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ABSTRACT: In the era of exponential growth of digital information, recommender algorithms are vital for helping
users navigate vast data to find relevant items. Traditional approaches such as collaborative filtering and content-
based methods have limitations in capturing complex, multi-faceted relationships in large-scale, sparse datasets. Recent
advances in Graph Neural Networks (GNNs) have significantly improved recommendation performance by modeling
high-order connection patterns within user-item interaction networks. However, existing GNN-based models like
LightGCN and NGCF focus primarily on single-type interactions and often overlook diverse semantic relationships,
leading to reduced recommendation diversity and limited generalization. To address these challenges, this paper
proposes a dual multi-relational graph neural network recommendation algorithm based on relational interactions.
Our approach constructs two complementary graph structures: a User-Item Interaction Graph (UIIG), which explicitly
models direct user behaviors such as clicks and purchases, and a Relational Association Graph (RAG), which uncovers
latent associations based on user similarities and item attributes. The proposed Dual Multi-relational Graph Neural
Network (DMGNN) features two parallel branches that perform multi-layer graph convolutional operations, followed
by an adaptive fusion mechanism to effectively integrate information from both graphs. This design enhances the
model’s capacity to capture diverse relationship types and complex relational patterns. Extensive experiments con-
ducted on benchmark datasets—including MovieLens-1M, Amazon-Electronics, and Yelp—demonstrate that DMGNN
outperforms state-of-the-art baselines, achieving improvements of up to 12.3% in Precision, 9.7% in Recall, and 11.5%
in F1 score. Moreover, DMGNN significantly boosts recommendation diversity by 15.2%, balancing accuracy with
exploration. These results highlight the effectiveness of leveraging hierarchical multi-relational information, offering
a promising solution to the challenges of data sparsity and relation heterogeneity in recommendation systems. Our
work advances the theoretical understanding of multi-relational graph modeling and presents practical insights for
developing more personalized, diverse, and robust recommender systems.
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1 Introduction
The increasing digitization of recent years has led to a vast expansion in the amount of information avail-

able on the Internet, creating a challenge for users in navigating and retaining knowledge. Recommendation
algorithms, particularly those based on attributed multiplex heterogeneous networks, represent a significant
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technological advancement in addressing the challenge of information overload [1]. By leveraging users’ his-
torical interaction behaviors through self-supervised graph learning techniques [2], modeling user interests
via attention-based heterogeneous hypergraph neural networks [3], and incorporating user preferences into
graph-based foundation models [4], these algorithms are capable of generating personalized and context-
aware recommendations. Among these, collaborative filtering remains a foundational and widely adopted
approach, with ongoing advancements aimed at improving its effectiveness and scalability [5]. Although
Graph neural networks (GNNS) have made remarkable progress in the field of recommendation systems,
mainstream GNN-based recommendation models, such as LightGCN [6] and NGCF [7], still have obvious
limitations. LightGCN improves computational efficiency by simplifying graph convolution operations,
removing feature transformations and non-linear activation functions; however, its streamlined design
struggles to accommodate multiple relationship types with distinct semantics. NGCF, while incorporating
higher-order connectivity, remains limited to a single user-item interaction graph and fails to effectively
capture the interplay among different relationship types. More critically, these models often treat all
interactions as homogeneous, overlooking the semantic distinctions between various interaction types. This
results in reduced recommendation diversity and constrained generalization ability. These shortcomings
have driven us to explore recommendation model designs capable of simultaneously processing multiple
types of relationships.

The emergence of Graph Neural Networks (GNNs) has introduced new concepts and methods to
recommendation algorithms. GNNs can effectively capture high-order connection patterns and structured
information in user-item interaction networks, significantly enhancing the performance and expressive
capability of recommendation systems. Related works include: the graph convolutional network-based
collaborative filtering method proposed by Gao et al. [8], the neural graph collaborative filtering framework
developed by Wu et al. [9], and the multi-perspective social recommendation method based on graph
representation learning designed by He et al. [10]. These approaches model user preferences and item
relationships through graph structures from different perspectives, offering new solutions for personalized
recommendations. Traditional recommendation algorithms, such as those based on collaborative filtering
and content analysis, have achieved considerable success in the field. Collaborative filtering algorithms [11],
including user-based methods that analyze user similarities to recommend items favored by similar users,
and item-based methods that suggest items based on item similarities, are widely used. Content-based
algorithms, in contrast, focus on aligning recommendations with user and item attributes. However, these
traditional methods exhibit significant limitations when applied to complex, real-world data. In large-scale
and highly sparse datasets, collaborative filtering suffers from the cold-start problem, as it struggles to find
similar users or items for new entities due to limited interaction data. Content-based algorithms rely heavily
on feature representations, and when features are difficult to extract or poorly defined, recommendation
performance declines, making it hard to capture the complex, implicit relationships between users and items.

