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ABSTRACT: The classification of respiratory sounds is crucial in diagnosing and monitoring respiratory diseases.
However, auscultation is highly subjective, making it challenging to analyze respiratory sounds accurately. Although
deep learning has been increasingly applied to this task, most existing approaches have primarily relied on supervised
learning. Since supervised learning requires large amounts of labeled data, recent studies have explored self-supervised
and semi-supervised methods to overcome this limitation. However, these approaches have largely assumed a closed-
set setting, where the classes present in the unlabeled data are considered identical to those in the labeled data. In
contrast, this study explores an open-set semi-supervised learning setting, where the unlabeled data may contain
additional, unknown classes. To address this challenge, a distance-based prototype network is employed to classify
respiratory sounds in an open-set setting. In the first stage, the prototype network is trained using labeled and unlabeled
data to derive prototype representations of known classes. In the second stage, distances between unlabeled data and
known class prototypes are computed, and samples exceeding an adaptive threshold are identified as unknown. A
new prototype is then calculated for this unknown class. In the final stage, semi-supervised learning is employed to
classify labeled and unlabeled data into known and unknown classes. Compared to conventional closed-set semi-
supervised learning approaches, the proposed method achieved an average classification accuracy improvement of
2%–5%. Additionally, in cases of data scarcity, utilizing unlabeled data further improved classification performance by
6%–8%. The findings of this study are expected to significantly enhance respiratory sound classification performance
in practical clinical settings.
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1 Introduction
The classification of respiratory sounds is crucial in diagnosing and monitoring respiratory diseases.

Abnormal respiratory sounds include crackles and wheezes, such as stridor and rhonchi, which are
also considered adventitious lung sounds [1,2]. In this study, we primarily focus on classifying crackles
and wheezes.

Diseases associated with crackles include interstitial lung disease, pneumonia, and cognitive heart
failure, while wheezes are commonly associated with asthma, chronic obstructive pulmonary disease, and
airway obstruction [3]. For diagnosing major respiratory diseases, including asthma, chronic obstructive
pulmonary disease (COPD), and pneumonia, auscultation remains a primary and essential diagnostic
tool [4–6]. Auscultation is widely used in primary healthcare settings due to its non-invasive nature,
cost-effectiveness, and ability to provide immediate results [7,8].
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However, classifying respiratory sounds accurately through auscultation is challenging due to its subjec-
tive nature and the influence of various factors. The interpretation of auscultation results relies significantly
on the experience and expertise of medical professionals. The accuracy of medical students is reported at
60.3%, interns at 53.4%, residents at 68.8%, and fellows at 80.1%, indicating that less-experienced clinicians
demonstrate lower auscultation accuracy [3]. There are also variations in accuracy depending on the type
of respiratory sound. Compared to normal breath sounds (73.5%) and crackles (72.2%), wheezes (56.3%)
and rhonchi (41.7%) pose greater diagnostic difficulties [3]. These difficulties arise from the overlapping
frequency spectra and subtle differences between specific respiratory sound patterns. Discerning these
minute variations requires substantial clinical experience [9].

Even among experts, diagnostic concordance is not perfect. The agreement rates for crackle and
wheeze diagnoses are 82% and 80%, respectively, underscoring the inherent subjectivity and complexity
of auscultatory interpretation [3]. The analysis of diagnostic accuracy shows an overall sensitivity of 37%
(95% CI: 30–47%) and a specificity of 89% (95% CI: 85–92%), suggesting a high rate of missed diagnoses
(false negatives) [3]. This low sensitivity could delay early diagnosis, thereby increasing disease progression
and the risk of complications [10]. Several factors influence the accuracy of auscultation, including the
patient’s breathing pattern, body position, stethoscope quality, ambient noise, and auscultation site [11]. In
noisy environments, such as hospitals, detecting subtle changes in respiratory sounds can be challenging,
potentially reducing diagnostic accuracy. Additionally, auscultation can be challenging when patients, such
as children or older adults, cannot cooperate effectively [9].

To overcome these limitations, numerous studies have explored the development of respiratory sound
classification systems using deep learning techniques. Recent studies have applied various feature extrac-
tion methods, such as spectrogram transformation of respiratory sound signals, mel-frequency cepstral
coefficients (MFCC) extraction, wavelet transformation, and deep learning-based approaches, to enhance
classification performance [4,11]. These feature extraction techniques can utilize information from a wider
frequency range than human auditory perception, potentially resulting in improved diagnostic accuracy [4].

Obtaining large-scale labeled datasets remains one of the key challenges in developing deep learning
models [12,13]. Experiments assessing respiratory sound classification accuracy and consistency among
medical professionals from different specialties showed that pulmonologists achieved higher accuracy than
medical professionals from other specialties and medical students. This result underscores the necessity
of medical professionals’ involvement in respiratory sound labeling, which is both time-consuming and
costly [3,10].

To address the limitations caused by insufficient labeling, semi-supervised learning approaches have
recently gained attention [7,14]. Semi-supervised learning is a method that enhances model performance
by utilizing a small set of labeled data along with a large volume of unlabeled data, making it highly
effective in medical data analysis. Recent studies have applied techniques, such as teacher-student models,
consistency regularization, and virtual adversarial training to respiratory sound classification, achieving
favorable results [15,16]. Furthermore, research has investigated the use of data augmentation techniques
to artificially increase the diversity of constrained labeled datasets [5]. Data augmentation techniques such
as time stretching, pitch shifting, and noise injection enhance data variability and improve the model’s
generalization ability. Notably, these data augmentation methods are highly effective in enhancing the
classification performance of rare respiratory sound patterns and minority classes [4,5,11].

