (14)

The probabilistic Bayesian Nash equilibrium for the defender and attacker can be expressed as

π∗D(aD) = arg max
πD

EaA∼πA[UD(aD , tA)] (15)
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π∗A(aA) = arg max
πA

EaD∼πD[UA(aA, tD)] (16)

Algorithm 2: Bayesian game for intrusion detection
Input: Set of attacker strategies AA, defender strategies AD , type distributions P(tA) and P(tD), payoff

functions UA, UD
Output: Optimal strategies a∗A and a∗D
for each defender strategy aD ∈ AD do

for each attacker type tA ∈ TA do
Compute expected utility for defender:

UD(aD , tA) = ∑
tA

P(tA) ⋅ RD(aD , tA) − CD(aD , tA)
end for

end for
for each attacker strategy aA ∈ AA do

for each defender type tD ∈ TD do
Compute expected utility for attacker:

UA(aA, tD) = ∑
tD

P(tD) ⋅ TA(aA, tD) − DA(aA, tD)
end for

end for
Find optimal strategies:
a∗D = arg maxaD E[UD(aD , tA)], a∗A = arg maxaA E[UA(aA, tD)]
Return: Optimal strategies a∗A and a∗D

3.4 Double Deep Q- Learning in PPFAD
The decision-making process is optimized using a Double Deep Q-Network (DDQN) for anomaly

detection in an IoT edge environment. The traditional DQN has been improved with DDQN, which is
designed to address the overestimation bias issue during action-value estimation by decoupling the Q-value
estimation and action selection processes. Each edge node observes network conditions and system metrics
and selects actions such as flagging suspicious activity or adjusting prefetching strategies. The state includes
real-time traffic features, while actions represent system-level responses to potential anomalies. The reward
function is designed to encourage low latency, high detection accuracy, and system stability. DDQL is chosen
over standard Q-learning to mitigate overestimation of Q-values. The features extracted from the IoT devices
are represented by the state st at time t, including the types of attacks and model updates from FL. The action
at represents the anomaly detection decisions, and rt defines the reward based on detection accuracy and
FP/FN rates.

The evaluation network Q(st , at ; θ) and the target network Q′(st , at ; θ′) are used in the DDQN.
Q(st , at ; θ) is used for updates during the training process while Q′(st , at ; θ′) is used for stabilizing during
the learning process. The update rule for Q-learning is expressed as

Q(st , at) ← Q(st , at) + α [rt+1 + γ max
a′

Q(st+1 , a′) − Q(st , at)] (17)
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where α shows the learning rate, rt+1 is the reward after at , and γ is the discount factor. The exploration and
exploitation are balanced using the epsilon-greedy policy, and the action can be expressed as

at =
⎧⎪⎪⎨⎪⎪⎩

random action, with probability ε

arg maxa Q(st , a), with probability 1− ε
(18)

The positive and negative reward functions for anomaly detection and normal activity can be
expressed as

rt+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

+1, if the anomaly is correctly classified
+1, if the normal activity is correctly classified
−1, if the anomaly is incorrectly classified
−1, if the normal activity is incorrectly classified

(19)

DDQL finds the optimal policy π∗(s) that maps states s and actions a to maximize the reward. The
Bellman equation can be expressed as

V(s) =max
a
[r(s, a) + γ∑

s′
P(s′∣s, a)V(s′)] (20)

where P(s′∣s, a) shows the transition probability from s to s′ after a. The loss function for training the
evaluation network is expressed as

L(θ) = E [(yt − Q(st , at ; θ))2] (21)

where yt represents the target Q-value and is expressed as

yt = rt + γQ′(st+1 , arg max
a

Q(st+1 , a; θ); θ′) (22)

The detailed workflow of the DDQL algorithm has been presented in Algorithm 3.

Algorithm 3: Double deep Q-learning for anomaly detection
Input: Replay buffer D, learning rate η, discount factor γ, exploration rate ε
Output: Optimized Q-network Q(s, a; θ)
Initialize primary Q-network Q(s, a; θ) and target network Q′(s, a; θ′)
for each episode e = 1, 2, . . . do

Initialize state s0
for each time step t = 1, 2, . . . do

Select action at using ε-greedy policy:

at =
⎧⎪⎪⎨⎪⎪⎩

random action, with probability ε
arg maxa Q(st , a; θ), with probability 1 − ε

Execute action at and observe reward rt and next state st+1
Store transition (st , at , rt , st+1) in D
Sample a mini-batch of transitions from D
Compute target value:

yt = rt + γQ′(st+1 , arg maxa Q(st+1 , a; θ); θ′)
(Continued)
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Algorithm 3 (continued)
Update primary network by minimizing loss:

L(θ)=E [(yt − Q(st , at ; θ))2]
Periodically update target network:

θ′ ← θ
end for

end for
Return: Optimized Q-network Q(s, a; θ)

4 Results and Discussion
This section presents a brief discussion of the network setup and analysis of the results for the proposed

PPFAD framework. The network setup has been established for the anomaly detection of different attacks
in an edge computing Internet of Things (EC-IoT) environment. The proposed model, based on DDQN
and FL, is designed with a lightweight neural network architecture. It ensures compatibility with edge
devices that perform localized training, thereby keeping memory and CPU usage to a minimum. Since only
model weights are exchanged during federated updates, communication overhead remains low. Our edge
nodes operated within acceptable CPU (<40%) and memory (<60%) usage ranges, confirming the model’s
practicality in residential IoT environments. The system’s performance has been analyzed using performance
metrics, including False Positive Rate (FPR), False Negative Rate (FNR), accuracy, throughput, and latency.
The parameters used for the implementation of federated learning (FL), Bayesian game theory, and double
deep Q-learning (DDQL) are presented in Table 3.

Table 3: Parameters for network setup and model implementation

Parameter Value
Edge devices (Raspberry Pi 4) 5 devices

Communication rounds 10
Local epochs 5 per edge device
Learning rate 0.001

Batch size 32
Neural network architecture 3-layer fully connected

Activation function ReLU for hidden, linear for output
Discount factor (γ) 0.99

Epsilon decay Exponential over 100 episodes
Replay buffer size 10,000 samples

Target network update frequency Every 10 episodes
Loss function Mean Squared Error (MSE)
Learning rate 0.001

Reward function +1 (correct), −1 (incorrect)

4.1 Network Setup
A network has been created using 20 sensors at four different locations, each location has five sensors

and an edge device. The four edge gateways are used to collect and process data from various sensors. The fifth
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device is the central server, which coordinates model aggregation in the federated learning setup. The sensors
collect real-time data, including motion, temperature, smoke, and humidity, and send it to the corresponding
edge gateway used for pre-processing and anomaly detection. Intrusions such as DoS, MitM, IP Spoofing,
and Brute Force attacks have been introduced to identify and respond to abnormal activities.

4.2 Results Analysis
Fig. 1 shows the average learning progress of the model over multiple training episodes. The number of

episodes is along the x-axis, and the average cumulative rewards are along the y-axis. The reward progresses
as it learns to improve decisions in the presence of anomalies. The increase in rewards signifies the efficiency
of the proposed model in anomaly detection while minimizing false detections. The pattern proposes that the
method effectively learns from federated data while maintaining strong decision-making through Bayesian
game optimization. The reduction of false detection also ensures that the model efficiently accumulates
rewards, settling its supremacy in anomaly detection.

Figure 1: Average rewards over multiple training episodes at various Edge nodes for PPFAD vs centralized model

The average training loss for all the edge devices has been shown in Fig. 2. The decrease in the training
loss over the episodes indicates that the model is learning efficiently. It confirms that the model is improving
its policy with each iteration. It is worth mentioning that device 1 exhibits the lowest loss, followed by device
3 and device 4, while device 2 shows the highest loss. The loss reduction for the devices is attributed to the
balanced state-action selection mechanism. Federated learning also contributes to lower overfitting, while
the Bayesian game confirms that the model dynamically adjusts to different anomaly probabilities. This
avoids needless penalties and lead to smoother loss convergence.

Fig. 3 shows the average latency results over time steps. It has been noticed that the latency at the four-
edge devices using FL is significantly lower compared to centralized learning. The latency is lower for edge
device 1, while the remaining devices exhibit slightly higher latencies. Latency at the central server is nearly
twice that of the slowest edge device. This is due to the increased communication overhead as all data is
transmitted at the central server to be processed.

Fig. 4 shows the average data transmitted per unit time. It is noticeable that at the edge devices, the
throughput is expressively higher than that of the central server. Edge device 1 exhibits higher throughput,
while the remaining edge devices experience lower throughput values. However, the central server shows
lower throughput due to increased waiting time for data aggregation. In the proposed framework, data is
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processed locally by each edge device, and only necessary updates are transmitted to the central server. It
reduces the overall network load and permits higher throughput at the edge nodes.