In recent years, graph neural networks have evolved significantly in recommender systems, progressing
from simple to complex architectures and from single-relation to multi-relation approaches. Early work
such as PinSage pioneered the application of GraphSAGE to Pinterest’s recommendation system, enhancing
performance by aggregating information from item neighbors. Building on this, NGCF [7] introduced
message passing on user-item interaction graphs, explicitly modeling high-order connectivity to capture col-
laborative signals. LightGCN [6] further streamlined NGCF by removing non-linear activations and feature
transformations, retaining only neighbor aggregation, which improved performance while reducing model
complexity. However, these methods primarily focus on single-type user-item interactions, limiting their
capacity to fully exploit the diverse relational information found in real-world scenarios. To overcome this
constraint, researchers have turned their attention to multi-relational graph neural networks. SR-BMHG [12]
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adopts semantic and relationship-aware strategies to aggregate the relations and semantics in heterogeneous
graphs, and applies the results to downstream tasks. MBGCN [13] constructs multi-behavior graphs based
on various user behaviors (such as clicking, collecting, and purchasing), and models user preferences under
different behaviors respectively. LSPI [14] has improved the accuracy of the aggregation process through the
research on large paths and small paths to enhance the performance of downstream tasks.

In this research, we intentionally selected two complementary graph structures: the User-Item Interac-
tion Graph (UIIG) and the Relation Association Graph (RAG), excluding semantic or temporal information
graphs. This decision is grounded in several considerations. First, UIIG and RAG capture explicit and implicit
interaction patterns, respectively, offering complementary perspectives—UIIG emphasizes direct interaction
behaviors, while RAG uncovers potential associations often missed by traditional methods. Second, these
two graph structures achieve a balance between computational efficiency and model complexity; introducing
additional graph types may provide extra information but would substantially increase computational costs
and risk information redundancy and noise. Third, our preliminary experiments show that the combina-
tion of these two graphs already significantly improves recommendation performance, with diminishing
marginal gains from incorporating further graph structures. While semantic and temporal information can
offer valuable supplementary insights, we believe that, at this stage, focusing on these two fundamental and
complementary graph structures more effectively validates our core hypothesis: that multi-relation graph
fusion can enhance recommendation performance. Future research can explore the integration of additional
information dimensions.

To address the aforementioned issues, this paper proposes an innovative dual multi-relational graph
neural network recommendation algorithm based on relational interactions. This algorithm constructs two
types of graphs: a User-Item Interaction Graph and a Relational Association Graph [15,16]. The User-Item
Interaction Graph intuitively represents direct interactions between users and items, such as purchasing,
rating, and clicking behaviors. In contrast, the Relational Association Graph explores potential relationships
between users and items by analyzing user similarities (based on historical behaviors, demographics, or social
network connections) and item similarities (based on attributes, categories, or semantic information). By
organically integrating these two graphs and fully leveraging multi-relational features, the algorithm provides
a more comprehensive and in-depth understanding of the complex relational patterns in the data, leading
to more accurate and diverse recommendation results. Fig. 1 illustrates the logic of the two branches—direct
user-item interactions and relational associations—contributing to the final recommendation.

The paper is structured as follows: Section 2 analyzes the strengths and weaknesses of traditional and
graph neural network-based recommendation algorithms, establishing the foundation for the proposed
method. Section 3 provides a comprehensive description of the algorithm, covering two approaches to graph
construction, multi-relational feature extraction, the dual graph neural network architecture (including
branch design and information interaction), and the recommendation generation process. This section
includes a series of formulas to provide precise explanations. Section 4 presents experimental results on
real-world datasets. The experiments are compared with multiple baseline algorithms and evaluated using
precision metrics and other relevant indicators. Ablation studies are also conducted to support the evaluation,
and results are visualized through graphical data. Section 5 summarizes the entire paper, highlighting key
contributions, results, and insights, while also suggesting directions for future research and offering ideas for
subsequent studies.
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Figure 1: Description of user-item interactions and relational associations

The key contributions of this work are as follows:
Innovative architectural design: We propose a dual multi-relational graph neural network architecture

based on relational interactions. This architecture constructs a User-Item Interaction Graph and a Relational
Association Graph to simultaneously capture direct interactions and potential multi-relational associations,
addressing the limitations of traditional and existing GNN-based recommendation algorithms in handling
complex relational data.

Multi-relational feature extraction: A distinctive multi-relational feature extraction method is designed
to enhance the representation of user-item relationships in a comprehensive manner, thereby establishing a
solid informational basis for accurately understanding user interests and preferences.

Flexible information fusion: The inter-branch information interaction mechanism, combined with
an attention mechanism, enables adaptive adjustment of fusion weights between the two graph branches
based on specific recommendation scenarios [12], thereby improving both accuracy and diversity
of recommendations.
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Experimental validation: Extensive experiments on multiple real-world datasets demonstrate the effec-
tiveness of the proposed method. Compared with numerous advanced baseline algorithms, our approach
achieves remarkable improvements in recommendation accuracy and diversity. Ablation studies further con-
firm the critical roles of each component, providing innovative and practical solutions for recommendation
systems and significantly advancing their application and development across various domains.

2 Related Works

2.1 Traditional Recommendation Algorithms
The prevailing approach to recommendation algorithms can be broadly classified into two main cate-

gories: collaborative filtering-based and content-based. The fundamental premise of collaborative filtering
algorithms is the assumption that users with analogous interest preferences will exhibit analogous evaluations
of the same items, or that items with similar characteristics will be preferred by users with analogous
characteristics. In user-based collaborative filtering, the most analogous neighbors to the target user are
identified through the calculation of user similarity. Subsequently, the target user’s preference for unrated
items is predicted based on the neighboring users’ ratings of the items. Item-based collaborative filtering,
in contrast, initially calculates the similarity between items, subsequently recommending new items for the
target user based on the analogous items that the target user has already evaluated. However, collaborative
filtering algorithms encounter significant challenges when dealing with large-scale sparse data, as it is
challenging to identify a sufficient number of similar users or analogous items within a sparse dataset to
make reliable recommendation predictions [17]. Fig. 2 illustrates a typical recommendation algorithm.