Most conventional semi-supervised learning techniques have been designed based on the closed-set
assumption, restricting their capacity to appropriately process new types of respiratory sounds or noise that
may arise in practical clinical settings [17,18]. A closed-set setting assumes that during testing, the model
will only encounter classes it was exposed to during training. However, previously unseen respiratory sound
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patterns frequently emerge in practical clinical settings. These new patterns may arise due to unknown envi-
ronmental noise, diseases, rare conditions, or patient-specific factors. If not adequately addressed, such cases
could result in misdiagnosis. In other fields, such as computer vision, open-set semi-supervised learning
approaches have been proposed [19–22]; however, research in respiratory sound classification remains in its
early stages. Open-set learning enables a model to recognize and appropriately process unknown classes,
significantly improving its applicability in practical clinical settings. Distance-based prototype networks can
classify samples as known and unknown classes if they exhibit a significant distance in a feature space, making
them highly applicable in open-set settings.

This study adopts a distance-based prototype network in the first stage to classify respiratory sounds in
an open-set setting. The prototype network is trained using labeled and unlabeled data, after which the pro-
totype representations of the known classes are derived. In the second stage, the distances between unlabeled
data points and the known class prototypes are computed. Data points exceeding an adaptive threshold are
filtered to form the unknown class, and their prototype is then computed. In the final stage, semi-supervised
learning is employed to classify labeled and unlabeled data into known and unknown classes.

2 Related Works
Studies on respiratory sound classification in open-set settings are still in their early stages. This section

examines prior studies on general open-set audio recognition and classification, as well as image recognition
and classification techniques that could be adapted for audio classification. Finally, studies on respiratory
sound classification using unsupervised learning are explored.

2.1 Research on Audio Recognition and Classification in Open-Set Settings
An autoencoder-based approach has been proposed to address the problems of few-shot learning and

open-set recognition (OSR) in the audio field [23]. The OSR problem involves accurately differentiating
unknown classes from known classes when they appear as input. In this study, the autoencoder is trained to
learn the internal characteristics of each class, and unknown classes are detected based on the reconstruction
error. Recently, deep learning-based approaches have been proposed to address the open-set sound event
classification problem [24]. Conventional closed-set classification models cannot detect unknown sounds;
however, this study is designed to detect unknown sound events. The approach constructs feature space
clusters and utilizes center loss and supervised contrastive loss to enhance the distinction between classes.
In the first stage, self-supervised learning is employed to learn features from a large volume of unlabeled
data. In the second stage, the model is refined through supervised learning, applying fine-tuning tailored to a
specific domain to optimize performance. During this process, clustering techniques encourage known class
features to form denser clusters, while ensuring that unknown sounds deviate from these clusters. Finally,
the model’s decision head calculates probability distributions, classifying known sounds while detecting
unknown sounds as new classes.

2.2 Research on Image Recognition and Classification in Open-Set Settings
OpenMatch [19] is a framework designed to address the open-set semi-supervised learning (OSSL)

problem. Conventional FixMatch-based semi-supervised learning [25] approaches exhibit limitations in
outlier detection. OpenMatch [19] integrates outlier detection with semi-supervised learning. The model
comprises a feature extractor, K-independent class classifiers, and a closed-set classifier. The independent
class classifiers detect outliers from each class, while FixMatch [25] generates highly reliable labels from
normal data. Soft open-set consistency regularization is introduced to smoothly adjust the decision boundary
of the outlier detector, preventing overfitting.
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IOMatch [20] proposes a method for addressing the OSSL problem by utilizing outliers in the learning
process instead of eliminating them, assuming that the class space of labeled data is a subset of that of unla-
beled data. Conventional OOD detection primarily focuses on isolating outliers. In contrast, IOMatch [20]
proposes an approach incorporating outliers and normal data. The model integrates distribution alignment
(DA), outlier utilization, and self-supervised learning.

A new framework has been proposed to transform the OSSL problem into a closed-set semi-supervised
learning (CSSL) problem [21]. Conventional semi-supervised learning methods rely on the closed-set
assumption, resulting in performance degradation when OOD data are included in the unlabeled dataset.
To address this problem, conventional safe semi-supervised learning (Safe SSL) follows a two-stage process
involving OOD detection and data processing; however, this incurs additional data processing costs for
OOD data and may conflict with multi-class classification tasks. This study employs a prototype network to
model OOD data as a new (K + 1) class. The prototype network learns features from labeled and unlabeled
data, generating additional prototypes for the existing K classes and OOD data. By introducing the iterative
negative learning (INL) technique, the model achieves precise classification of OOD data and enhances
feature learning. INL iteratively updates complementary labels, ensuring that the prediction probability of
OOD data approaches zero. The classification task is transformed into a (K + 1) class problem, allowing
the model to naturally integrate OOD data into the learning process. The total loss function of the model
consists of cross-entropy loss and negative learning loss, ensuring a stepwise learning process. This proposes
a new approach to eliminate the complex outlier detection stage in conventional OSSL, ensuring stable
learning in a closed-set setting. Drawing upon [21], this study refines and develops the model for respiratory
sound classification.

SeFOSS [22] is a framework that leverages self-supervision to enhance OSSL. Conventional OSSL
approaches assume that OOD data degrades learning performance and thus excludes it, whereas SeFOSS [22]
actively utilizes OOD data to enhance learning efficiency. SeFOSS [22] applies self-supervised feature
consistency to effectively learn features from the entire unlabeled data set. It utilizes energy-based scoring
to effectively distinguish between known and unknown classes. The model enhances the performance of
OSR by integrating self-supervised learning, pseudo-labeling, and energy regularization. During training,
a trainable linear projection layer reflects feature differences between weak and strong augmentations. This
study also utilizes a trainable linear projection layer.

2.3 Research on Respiratory Sound Classification via Unsupervised Learning
In addressing the respiratory sound classification problem, where labeled data is scarce, a semi-

supervised learning approach has been introduced to improve model performance [16]. This study employs
the Passt [26] model, which has been pre-trained on AudioSet [27], along with the symmetric cross
entropy [28] loss function, which is robust to noise, utilizing the PatchMix [29] learning approach. Unlabeled
data is processed using a meta pseudo label [30] framework adapted for respiratory sound classification and
trained alongside labeled data.