Figure 2: Average training loss over multiple training episodes at various Edge nodes vs centralized model

Figure 3: Average latency over multiple training episodes at Edge nodes and central server

Figure 4: Average throughput over multiple training episodes at Edge nodes and central server
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The False Positive Rate (FPR) and False Negative Rate (FNR) are the most important metrics in anomaly
detection. FPR measures incorrect classes, while FNR measures undetected threats. A high false positive
rate (FPR) leads to unnecessary alerts and increases the security load, while a high false negative rate (FNR)
allows undetected attacks to penetrate the network. Table 4 and Fig. 5 show the comparison results of three
different models: Isolation Forest (IF), Autoencoder (AE), and Bayesian RL. Results reveal that our proposed
approach outclasses the other models and provides an effective and perfect anomaly detection framework.

Table 4: Comparison results of various performance metrics for different models

Model FPR FNR Accuracy Precision Recall
Isolation forest 8.3% 9.2% 86% 89% 81%
Autoencoder 6.6% 5.9% 91% 93% 86%
Bayesian RL 2.2% 1.9% 97% 96% 97%

Figure 5: Comparison results of various performance metrics for Isolation Forest, Autoencoder, and Bayesian RL
models

Figs. 6 and 7 show the box plots for the three models. It is worth mentioning that the IF possesses the
highest FPR and FNR, indicating that it regularly misclassifies attacks and fails to identify actual anomalies.
The AE performs better, indicating its ability to differentiate between normal and anomalous traffic, as well
as undetected anomalies. The Bayesian RL achieves the lowest FPR and FNR, thereby reducing false alarms
and ensuring accurate anomaly identification. It is worth mentioning that the proposed framework also
outperforms the other models in terms of accuracy, precision, and recall.
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Figure 6: Data distribution of different models for the False Positive Rate

Figure 7: Data distribution of different models for the False Negative Rate

Table 5 shows the comparison results of various performance metrics for various attacks. We observed
a measurable tradeoff between precision and recall in evaluating the model’s performance across different
attack types. The model tends to prioritize higher recall, particularly in detecting IP Spoofing attacks, to
minimize false negatives for stealthy threats. It is a critical choice in IoT environments where undetected
anomalies can lead to significant security breaches. While this slightly lowers false positives, the tradeoff
is acceptable in our edge IoT context, where early detection is prioritized over misclassification. For other
attacks, such as DoS and Brute Force attacks, the model maintains a more balanced precision-recall profile,
ensuring a more resilient and secure environment.

Table 5: Comparison results of various performance metrics for various attacks

Attack type Accuracy Precision Recall FPR FNR
DoS 98.4% 98.1% 98.7% 1.2% 1.3%

MitM 97.9% 97.5% 98.2% 1.5% 1.8%

(Continued)
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Table 5 (continued)

Attack type Accuracy Precision Recall FPR FNR
IP spoofing 96.8% 96.3% 97.1% 2.1% 2.9%
Brute force 98.1% 97.8% 98.4% 1.6% 1.6%

Fig. 8 shows the results of performance metrics for various attack types. The Denial of Service (DoS),
Man-in-the-Middle (MitM), IP Spoofing, and Brute Force (BF) attacks have been analyzed in terms of
accuracy, precision, recall, False Positive Rate (FPR), and False Negative Rate (FNR). The model shows a high
accuracy of 98.4% in the detection of DoS attacks, while 98.1%, 97.9%, and 96.8% for BF, IP spoofing, and
MitM, respectively. The FPR remains below 2.1% for most attacks, which suggests that the model efficiently
differentiates between malicious and benign traffic. The model also achieved a low FNR score of 1.3% for
DoS attacks and 1.6% for BF attacks. However, the FNR score for MitM and IP spoofing is slightly high at
1.8% and 2.9%, respectively.

Figure 8: Comparison results of various performance metrics for DoS, MitM, IP Spoofing, and Brute Force attacks

5 Conclusion
This study presents an optimized framework for privacy-preserved federated anomaly detection in

edge computing (EC) Internet of Things (IoT) networks. Bayesian game theory, integrated with double
deep Q-learning (DDQL), enhances anomaly detection in the EC-IoT environment. Federated learning
(FL) inclusion guarantees data privacy locally by handling sensitive information and enabling cooperative
anomaly detection. Bayesian game theory ensures strategic design between attackers and defenders, while
DDQL optimizes resources. The proposed framework enhances detection accuracy and stabilizes policy
management in CE environments. Experimental results show that the proposed framework achieved high
detection performance accuracy. This research provides a solid foundation for developing efficient, scalable,
and secure anomaly detection systems for EC-IoT. Future work will incorporate a multimodal approach,
including unmanned aerial vehicles, in EC-IoT environments.
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