Figure 2: Introduction to recommendation algorithms

In contrast, content-based recommendation algorithms concentrate on the examination of data per-
taining to the attributes of both users and items. In the case of users, characteristics such as age, gender,
occupation, and browsing history may be taken into account. With regard to items, information such as
attributes, categories, keywords, and so forth may be considered. Recommendations are generated through



2336 Comput Mater Contin. 2025;84(2)

the calculation of the degree of alignment between user characteristics and item characteristics [18]. To
illustrate, a user with a penchant for science fiction films may receive recommendations from a content-based
recommendation algorithm for other films with similar elements. Nevertheless, this approach is constrained
by the necessity for accurate and complete feature extraction and representation. In the event of inadequate
or erroneous feature extraction, the efficacy of the recommendation is compromised, and the discovery
of implicit user-item relationships becomes challenging [19]. In addition to the aforementioned methods,
some studies have begun to explore the construction of multi-graph structures for recommendation systems
by utilizing both positive and negative feedback information. Chen et al. proposed the SiReN model [20],
which adopts a dual-graph structure to separately model positive interactions (high ratings) and negative
interactions (low ratings), fusing these two signals through an attention mechanism. The innovation of SiReN
lies in its explicit use of negative feedback information to refine user preference representations, which is
valuable for capturing subtle user preferences (such as avoiding disliked items). However, SiReN primarily
focuses on explicit positive and negative feedback, without adequately considering the potential associative
relationships between users and items.

2.2 Recommendation Algorithms Based on Graph Neural Networks
The increasing development of graph neural networks has led to a growing number of researchers

applying them in the field of recommendation algorithms [3]. One of the most frequently utilized graph
neural network structures is the Graph Convolutional Network (GCN). In the context of recommendation
algorithms, GCNs are capable of performing convolutional operations on user-item graphs and updating
the feature representations of nodes by aggregating the information of neighboring nodes. This enables the
learning of potential representations of users and items, which can subsequently be employed for recommen-
dation prediction. To illustrate, the NGCF (Neural Graph Collaborative Filtering) algorithm employs GCN to
ascertain the joint representation of users and items, thereby achieving enhanced recommendation outcomes
through the propagation of information on the graph, which considers the higher-order interactions
between users and items. LightGCN represents a further streamlining of NGCF, reducing the computational
complexity while maintaining superior recommendation performance [6]. However, the majority of these
algorithms concentrate on graphs created through direct user-item interactions, which is inadequate for
mining other potential relationships. This presents a limitation when dealing with multi-relationship data.

3 Methodology
As shown in Fig. 3, this paper proposes a dual multi-relational graph neural network recom-mendation

algorithm based on relational interaction. By constructing a user-item interaction graph and a relational
association graph, and utilizing the multi-relational features to their fullest extent, as well as designing a
distinctive dual graph neural network architecture and information interaction mechanism, the algorithm
effectively captures the intricate relational patterns present within the data.



Comput Mater Contin. 2025;84(2) 2337

Figure 3: Schematic diagram of the DMGNN model

3.1 Construction of Graphs
3.1.1 User-Item Interaction Graph (UIIG)

UIIG is a two-part graph comprising two sets of nodes: a set of user nodes (denoted U) and a set of
item nodes (denoted I). In the event of an interaction (for example, a purchase, rating, or click) between user
u ∈ U and item i ∈ I, an edge is created between the corresponding user node and item node. The weight
wui of the edge can be determined based on the frequency or intensity of the interaction [21]. One possible
method for calculating wui is as follows:

Wui =
nui√nu ni

(1)

where nui denotes the number of interactions of user u with item i, nu denotes the total number of
interactions of user u with all items, and ni denotes the total number of interactions of item i with all
users. This weighting reflects the preference of users for items or the importance of interactions. The user-
item interaction graph constructed in this way can visualize the direct correlation between users and items,
providing a basis for subsequent information dissemination and recommendation prediction.

3.1.2 Relational Association Graph (RAG)
The relational association graph aims to uncover potential relationships between users and items. It is

constructed based on a variety of factors, including user similarity, item similarity and category information.
User similarity can be calculated in various ways, such as based on users’ historical behavioral patterns, if
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two users frequently purchase or browse similar types of items, they are considered to have a high degree
of similarity; demographic information can also be taken into account, such as users with similar age,
gender, and geographic location may have similar interest preferences; and it can also be combined with
social relationships, if two users have a large number of social network It can also be combined with social
relationships, if two users have more common friends or interactions in social networks, then they may also
have similarity in interests. Let the similarity between user u and v be suv . One way to calculate this can be:

Suv =
∑
i∈I
(rui rv i)

√
∑
i∈I

r2
ui ⋅ ∑

i∈I
r2

v i

(2)

where rui and rv i denote the rating (if rating data is available) or interaction intensity (if other interaction
behaviour) of item i by users u and v. Item similarity, on the other hand, can be based on the attribute
characteristics of the items, such as the genre of the film, the subject of the book, the brand and category
of the product, etc. If two items belong to the same category or have similar attributes, then there is a high
similarity between them. Let the similarity between item i and item j be si j, similarly there can be a formula
for calculating:

Si j =
∑

u∈U
(rui ru j)

√
∑

u∈U
r2

ui ⋅
√
∑

u∈U
r2

u j

(3)

In a relational association graph, edges are created between nodes with significant relational associa-
tions, and the weights of the edges are assigned according to the strength of the relationship. For example,
two highly similar users or two very similar items will be connected by edges with higher weights [22–24].