A learning method for evaluating similarity within the same dataset has also been proposed. This
approach segments respiratory sounds into multiple sections, identifies recurring patterns, and analyzes
similarities between those patterns using a sparse self-relation matrix [13]. This study utilizes HF Lung V1 [31]
and COVID-19 [32] datasets as pretraining datasets.

Another approach, graph-based semi-supervised convolutional neural networks (GS-CNNs), has been
proposed. It classifies respiratory sounds into normal, crackles, and wheezes by utilizing a limited number
of labeled samples and a large number of unlabeled samples [14]. This study constructs a respiratory sound
graph (Graph-RS), where labeled and unlabeled samples serve as nodes, capturing relationships among all
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samples. The information extracted from the Graph-RS is then incorporated into the loss function of a four-
layer CNN, constituting the GS-CNNs model.

Although semi-supervised learning has been extensively studied in various domains with abundant
unlabeled data but scarce high-quality labeled data, its application to respiratory sound classification remains
relatively nascent.

3 Proposed Method
This study proposes a semi-supervised learning method to improve the performance of respiratory

sound classification in an environment where a labeled dataset Xl and a set of known classes L = {l ∣ l ∈
0, 1, C − 1} exist, while the unlabeled dataset Xu contains unknown classes outside of L.

The proposed method effectively processes OOD data in three stages. In the first stage, a prototype
network is trained to obtain prototypes for known classes using labeled and unlabeled data. In the second
stage, the trained prototype network calculates the distance between unlabeled data and known class
prototypes. Data exceeding the adaptive threshold is filtered out, and the prototype for unknown classes is
subsequently calculated. Finally, a trainable projector layer is employed to ensure that the encoder effectively
learns even the features of unlabeled respiratory sound data.

3.1 Stage 1: Prototype Network Training
The overall training architecture of the prototype network is shown in Fig. 1. This study utilizes an audio

spectrogram transformer (AST) [33], pretrained on AudioSet [27], for the feature extraction of respiratory
sounds. AudioSet [27] is a large-scale dataset encompassing thousands of hours of diverse audio events.
Pretraining on this dataset enables the model to comprehensively learn audio patterns and features. The
AST [33] encoder, utilizing a transformer-based self-attention mechanism, concurrently considers local
and global features, thereby efficiently identifying the intricate structure of audio signals. The AST [33]
model, pretrained on AudioSet [27], demonstrates excellent generalization performance in transfer learning
scenarios and has shown high recognition accuracy, even on small-scale datasets [33].

Figure 1: Stage1: train prototype encoder

The loss function for labeled data is computed based on the distance from the centroid of batch-wise
prototypes. In contrast, unlabeled data is processed using a trainable projector layer to apply a consistency
loss function. This ensures that the encoder learns the features of labeled and unlabeled data. By training
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the model to maintain feature consistency across different augmentation methods for the same respiratory
sound, meaningful information can be extracted even from unlabeled data [22].

The training process of the proposed method is as follows. As shown in Algorithm 1, labeled and
unlabeled data are first transformed from the time domain to the frequency domain using a Mel spectrogram
(Line 1). For unlabeled data, both weak and strong augmentations are performed (Line 2), and the AST [33]
encoder is utilized to generate embedding vectors (Line 3). The prototype and centroid of each class are
computed using the embedding vectors of the labeled data and the labels of the known classes (Line 4).
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Algorithm 1: Train prototype network
Input: Labeled data (Xl , L),

where Xl ∈ RBl×T , L ∈ 0, 1, . . . , C − 1Bl

Input: Unlabeled data Xu ∈ RBu×T

Output: Total loss
1: Process input

Xl ← process (Xl)
Xu ← process (Xu)

2: Transform unlabeled input
Xu ,w ← weak_transform (Xu)
Xu ,s ← strong_transform (Xu)

3: Compute embedding
El ← encoder (Xl) where El ∈ RBl×D

Eu ,w ← encoder (Xu ,w) where Eu ,w ∈ RBu×D

Eu ,s ← encoder (Xu ,s) where Eu ,s ∈ RBu×D

4: Compute prototypes
P ← compute_prototypes (El , L) where P ∈ RC×D

5: Compute prototype loss
Sl ← similarity (El , P) where Sl ∈ RBl×C

Lp ← prototype_loss (Sl , L)
6: Compute consistency loss

Pro ju ,w ← projector (Eu ,w) where Pro ju ,w ∈ RBu×D

Su ← similarity (Pro ju ,w , Eu ,s) where Su ∈ RBu

Lc ← 1 − Su
7: Compute total loss

Ltotal ← Lp + Lc
8: return Ltotal

The loss function is calculated following Algorithm 2, referring to prior research. Considering labeled
data xi and known classes l = 0, . . . , C − 1, the centroid of the prototype is computed using the labeled
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dataset Bk and the encoder fθ , as described in Eq. (1). The distance is calculated using the centroid and
embedding vectors obtained through the encoder, as depicted in Eq. (2). The Softmax function is applied to
this distance vector to obtain a probability distribution, and the cross-entropy loss function is computed, as
formulated in Eq. (3). This process is implemented sequentially in Algorithm 1, where the similarity between
the prototype and embedding vectors is computed, the Softmax function is applied to convert it into a
probability value, and the cross-entropy loss function is used for calculation (Line 5). Finally, a trainable
projector layer is employed to ensure that the encoder effectively learns even the features of unlabeled
respiratory sound data. A consistency loss function is used to learn the distribution of respiratory sound
features between weak and strong augmentations.