3.2 Multi-Relational Feature Extraction
3.2.1 User and Item Feature Encoding

For each user and item, a number of features are extracted. In addition to basic demographic features,
such as age, gender, and geographic location, user data includes historical behavioral features, such as the
sequence of items purchased or viewed in the past, and the change in preference for different types of
items over time. Subsequently, these features are transformed into low-dimensional vectors through the
application of appropriate coding methods, thereby facilitating subsequent computation and processing [25].
For instance, classification features can be encoded using one-hot encoding (OHE), which converts them into
sparse vector representations. In the case of continuous features, they can be normalized and then mapped
to a low-dimensional vector space through an embedding layer. Similarly, for items, a variety of features,
including price, brand, category, and detailed description information, are also extracted and subjected to
analogous encoding operations. In this manner, the numerous intricate characteristics of users and items
are transformed into a singular, low-dimensional vector representation, which serves as the foundation for
subsequent relational feature construction and graph neural network processing.

3.2.2 Relationship Feature Definition
Various types of relationship characteristics are defined to enrich the description of user-item relation-

ships. For example, the calculation of the number of jointly purchased items between users as a proportion
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of the total number of items purchased, puv , as a type of user-relationship feature is given by the formula:

puv =
∣Nu ∩ Nv ∣
∣Nu ∪ Nv ∣

(4)

where Nu and Nv denote the set of items purchased by users u and v, respectively. For the items, the closeness
of the association between the items can be measured by calculating the ratio qi j of the number of users who
were purchased together to the total number of users:

qi j =
∣ui ∩ u j ∣
∣ui ∪ u j ∣

(5)

where Ui and Ui denote the set of users who purchased items i and j, respectively. In addition, factors such as
the difference in the frequency of user interactions with different categories of items, the impact of changes
in the popularity of items over time on the user-item relationship, etc., can also be taken into account, and
these relationship features can be organized into the form of matrices or tensors, so as to allow for effective
information dissemination and feature learning in the graph neural network.

3.3 Dual Multi-Relational Graph Neural Network Model
3.3.1 DMGNN Architecture

The Dual Multi-Relational Graph Neural Network (DMGNN) based on relational interactions consists
of two parallel graph neural network branches corresponding to the User-Item Interaction Graph (UIIG)
and the Relational Association Graph (RAG) [19]. Each branch contains multiple graph convolutional layers.
In the UIIG branch, the graph convolutional layers update the feature representation of the current node by
aggregating the information of the neighboring nodes (both user and item neighbors) based on the direct
interaction edges between the user and the item. Let the feature vector of user node u in the (l + 1)th layer
be Xl+1

u . The information propagation formula can be expressed as:

Xl+1
u = σ

⎛
⎝ ∑i∈NU IG

u

1√
∣NU IG

u ∣
√
∣NU IG

i ∣
(WU IG

1 x(l)
i + bU IG

1 )
⎞
⎠

(6)

where x(l)
u and x(l)

i denote the feature vectors of the user node u and item node i in the layer, NU IIG
u and

NU IIG
i denote the set of neighbors of the user node u and item node i in the UIIG, respectively, WU IIG

1 and
bU IIG

1 are the learnable parameters and σ are activation function.
The update formula for the feature vector Xl+1

i of the item node i in the (l + 1)th layer is:

X(l+1)
i = σ

⎛
⎜
⎝
∑

u∈NU IG
i

1√
∣NU IG

i ∣
√
∣NU IG

u ∣
(WU IG

2 x(l)
u + bU IG

2 )
⎞
⎟
⎠

(7)

where WU IIG
2 , bU IIG

2 are learnable parameters.
In RAG branching, the graph convolution layer focuses on the relationship edges in the relationship

graph, such as user similarity edges or item similarity edges, and mines the potential relationship patterns
between users and items by aggregating the information of neighboring nodes with similar relationships. Let
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the feature vector of user node u in the l + 1th layer of RAG branch be X
′(l+1)
u , and its information propagation

formula is:

X(l+1)
u = σ

⎛
⎝ ∑v∈N RAG

u

1√
∣N RAG

u ∣
√
∣N RAG

v ∣
(WRAG

1 x(l)
v + bRAG

1 )
⎞
⎠

(8)

where the notation definition is similar to that of UIIG, except that the set of neighboring nodes is replaced
by the set of neighbors in the RAG.

The update formula for the feature vector X
′(l+1)
i of an item node i at (l + 1)th level of the RAG branch

is:

X(l+1)
i = σ

⎛
⎜
⎝
∑

j∈N RAG
i

1
√
∣N RAG

i ∣
√
∣N RAG

j ∣
(WRAG

2 x(l)
j + bRAG

2 )
⎞
⎟
⎠

(9)

3.3.2 Information Interaction between Branches
In order to fully integrate the information in both graphs, an information interaction mechanism

between branches is introduced in DMGNN. The node embeddings of the UIIG branch and the RAG branch
are fused after a specific graph convolutional layer. The fusion function can be a simple concatenation,
i.e., the node embedding vectors of the two branches are directly concatenated together to form a longer
vector, which retains the information learnt by each of the two branches, or a more complex Weighted Sum,
which assigns different weights to the information of the two branches according to its importance, and then
performs the summing operation. Then the summing operation is performed. Let the fused user node feature
vector be X f

u , if the weighted summation method is used:

X f
u = αX(l)

u + (1 − α)X
′(l)
u (10)

where α is the weight parameter, l denotes the sequence number of the graph convolutional layer in which
the fusion takes place.

At the same time, in order to further optimize the information fusion effect, the Attention Mechanism
is introduced. The Attention Mechanism can automatically learn the importance weight of each branch
information in the fusion process, which makes it possible to adjust the contribution degree of the two
branches information more flexibly under different recommendation scenarios or data distribution. Let the
attention weights be βU IIG and βRAG , respectively, and βU IIG + βRAG = 1, then the fused user node feature
vector can be expressed as:

X f
u = βU IG X(l)

u + βRAG X
′(l)
u (11)

where βU IIG and βRAG are obtained by learning from the attention network, which can calculate the weights
based on the current node features and other relevant information (such as node degree, neighbor node
features, etc.).

3.3.3 Output Layers and Recommendation Generation
After information propagation through multiple graph convolution layers and information interaction

between branches, DMGNN obtains the final user and item node embeddings. In the recommendation
generation phase, for a given user u, the similarity between its node embeddings and all the item node
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embeddings is calculated. The similarity can be calculated using commonly used distance measures such as
Cosine Similarity. Let the final node embedding of user u be X f

u , and the final node embedding of item i be
X f

i , then the similarity between them is calculated as:

s (u, i) = cos (X f
u , X f

i ) =
X f

u ⋅X f
i

∣X f
u ∣∣X f

i ∣
(12)

Then, the items are ranked according to the similarity score, and the top-ranked item is selected as the
recommended result to the user. For example, for a movie recommendation system, after obtaining the final
embedding of the user through the above steps, the embedding similarity between the user and all the movie
items is calculated, and the top 10 movies with the highest similarity are recommended to the user, so as to
achieve personalized recommendation service.

4 Experiments

4.1 Datasets
Three real-world datasets were used for this experiment, the details of which are shown in

the Table 1 below.

Table 1: Information about three real-world datasets

Datasets Data
sources

Data scale (Training
set/Validation

set/Test set)

Data characteristics Data preprocessing
operations

MovieLens-
1M

Dedicated
film rating

data
collection
platform

Approx.
800,000/100,000/100,000

Contains 1 million
ratings of 3952 films
by 6040 users, with

ratings ranging from 1
to 5, reflecting users’
preference for films.

Remove missing
values; convert scores

to binary feedback
form by threshold;

divide training,
validation and test sets

in 8:1:1 ratio
Amazon-
Electronics

Amazon
ecommerce

platform
electronic
products
category

Approx.
500,000/60,000/60,000

Covering users’
purchase records and

evaluation
information of

electronic products,
the data scale is large
and rich in product
attributes and user

behavior information.

Removal of missing
values; conversion of

purchase or
evaluation behavior to
format-specific data;
division of training,

validation and test sets
in a 7:1.5:1.5 ratio

(Continued)
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Table 1 (continued)

Datasets Data
sources

Data scale (Training
set/Validation

set/Test set)

Data characteristics Data preprocessing
operations

Yelp Yelp local
business
review

platform

Approx.
600,000/80,000/80,000

Contains user ratings
and reviews of local

businesses (e.g.,
restaurants, cafes,

shops, etc.), as well as
attribute information

such as business
category, location, etc.

Removal of missing
values; text processing

of comments
(optional); division of

training, validation
and test sets in 7.5:1:1.5

ratio after score
processing

Before utilizing the aforementioned datasets, a series of data preprocessing operations were con-
ducted [26]. Initially, any missing values within the dataset were removed in order to guarantee the integrity
and reliability of the data. The rating data was transformed into a binary feedback format, wherein the
ratings were categorized into two distinct groups: “like” (above the specified threshold) and “dislike” (below
the threshold). This approach simplifies the recommendation task while highlighting the user’s preference
tendencies. Subsequently, each dataset is partitioned into training, validation, and test sets according to a
specified ratio. The training set is employed for model training and learning, the validation set is utilized for
adjusting the hyper-parameters of the model, and the test set is used for the final evaluation of the model’s
recommendation performance. For text features (such as product descriptions in the Amazon dataset), we
employed a pre-trained BERT model to extract semantic representations, followed by a fully connected layer
to map them into a low-dimensional space; for categorical features, we applied one-hot encoding followed
by embedding layers; for numerical features, we used Min-Max normalization to ensure consistent feature
scales, and utilized an autoencoder structure in the feature dimensionality reduction process.

4.2 Experimental Setups
In order to provide a comprehensive assessment of the efficacy of the proposed DMGNN algorithm,

it is subjected to comparison with a range of established baseline algorithms in the context of experimental
evaluation. The baseline algorithms include traditional recommendation algorithms, such as User-Based
CF, Item-Based CF, and Matrix Factorization (MF), as well as existing recommendation algorithms based
on graph neural networks, such as NGCF and LightGCN. For each algorithm, a Grid Search method is
employed to optimize its hyper-parameter settings, thereby ensuring that performance comparisons are
made under their respective optimal parameter configurations. In the experiments, a number of commonly
used evaluation metrics were employed to assess the performance of the recommendation algorithms. These
included Precision@N, Recall@N, and F1-score@N, with N taking on values of 5, 10, and 20, respectively.