Algorithm 2: Compute prototype loss
Input: Embeddings E ∈ RB×D

Input: Labels L ∈ {0, 1, . . . , C − 1}
Input: Prototypes P ∈ RC×D

Output: Prototype loss
1: Normalize embeddings and prototypes

Enorm ← E
∥E∥2

Pnorm ← P
∥P∥2

2: Compute cosine similarity matrix
Si , j ← Enorm, i ⋅ Pnorm, j ∀i ∈ {1, . . . , B}, j ∈ {1, . . . , C}

3: Compute CrossEntropy loss
loss← CrossEntropyLoss(S, L)

4: return loss

3.2 Stage 2: Generation of OOD Prototypes
The computation of OOD prototypes follows the procedure outlined in Algorithm 3. The prototype

network, trained in the previous stage, extracts embedding values from labeled data (Line 1). Based on
these, the prototype for each class is computed (Line 2), after which the embedding values of unlabeled
data are generated to compute the OOD prototype (Line 3). Next, the distances between the embedding
values of unlabeled data and each class prototype are measured (Line 4). Data points exceeding a certain
adaptive threshold are identified and used to compute the OOD prototype (Line 5). In the third stage of
semi-supervised learning, classification is performed using the class prototypes generated in the second stage
alongside the OOD prototypes. The adaptive threshold is computed through the following process: First, for
the unlabeled data Xu, the distance from each class prototype is calculated following Eq. (4).

D = cdist( fθ(Xu), (d l
i )) (4)

The minimum distance for each sample is then selected. See Eq. (5).

dmin = min(D) (5)

The adaptive threshold for identifying OOD samples is determined according to Eq. (6).

threshold =mean(dmin) + std(dmin) (6)
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Algorithm 3: Generate prototypes with OOD detection
Input: Labeled data (Xl ∈ RNl×T , L ∈ 0, 1, . . . , C − 1Nl )
Input: Unlabeled data Xu ∈ RNu×T

Output: Prototypes Pall
1: Process labeled data

Xl ← process (Xl)
El ← encoder (Xl) where El ∈ RNl×D

2: Compute class prototypes
Pc ←mean(e ∈ El ∶ L = c) where Pc ∈ RC×D

Pcl ass ← [p0; p1; . . . ; pC−1]
3: Process unlabeled data

Xu ← process (Xu)
Eu ← encoder (Xu) where Eu ∈ RNu×D

4: Compute minimum distances
D ← cdist(Eu , Pcl ass) where D ∈ RNu×C

dmin ←min(D, dim = 1) where dmin ∈ RNu

5: Identify OOD samples
θ ←mean(dmin) + std(dmin)
Eood ← e ∈ Eu ∶ dmin(e) > θ
pood ←mean(Eood) where pood ∈ RD

6: Combine prototypes
Pal l ← [Pcl ass ; pood] where Pal l ∈ R(C+1)×D

7: return Pall

A simple yet effective thresholding strategy is adopted to identify OOD samples, based on the dis-
tribution of the minimum distances from each sample to the class prototypes. Specifically, we compute
the adaptive threshold as the sum of the mean and standard deviation of the minimum distances. This
statistical formulation is commonly used in outlier detection and has been shown effective in prior open-set
semi-supervised learning work, such as SeFOSS [22], which similarly employs distribution-based adaptive
thresholds to separate pseudo-outliers. The adaptive threshold serves as a criterion for distinguishing
OOD data. The mean embedding of OOD_mask = dmin > threshold samples is computed to generate the
OOD prototype. This method automatically identifies OOD samples from unlabeled data, allowing for the
computation of OOD prototypes based on these samples. This prototype is later utilized in the classification
process to represent unknown classes.

To intuitively understand how the prototype network separates known and unknown samples before
semi-supervised learning, we visualized the feature embeddings produced by the student encoder using
t-SNE, based on the prototypes trained in Stage 1. As shown in Fig. 2, samples from the known classes
form compact clusters around their respective class prototypes. Among the unlabeled data, some samples
are located near the known class centroids, indicating similarity to known classes. In contrast, others are
positioned far from any prototype, indicating that they may belong to unknown classes.
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Figure 2: t-SNE visualization of feature embeddings based on prototypes trained in Stage 1

3.3 Stage 3: Semi-Supervised Learning
The overall structure of semi-supervised learning using the teacher-student model is depicted in Fig. 3,

with the detailed training procedure outlined in Algorithm 4. In the proposed learning method, weak and
strong augmentations are first applied to unlabeled data. The teacher model predicts labels for data with weak
augmentation applied. Cases where the predicted values exceed a predefined threshold are masked and used
for UDA [34] computation. The loss function of the teacher model consists of cross-entropy loss, derived
from the distance between prototypes and labeled data embedding vectors, along with UDA [34] (Line 2). The
student model’s loss function incorporates cross-entropy loss, which utilizes the distance between prototypes
and labeled data embedding vectors, and a pseudo-loss function that considers the distance between strongly
augmented data embedding vectors and prototypes and the corresponding label information (Line 3). As
training progresses, the teacher model generates increasingly accurate pseudo-labels for unlabeled data,
which the student model utilizes for training.
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Figure 3: Stage3: train semi-supervised learning

Algorithm 4: Semi-supervised learning
Input: Labeled data (Xl ∈ RNl×T , L ∈ 0, 1, . . . , C − 1Nl )
Input: Unlabeled data Xu ∈ RNu×T

Input: Teacher model T, Student model S
1: Generate pseudo-labels using teacher model

Xu ,w ← weak_transform (Xu)
Xu ,s ← strong_transform (Xu)
Zt ← T(Xu ,w) where Zt ∈ RNu×C

Pt ← softmax(Zt/τ)
L̂ ← arg max(Pt) where L̂ ∈ 0, 1, . . . , CNu

M ← I[max(Pt) > θ] where M ∈ 0, 1Nu

2: Compute teacher loss
Lt ,ce ← CrossEntropy(cdist(T(Xl), Proto), L)
Lt ,ud a ← −E[L̂ ⋅ log(softmax(T(Xu ,s)))] ⋅M
Lt ← Lt ,ce + λu Lt ,ud a

3: Compute student loss
Ls ,ce ← CrossEntropy(cdist(S(Xl), Proto), L)
Ls , pseudo ← CrossEntropy(cdist(S(Xu ,s), Proto), L̂)
Ls ← Ls ,ce + Ls , pseudo

4: Train Step(T, S)

4 Experiments
The experiments in this study were conducted under the following settings. For respiratory sound clas-

sification, the model employed a distance-based prototype network built upon an AST encoder, pre-trained
on AudioSet. To ensure efficient learning, the zero redundancy optimizer stage 3 (ZeRO-3) optimization
technique, provided by Microsoft’s DeepSpeed library, was employed [35]. ZeRO-3 significantly reduces
memory consumption by segmenting optimizer states, gradients, and model parameters across multiple
GPUs, thereby enhancing training speed [35]. Regarding batch structure, a larger proportion of unlabeled
data was utilized compared to labeled data. This approach reflects practical clinical settings, where labeled
data is often scarce, while incorporating various respiratory sound patterns that may arise in open-set settings
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into learning [36]. The improved memory efficiency of ZeRO-3 enabled training with a larger batch size,
allowing for the inclusion of a greater volume of unlabeled data [35].

4.1 Dataset
The datasets used in this study are from ICBHI [37], Fraiwan et al. [38], and HF Lung V2 [39].

The ICBHI [37] dataset comprises 5.5 h of recorded data collected from 126 subjects, encompassing 6898
respiratory cycles. It contains 1864 crackles and 886 wheezes, with 506 cases simultaneously exhibiting both
crackles and wheezes. The recordings vary in length from 10 s to 90 s and incorporate background noise at
varying levels to simulate practical settings. The labeling files record four key data fields in separate columns:
the start and end times of each respiratory cycle and binary indicators (0 or 1) for the presence of crackles
and wheezes.

The Fraiwan et al. [38] dataset consists of 112 subjects, including 35 healthy individuals and 77 patients
diagnosed with various respiratory diseases. The age range spans 21 to 90 years, with an average age of 50.5
years and a standard deviation of 19.4 years. It comprises 43 females and 69 males, reflecting a broad spectrum
of demographic variability. A notable characteristic of this dataset is that respiratory sounds were collected
using three different filtering methods: Bell, Diaphragm, and Extended mode. Each filtering method is
designed to emphasize different frequency bands, enabling the effective capture of various types of respiratory
sounds. The respiratory sounds included in the dataset comprise normal respiratory sounds, crepitations
(crackles), wheezes, a combination of crackles and wheezes, and bronchial breath sounds, which are absent
from ICBHI [37].

The HF Lung V2 [39] dataset collected data from two different sources. The first subset consists of
data from 261 patients recorded in the Taiwan severe emergency and critical care (TSECC) database in
2020. The second subset consists of data collected from 18 patients admitted to the respiratory care ward
(RCW) or the respiratory care center (RCC) in northern Taiwan between August 2018 and October 2019.
This dataset contains 9765 audio recordings, each 15 s long, including 8457 wheezes, 686 stridor occurrences,
4740 rhonchi, and 15,606 crackles. This dataset also includes stridor and rhonchi, which are not present in
ICBHI [37].

4.2 Preprocessing
The typical frequency range of respiratory sounds is 50–2500 Hz [40]. Crackles are categorized into

fine crackles and coarse crackles. Fine crackles last under 5 ms and occur within a frequency range of less
than 650 Hz, whereas coarse crackles have a duration of under 30 ms and a frequency range of below
350 Hz [41]. Wheezes have a duration of less than 80 ms and a frequency range of 100–1000 Hz [41]. In this
study, respiratory sound augmentation was performed using SpecAugment [42]. After converting into mel
spectrograms, augmentation was applied while considering the characteristics of crackles and wheezes. For
weak augmentation, the frequency mask was applied once within the range of 125–500 Hz, while the time
mask was applied once within 0.8–2.4 s. For strong augmentation, the frequency mask was applied up to
twice within the range of 500–1250 Hz, while the time mask was applied up to twice within 2.4–12.8 s. The
mel spectrogram was configured with the following parameters: frame length of 400, hop length of 160, FFT
length of 512, and 128 mel bins.

4.3 Evaluation Metrics
This study utilizes the ICBHI Score [37]. This metric was proposed in the ICBHI Challenge and

evaluates the classification performance of a model by considering both sensitivity and specificity. This metric
specifically employs the mean of the two metrics to mitigate the issue of class imbalance.



2858 Comput Mater Contin. 2025;84(2)

Sensitivity represents the proportion of actual positive cases that the model correctly predicts.

4.3.1 Sensitivity
Sensitivity represents the proportion of actual positive cases that the model correctly predicts.

See Eq. (7).

se = TP
TP + FN

(7)

where

• TP: True Positive (Correctly predicted actual positives)
• FN: False Negative (Incorrectly predicted actual positives)

4.3.2 Specificity
Specificity represents the proportion of actual negative cases that the model correctly predicts.

See Eq. (8).

sp = TN
TN + FP

(8)

where

• TN: True Negative (Correctly predicted actual negatives)
• FP: False Positive (Incorrectly predicted actual negatives)

4.3.3 ICBHI Score
Finally, the ICBHI Score, denoted as SC in the result tables, is calculated as shown in Eq. (9).

Score(SC) = sp + se
2

(9)

4.4 Results
This study used the test data from ICBHI [37] as validation data. The experimental results demonstrate

variations in model performance based on varying proportions of training data (100%, 70%, 30%). The results
obtained using 100% of the ICBHI [37] training data are presented in Table 1.

The study analyzes how reducing the amount of training data affects the performance compared
to this baseline model. When 70% of the ICBHI [37] training data was randomly utilized, the baseline
model exhibited an overall performance degradation, as shown in Table 2. However, our proposed method
demonstrated a 5%–8% improvement over the PatchMix [29] model in both closed-set and open-set settings.