The formula for Precision@N is:

Precision@N =
∑

u∈U
∣Ru,N ∩ Tu∣

∑
u∈U

N
(13)

where U is the set of users, Ru,N represents the set of N previous items recommended by users u, and Tu
represents the set of items actually preferred by users u.
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Recall@N is calculated as follows:

Recall@N =
∑

u∈U
∣Ru,N ∩ Tu∣

∑
u∈U
∣Tu∣

(14)

F1-score@N is the harmonic mean of Precision@N and Recall@N, which is calculated as follows:

F10score@N = 2 × Precision@N × Recall@N
Precision@N + Recall@N

(15)

In addition, in order to evaluate the diversity of recommendation results, the Intra-list Similarity metric
is used. Let the similarity between the items i and j in the recommendation list be sim (i , j), then the formula
for calculating the intra-list similarity is:

Intra-list Similarity =
∑

u∈U
∑

i∈Ru
∑

j∈Ru , j > i
sim (i , j)

∑
u∈U

N (N − 1) (16)

This indicator calculates the average similarity between the items in the recommendation list. If the
similarity of the items in the recommendation list is low, it means that the recommendation results have high
diversity and can meet the needs of users in different aspects.

4.3 Results and Analysis
4.3.1 Accuracy of Recommendations

The experimental results demonstrate that the proposed DMGNN algorithm exhibits superior perfor-
mance compared to the baseline algorithms in terms of the evaluation metrics Precision@N, Recall@N and
F1-score@N. In the MovieLens-1M dataset, for instance, the DMGNN attains a precision of 0.35 at rank 10,
whereas the most successful baseline algorithm, NGCF, achieves a precision of 0.30 at the same rank. This
performance improvement can be attributed to the fact that the DMGNN algorithm is capable of capturing
both the direct interactions and the potential relational associations between users and items. The user-
item interaction graph enables the algorithm to rapidly obtain direct user behavior data, such as a user’s
rating history for a particular movie. In contrast, the relational association graph allows the algorithm to
delve deeper into the similarities between users (e.g., users with similar movie-watching histories) and the
associations between movies (e.g., movies directed by the same person or belonging to the same genre). This
enables the algorithm to gain a more comprehensive understanding of the user’s interests and preferences,
thereby providing a more accurate basis for recommendations. From Table 2, it can be clearly seen that
DMGNN is ahead of other algorithms in all metrics, especially in Precision@10 and F1-score@10 metrics.

Table 2: Comparison of Precision@N, Recall@N and F1-score@N algorithms on all datasets

Algorithm Dataset Precision
@5

Precision
@10

Precision
@20

Recall
@5

Recall
@10

Recall
@20

F1-score
@5

F1-score
@10

F1-score
@20

User-Based
CF

MovieLens-1M 0.12 0.08 0.05 0.20 0.25 0.30 0.15 0.12 0.08
Amazon-Electronics 0.10 0.06 0.04 0.18 0.22 0.26 0.13 0.09 0.06

Yelp 0.08 0.05 0.03 0.15 0.18 0.22 0.11 0.07 0.05

(Continued)
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Table 2 (continued)

Algorithm Dataset Precision
@5

Precision
@10

Precision
@20

Recall
@5

Recall
@10

Recall
@20

F1-score
@5

F1-score
@10

F1-score
@20

Item-Based
CF

MovieLens-1M 0.15 0.10 0.06 0.22 0.28 0.32 0.18 0.14 0.09
Amazon-Electronics 0.13 0.08 0.05 0.20 0.25 0.28 0.16 0.11 0.07

Yelp 0.11 0.07 0.04 0.18 0.20 0.25 0.14 0.09 0.06

MF
MovieLens-1M 0.18 0.13 0.08 0.25 0.30 0.35 0.21 0.16 0.11

Amazon-Electronics 0.15 0.10 0.06 0.23 0.28 0.30 0.19 0.14 0.08
Yelp 0.13 0.09 0.05 0.20 0.23 0.28 0.16 0.12 0.07

NGCF
MovieLens-1M 0.22 0.15 0.10 0.28 0.33 0.38 0.25 0.20 0.14

Amazon-Electronics 0.18 0.12 0.08 0.25 0.30 0.33 0.21 0.16 0.10
Yelp 0.16 0.10 0.06 0.22 0.26 0.30 0.19 0.13 0.08

LightGCN
MovieLens-1M 0.20 0.14 0.09 0.26 0.31 0.36 0.23 0.18 0.13

Amazon-Electronics 0.16 0.11 0.07 0.22 0.27 0.31 0.19 0.14 0.09
Yelp 0.14 0.09 0.05 0.20 0.24 0.29 0.17 0.12 0.07

DMGNN
MovieLens-1M 0.28 0.35 0.22 0.35 0.40 0.45 0.31 0.38 0.27

Amazon-Electronics 0.25 0.20 0.15 0.30 0.35 0.40 0.28 0.24 0.18
Yelp 0.22 0.18 0.12 0.28 0.32 0.38 0.25 0.20 0.15

From the experimental results shown in Figs. 4 and 5, it is clear that the DMGNN model significantly
outperforms all baseline methods on both the Amazon-Electronics and MovieLens-1M datasets. In both line
charts and bar graphs, DMGNN maintains a lead in all three evaluation metrics: Precision, Recall, and F1-
score, with particularly outstanding performance at n = 10. Notably, while Precision decreases as N increases
for all models (which is consistent with the general pattern in recommendation systems), DMGNN exhibits
a relatively smaller decrease, indicating its ability to maintain high recommendation quality even as the
recommendation list expands. Meanwhile, DMGNN shows a greater increase in Recall values as N grows,
demonstrating the model’s effectiveness in covering users’ potential interests. These results strongly validate
the superiority of the dual-graph structure design and relationship fusion mechanism in capturing user-item
interaction patterns and mining potential associations.

Figure 4: Performance metrics for amazon-electronics
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Figure 5: Performance metrics for MovieLens-1M

4.3.2 Diversity of Recommendations
The similarity metrics indicate that the DMGNN algorithm generates a greater diversity of recommen-

dations. In contrast, the recommendations generated by the baseline algorithm tend to be more focused, with
a tendency to recommend similar types of items. This is due to the fact that the relational association graph
in DMGNN is capable of capturing a multitude of different types of relational associations. To illustrate this
with an example from the field of movie recommendations, in addition to considering users’ preferences for
common movie genres, it is also able to tap into relationships based on different dimensions, such as actor
collaboration and the era of film production. This enables it to recommend a more diverse range of movies.
This diversity contributes to the satisfaction of users with diverse interests and enhances their experience of
the recommendation system. As can be visualized in Fig. 6, the DMGNN algorithm outperforms the other
baseline algorithms in terms of diversity of recommendation results.

0.55

0.6

0.65

0.7

0.75

User-Based CF Item-Based CF MF NGCF

MovieLens-1M Amazon-Electronics Yelp

Figure 6: Intra-list similarity of different algorithms on all datasets

4.3.3 Ablation Experiments
In order to conduct a thorough examination of the role of each component in the DMGNN algorithm,

an ablation experiment has been performed. In the experiment, the user-item interaction graph (UIIG) or the
relationship association graph (RAG) were removed, and the information interaction mechanism between
branches was disabled. The resulting changes in the performance of the algorithm were then observed. It was
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determined that the removal of either the UIIG or the RAG resulted in a notable decline in the algorithm’s
performance, indicating that both graphs are integral to the capture of user-item relationships. Additionally,
the algorithm performance is significantly affected when the information interaction mechanism between
branches is deactivated, which emphasizes the importance of information fusion in optimizing recommen-
dation effectiveness. The results of the ablation experiments provide further evidence of the soundness and
efficacy of the DMGNN algorithm design, wherein the constituent components work in concert to enhance
the performance of the recommendation algorithm.

As can be seen in Table 3, removing any of the key components results in a significant reduction in
algorithm performance, fully reflecting the importance of each component.

Table 3: Results of ablation experiments on all datasets

Experiment setting Dataset Precision@10 Recall@10 F1-score@10

DMGNN (Full model)
MovieLens-1M 0.35 0.40 0.38

Amazon-Electronics 0.20 0.35 0.24
Yelp 0.18 0.32 0.22

DMGNN without UIIG
MovieLens-1M 0.20 0.25 0.22

Amazon-Electronics 0.12 0.20 0.15
Yelp 0.10 0.16 0.12

DMGNN without RAG
MovieLens-1M 0.18 0.22 0.20

Amazon-Electronics 0.10 0.18 0.13
Yelp 0.08 0.14 0.10

DMGNN without information
interaction

MovieLens-1M 0.25 0.30 0.28
Amazon-Electronics 0.15 0.25 0.18

Yelp 0.13 0.22 0.16

Our ablation experiment results clearly demonstrate the importance of each DMGNN component.
Removing RAG causes the most significant performance drop (e.g., 47% decrease in F1-score on MovieLens-
1M), indicating the critical role of high-order user-item relationships in recommendation; removing UIIG
also leads to notable performance decline (e.g., 40% decrease in Precision on Amazon-Electronics), con-
firming the fundamental value of direct interaction information; while disabling the information interaction
mechanism, though with less impact, still significantly affects performance (26% decrease in F1-score on
MovieLens-1M), validating the effectiveness of our attention fusion strategy in integrating heterogeneous
information. These results collectively verify the soundness of DMGNN’s design, where components work
in concert to produce optimal recommendation performance.

4.3.4 Differences between DMGNN and SiReN
Essential differences between DMGNN and SiReN:
Graph structure design differences: SiReN constructs positive and negative interaction graphs based on

rating levels, while DMGNN builds direct interaction graphs and relation association graphs, with the latter
exploring a wider range of potential associations.

Negative feedback processing: We honestly acknowledge that the current version of DMGNN pri-
marily focuses on positive interactions and potential relationship modeling, with limitations in handling
negative feedback.
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Depth of relationship modeling: DMGNN captures richer higher-order relationships and potential asso-
ciations through relation association graphs, including users’ social relationships, demographic similarities,
and semantic associations between items.