In the closed-set settings, the SC, SP, and SE metrics achieved performance scores of 0.65 ± 0.02,
0.82 ± 0.03, and 0.48 ± 0.05, respectively. In the open-set settings, the results improved further, with scores
of 0.68 ± 0.01, 0.82 ± 0.03, and 0.53 ± 0.03, respectively. Compared to PatchMix-CL [12] with 100% training
data in Table 1, the proposed method exhibited a 3% performance improvement in the closed-set settings
and a 6% improvement in the open-set settings. These improvements are attributed to the increased number
of similar respiratory sounds from utilizing 30% of the ICBHI [37] dataset, as well as the Fraiwan et al. [38]
and HF Lung V2 [39] datasets, which enhanced the model’s ability to learn respiratory sound features.
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Table 1: Result of ICBHI

Networks SC SP SE
Patchmix-CL [12] 0.62±0.01 0.80±0.05 0.41±0.04

Patchmix [12] 0.60±0.01 0.82±0.03 0.38±0.03

CNN6+Hybrid [12] 0.48±0.03 0.47±0.07 0.49±0.03

CNN6+SCL [43] 0.51±0.02 0.61±0.09 0.40±0.06

CNN6+SL [43] 0.49±0.03 0.55±0.02 0.43±0.02

Resnet38+Hybrid [43] 0.49±0.02 0.70±0.02 0.37±0.04

Resnet38+SCL [43] 0.48±0.02 0.60±0.08 0.37±0.04

Resnet38+SL [43] 0.47±0.01 0.60±0.01 0.33±0.01

Table 2: Result of 70% of ICBHI

Networks SC SP SE
Patchmix-CL [12] 0.60±0.01 0.78±0.02 0.42±0.01

Patchmix [12] 0.59±0.01 0.75±0.05 0.42±0.05

CNN6+Hybrid [12] 0.48±0.02 0.52±0.16 0.44±0.12

CNN6+SCL [43] 0.50±0.02 0.68±0.07 0.32±0.05

CNN6+SL [43] 0.50±0.01 0.58±0.14 0.41±0.12

Resnet38+Hybrid [43] 0.50±0.02 0.80±0.16 0.22±0.14

Resnet38+SCL [43] 0.52±0.01 0.67±0.04 0.31±0.14

Resnet38+SL [43] 0.46±0.02 0.47±0.21 0.35±0.03

Ours(Close-Set) 0.65±0.02 0.82±0.03 0.48±0.05

Ours(Open-Set) 0.68±0.01 0.82±0.03 0.53±0.03

Under the more restricted training conditions of ICBHI [37], the proposed method maintained superior
performance compared to existing models, as observed in Table 3, where only 30% of the data was randomly
selected for training. Based on the PatchMix-CL [12] model, the proposed method demonstrated a 2%
improvement in the closed-set settings and a 6% improvement in the open-set settings. Compared to the
PatchMix-CL [12] model trained on 100% of the dataset as shown in Table 1, the proposed method exhibited
a 3% performance degradation in the closed-set settings, but a 1% performance improvement in the open-set
settings. This indicates that the proposed method can effectively learn with a limited dataset.

An additional analysis of computational resources was conducted to evaluate the model’s efficiency.
All metrics were measured using an NVIDIA GeForce RTX 4090. A detailed comparison of model size,
FLOPs, and per-sample training and inference time is provided in Table 4. The models referenced in [12]
and [43], which follow supervised learning approaches, incur a computational cost of approximately
161.89 GFLOPs and 7 ms–8 ms inference time per sample, based on architectures with around 87 M
parameters. A direct comparison may not be entirely appropriate due to differing learning methods. These
baselines are trained using supervised learning, whereas the proposed method adopts a three-stage semi-
supervised process. The proposed method is trained in three stages: Stage 1—Prototype Network Training,
Stage 2—Generation of OOD Prototypes, and Stage 3—Semi-Supervised Learning. This multi-stage process
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results in a longer training time compared to the baselines. At inference time, the method requires 206.88
GFLOPs and 10.62 ms per sample, with 86.2 M parameters.

Table 3: Result of 30% of ICBHI

Networks SC SP SE
Patchmix-CL [12] 0.57±0.01 0.67±0.03 0.46±0.02

Patchmix [12] 0.56±0.01 0.72±0.04 0.41±0.03

CNN6+Hybrid [12] 0.36±0.09 0.29±0.35 0.44±0.18

CNN6+SCL [43] 0.50±0.01 0.61±0.35 0.39±0.07

CNN6+SL [43] 0.42±0.06 0.49±0.22 0.34±0.13

Resnet38+Hybrid [43] 0.46±0.04 0.63±0.2 0.31±0.15

Resnet38+SCL [43] 0.41±0.05 0.42±0.29 0.41±0.20

Resnet38+SL [43] 0.41±0.05 0.42±0.29 0.41±0.20

Ours(Close-Set) 0.59±0.01 0.65±0.04 0.54±0.04

Ours(Open-Set) 0.63±0.01 0.80±0.06 0.46±0.03

Table 4: Comparison of model parameters, FLOPs, and runtime per sample

Networks Params (M) FLOPs (G) Train time (ms) Inference time (ms)
Patchmix-CL [12] 88.7 161.89 40.74 8.29

Patchmix [12] 87.5 161.89 26.46 7.28
CNN6+SCL [43] 4.6 4.96 22.72 0.58
CNN6+SL [43] 4.3 4.96 21.44 0.41

ResNet38+SCL [43] 73.0 11.50 30.07 0.90
ResNet38+SL [43] 68.5 11.50 38.79 1.28

Ours 86.2 206.88 127.15 10.62

While this represents an approximately 28% increase in inference cost compared to the baselines,
the proposed approach demonstrates consistent advantages, with a 2%–5% accuracy improvement over
conventional closed-set semi-supervised methods and an additional 6%–8% gain when leveraging unlabeled
data in open-set scenarios.

The experimental results demonstrate that the proposed method remains effective when the amount of
labeled data is limited. Furthermore, it validates the model’s ability to enhance generalization performance
by leveraging unlabeled data from diverse sources. The performance improvements in the open-set settings
highlight the model’s robustness in handling the challenges encountered in practical clinical settings.

5 Conclusion
This study improved the performance of respiratory sound classification by leveraging open-set

unsupervised learning based on a distance-based prototype network. In practical clinical settings, new
respiratory sound types not included in labeled datasets may emerge. These OOD data significantly degrade
the performance of semi-supervised learning models trained under a conventional closed-set setting. This
poses a significant challenge in practical clinical settings, where it is essential to account for an open-set
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setting, as various sounds outside known classes may be introduced. Experimental findings suggest that
the proposed method achieved an average classification accuracy improvement of 2%–5% compared to
conventional closed-set semi-supervised learning approaches. By classifying OOD data as an unknown class,
the model effectively leveraged unlabeled data under conditions with limited labeled data, resulting in a
6%–8% improvement in classification performance. This significantly reduced misclassification errors, which
commonly occur in existing models due to their tendency to force all input data into one of the known
classes. In the experiment, a part of the unlabeled data was intentionally designated as OOD samples for
evaluation. The results demonstrated that the proposed method accurately identifies these OOD samples
with high precision. These results indicate that the proposed method can significantly enhance classification
accuracy in practical clinical settings, particularly when analyzing respiratory sounds from patients with
diverse respiratory diseases. Furthermore, the approach presented in this study is not limited to respiratory
sound classification but is also applicable to other fields of medical data analysis. In particular, it plays a
crucial role in overcoming the challenges posed by insufficient labeled data and the presence of unknown
patterns, which are prevalent in diverse medical diagnostic contexts and practical clinical settings.
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10. Hafke-Dys H, Breborowicz A, Kleka P, Kociński J, Biniakowski A. The accuracy of lung auscultation in the practice
of physicians and medical students. PLoS One. 2019;14(8):e0220606. doi:10.1371/journal.pone.0220606.

11. Srivastava A, Jain S, Miranda R, Patil S, Pandya S, Kotecha K. Deep learning based respiratory sound analysis for
detection of chronic obstructive pulmonary disease. PeerJ Comput Sci. 2021;7(5):e369. doi:10.7717/peerj-cs.369.

12. Bae S, Kim J, Cho W, Baek H, Son S, Lee B, et al. Patch-mix contrastive learning with audio spectrogram trans-
former on respiratory sound classification. In: 21st Annual Conference of the International Speech Communication
Association (Interspeech 2023); 2023 Aug 20–24; Dublin, Ireland. p. 13459–68.

13. Song W, Han J, Deng S, Zheng T, Zheng G, He Y. Joint energy-based model for semi-supervised respiratory sound
classification: a method insensitive to distribution mismatch. IEEE J Biomed Health Inform. 2025;29(2):1433–43.
doi:10.1109/jbhi.2024.3480999.

14. Lang R, Fan Y, Liu G, Liu G. Analysis of unlabeled lung sound samples using semi-supervised convolutional neural
networks. Appl Math Comput. 2021;402(2):126150. doi:10.1016/j.amc.2021.126511.

15. Li Y, Wang X, Liu H, Tao R, Yan L, Ouchi K. Semi-supervised sound event detection with local and global
consistency regularization. In: ICASSP 2024—2024 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP); 2024 April 14–19; Seoul, Republic of Korea. p. 271–5.

16. Cho WY, Lee S. Effective respiratory sound classification based on semi-supervised learning. KIISE Transa Comput
Pract. 2024;30(12):669–74.

17. Oliver A, Odena A, Raffel CA, Cubuk ED, Goodfellow I. Realistic evaluation of deep semi-supervised learning
algorithms. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R, editors. Advances in
Neural Information Processing Systems . Vol. 31. Red Hook, NY, USA: Curran Associates, Inc.; 2018.

18. Van Engelen JE, Hoos HH. A survey on semi-supervised learning. Mach Learn. 2020;109(2):373–440. doi:10.1007/
s10994-019-05855-6.

19. Saito K, Kim D, Saenko K. OpenMatch: open-set semi-supervised learning with open-set consistency regulariza-
tion. Adv Neural Inform Process Syst. 2021;34:25956–67.

20. Li Z, Qi L, Shi Y, Gao Y. IOMatch: simplifying open-set semi-supervised learning with joint inliers and outliers
utilization. In: Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision (ICCV); 2023
Oct 1–6; Paris, France. p. 15870–9.

21. Ma Q, Gao J, Zhan B, Guo Y, Zhou J, Wang Y. Rethinking safe semi-supervised learning: transferring the open-set
problem to a close-set one. In: Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision
(ICCV); 2023 Oct 1–6; Paris, France. p. 16370–9.

22. Wallin E, Svensson L, Kahl F, Hammarstrand L. Improving open-set semi-supervised learning with self-
supervision. In: Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV); 2024 Jan 3–8; Waikoloa, HI, USA. p. 2356–65.

23. Naranjo-Alcazar J, Perez-Castanos S, Zuccarello P, Antonacci F, Cobos M. Open set audio classification using
autoencoders trained on few data. Sensors. 2020;20(13):3741. doi:10.3390/s20133741.

24. You J, Wu W, Lee J. Open set classification of sound event. Sci Rep. 2024;14(1):1282.

https://doi.org/10.1164/rccm.202209-1795ci
https://doi.org/10.1038/s41598-020-64405-6
https://doi.org/10.1038/s41598-020-64405-6
https://doi.org/10.3390/diagnostics13101748
https://doi.org/10.3390/diagnostics13101748
https://doi.org/10.1371/journal.pone.0220606
https://doi.org/10.7717/peerj-cs.369
https://doi.org/10.1109/jbhi.2024.3480999
https://doi.org/10.1016/j.amc.2021.126511
https://doi.org/10.1007/s10994-019-05855-6
https://doi.org/10.1007/s10994-019-05855-6
https://doi.org/10.3390/s20133741


Comput Mater Contin. 2025;84(2) 2863

25. Sohn K, Berthelot D, Carlini N, Zhang Z, Zhang H, Raffel CA, et al. FixMatch: simplifying semi-supervised
learning with consistency and confidence. In: Advances in Neural Information Processing Systems. Vol. 33; 2020.
p. 596–608.