We conducted a direct comparison experiment between DMGNN and SiReN on the MovieLens-1M
dataset, with the experimental results shown in Fig. 7:

Figure 7: Comparison of DMGNN and SiReN on MovieLens-1M

SiReN demonstrates excellent performance in the Serendipity metric, validating the value of negative
feedback in avoiding recommendations of items that users dislike. DMGNN shows certain advantages in
accuracy metrics and Coverage, benefiting from its deep modeling of potential relationships. For handling
cold-start users, both methods have their strengths: SiReN better avoids irrelevant recommendations
through negative feedback, while DMGNN better discovers potential interests through relationship associa-
tions. Thank you again for your valuable suggestions, which are crucial for enhancing the quality and impact
of this research.

4.3.5 Hyperparameters Effects
To thoroughly understand the behavior of our proposed DMGNN model and provide practical guidance

for implementation, we conducted extensive experiments analyzing the impact of key hyperparameters on
recommendation performance. This section presents our findings on how GCN layer depth, attention weight
distribution, and similarity threshold affect both accuracy metrics (Precision@10, Recall@10, F1-score@10)
and diversity (measured by intra-list similarity).

Our extensive experiments reveal that GCN layer depth significantly impacts DMGNN performance,
with optimal results at 2 layers (F1-score@10 = 0.38) and declining performance beyond this point due to
the over-smoothing problem (as shown in Figs. 8 and 9). This confirms that while deeper GCNs can capture
higher-order connectivity patterns, excessive depth leads to information loss as node representations become
increasingly homogeneous, affecting both accuracy and recommendation diversity.
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Figure 8: Impact of GCN layers and attention weights on F1-score@10

Figure 9: Impact of GCN layers on recommendation performance

The attention weight distribution between User-Item Interaction Graph (UIIG) and Relational Associ-
ation Graph (RAG) demonstrates a clear trade-off between accuracy and diversity. A balanced configuration
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(βUIIG = 0.5, βRAG = 0.5) achieves peak performance across all accuracy metrics, while shifting weights
toward either extreme reduces effectiveness (as shown in Fig. 10). This indicates that both branches provide
complementary information essential for quality recommendations, with the RAG branch contributing more
to recommendation diversity.

Figure 10: Impact of attention weights on recommendation performance

The similarity threshold used in RAG construction proves to be another critical parameter, with an
optimal value of 0.2 balancing between sufficient relational information and noise reduction (as shown
in Fig. 11). Lower thresholds create denser graphs that potentially introduce noise, while higher thresholds
produce sparser graphs that progressively degrade performance by eliminating useful connections. Our
parameter interaction analysis further confirms that the optimal configuration combines 2 GCN layers with
balanced attention weights, with deeper models becoming increasingly sensitive to weight distribution.

4.3.6 Diversity Metrics
In order to comprehensively evaluate the performance of DMGNN in recommending diversity, we

use four key metrics: catalog coverage (Coverage), novelty, surprise, and intra-list similarity (ILS). Fig. 12
illustrates the results of DMGNN compared to the five baseline methods on the MovieLens and Yelp datasets.
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Figure 11: Impact of similarity threshold on recommendation performance

Figure 12: Diversity metrics comparison across models

Catalog coverage analysis: the DMGNN achieves 32.7% and 28.5% coverage on the MovieLens and Yelp
datasets, respectively, which is an average improvement of 18.3% compared to the baseline methods. This
demonstrates that our dual graph fusion mechanism can effectively recommend a wider set of items and
mitigate the common “Matthew effect” problem of recommender systems. Especially on a sparse dataset like
Yelp, DMGNN’s coverage advantage is even more obvious, which is 3.3 percentage points higher than the
closest baseline SiReN.

Novelty analysis: DMGNN excels in novelty metrics, reaching 0.61 and 0.68 on the MovieLens and
Yelp datasets, respectively, which are significantly higher than all baseline methods. This result demonstrates
that our method is effective in mitigating the popularity bias by recommending more items that are not
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mainstream but may be more in line with users’ personalized needs. Notably, on the data-sparse Yelp dataset,
the novelty score of DMGNN is 33.3% higher than that of the GNN baseline on average, which suggests that
Relationship Augmentation Graphs (RAGs) play a key role in uncovering long-tail items.

Comprehensive analysis shows that DMGNN, by fusing the user-item interaction graph and
relation-augmented graph, significantly enhances recommendation diversity while maintaining high recom-
mendation accuracy. This feature is particularly important in sparse data environments, effectively alleviating
cold-start problems and improving user satisfaction. Our parameter sensitivity analysis (see Section 4.3)
further reveals the impact of attention weights on diversity metrics, providing guidance for parameter tuning
in practical applications.

5 Conclusion
The DMGNN algorithm considers both the direct interaction between the user and the item and

the potential relationship association, thereby providing a more comprehensive and accurate basis for
recommendations. In conclusion, the DMGNN algorithm offers an innovative and effective solution for the
field of recommendation algorithms, enhancing the overall performance and user experience. It has broad
application prospects in various domains including e-commerce product recommendation, personalized
content recommendation for video streaming services, friend recommendations in social media, and song
recommendations on digital music platforms. Future research directions include: (1) integrating temporal
information to capture user interest evolution; (2) incorporating semantic information to enhance content
understanding; (3) leveraging social network data to mine social influences; (4) extending the model to
heterogeneous graph structures to handle more complex recommendation scenarios. These advancements
will provide robust technical support for business development and user service optimization in related fields,
while advancing the further development of recommendation technology in complex data environments.
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