26. Koutini K, Schlüter J, Eghbal-zadeh H, Widmer G. Efficient training of audio transformers with patchout. In:
Interspeech 2022, 23rd Annual Conference of the International Speech Communication Association; 2022 Sep
18–22; Incheon, Republic of Korea: ISCA. p. 2753–7. doi:10.21437/Interspeech.2022-227.

27. Gemmeke JF, Ellis DP, Freedman D, Jansen A, Lawrence W, Moore RC, et al. Audio set: an ontology and
human-labeled dataset for audio events. In: 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP); 2017 Mar 5–9; New Orleans, LA, USA. p. 776–80.

28. Wang Y, Ma X, Chen Z, Luo Y, Yi J, Bailey J. Symmetric cross entropy for robust learning with noisy labels. In:
Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV); 2019 Oct 27–Nov 2;
Seoul, Republic of Korea. p. 322–30.

29. Hong Y, Chen Y. PatchMix: patch-level mixup for data augmentation in convolutional neural networks. Knowl
Inform Syst. 2024;66(7):3855–81. doi:10.1007/s10115-024-02141-3.

30. Pham H, Dai Z, Xie Q, Le QV. Meta pseudo labels. In: Proceedings of the 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR); 2021 Jun 20–25; Nashville, TN, USA. p. 11557–68.

31. Hsu FS, Huang SR, Huang CW, Huang CJ, Cheng YR, Chen CC, et al. Benchmarking of eight recurrent neural
network variants for breath phase and adventitious sound detection on a self-developed open-access lung sound
database—HF_Lung_V1. PLoS One. 2021;16(7):e0254134. doi:10.1371/journal.pone.0254134.

32. Xia T, Spathis D, Brown C, Ch J, Grammenos A, Han J, et al. COVID-19 sounds: a large-scale audio dataset for
digital respiratory screening. In: Thirty-Fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2); 2021 Dec 6–14; Online.

33. Gong Y, Chung YA, Glass J. AST: audio spectrogram transformer. In: Proceedings of Interspeech 2021; 2021 Aug
30–Sep 3; Brno, Czechia. p. 571–5.

34. Xie Q, Dai Z, Hovy E, Luong T, Le QV. Unsupervised data augmentation for consistency training. In: Advances in
Neural Information Processing Systems (NeurIPS). Vol. 33; 2020. p. 6256–68.

35. Rajbhandari S, Ruwase O, Rasley J, Smith S, He Y. Zero-infinity: breaking the GPU memory wall for extreme scale
deep learning. In: Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis; 2021 Nov 14–19; Louis, MO, USA. p. 1–14.

36. Yu T, Kumar A, Chebotar Y, Hausman K, Finn C, Levine S. How to Leverage Unlabeled Data in Offline
Reinforcement Learning. In: International Conference on Machine Learning (ICML); 2022 Jul 17–23; Baltimore,
MD, USA. p. 25611–35.

37. Rocha BM, Filos D, Mendes L, Vogiatzis I, Perantoni E, Kaimakamis E, et al. A respiratory sound database for
the development of automated classification. In: Precision medicine powered by pHealth and connected health.
Singapore: Springer; 2018. p. 33–7.

38. Fraiwan M, Fraiwan L, Khassawneh B, Ibnian A. A dataset of lung sounds recorded from the chest wall using an
electronic stethoscope. Data Brief. 2021;35(1):106913. doi:10.1016/j.dib.2021.106913.

39. Hsu FS, Huang SR, Huang CW, Cheng YR, Chen CC, Hsiao J, et al. A progressively expanded database for
automated lung sound analysis: an update. Appl Sci. 2022;12(15):7623. doi:10.3390/app12157623.

40. Reichert S, Gass R, Brandt C, Andrès E. Analysis of respiratory sounds: state of the art. Clin Med Circul Resp
Pulmon Med. 2008;2(1):CCRPM.S530. doi:10.4137/ccrpm.s530.

41. Park JS, Kim K, Kim JH, Choi YJ, Kim K, Suh DI. A machine learning approach to the development and prospec-
tive evaluation of a pediatric lung sound classification model. Sci Rep. 2023;13(1):1289. doi:10.1038/s41598-023-
27399-5.

42. Park DS, Chan W, Zhang Y, Chiu CC, Zoph B, Cubuk ED, et al. SpecAugment: a simple data augmentation method
for automatic speech recognition. In: Interspeech 2019; 2019 Sep 15–19; Graz, Austria. p. 2613–7.

43. Moummad I, Farrugia N. Pretraining respiratory sound representations using metadata and contrastive learning.
In: 2023 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA); 2023; New
Paltz, NY, USA. p. 1–5. doi:10.1109/waspaa58266.2023.10248130.

https://doi.org/10.21437/Interspeech.2022-227
https://doi.org/10.1007/s10115-024-02141-3
https://doi.org/10.1371/journal.pone.0254134
https://doi.org/10.1016/j.dib.2021.106913
https://doi.org/10.3390/app12157623
https://doi.org/10.4137/ccrpm.s530
https://doi.org/10.1038/s41598-023-27399-5
https://doi.org/10.1038/s41598-023-27399-5
https://doi.org/10.1109/waspaa58266.2023.10248130

	Enhancing Respiratory Sound Classification Based on Open-Set Semi-Supervised Learning
	1 Introduction
	2 Related Works
	3 Proposed Method
	4 Experiments
	5 Conclusion
	References


