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ABSTRACT: Recent advances in wearable devices have enabled large-scale collection of sensor data across healthcare,
sports, and other domains but this has also raised critical privacy concerns, especially under tightening regulations such
as the General Data Protection Regulation (GDPR), which explicitly restrict the processing of data that can re-identify
individuals. Although existing anonymization approaches such as the Anonymizing AutoEncoder (AAE) can reduce the
risk of re-identification, they often introduce substantial waveform distortions and fail to preserve information beyond
a single classification task (e.g., human activity recognition). This study proposes a novel sensor data anonymization
method based on Adversarial Perturbations (AP) to address these limitations. By generating minimal yet targeted noise,
the proposed method significantly degrades the accuracy of identity classification while retaining essential features
for multiple tasks such as activity, gender, or device-position recognition. Moreover, to enhance robustness against
frequency-domain analysis, additional models trained on transformed (e.g., short-time Fourier transform (STFT))
representations are incorporated into the perturbation process. A multi-task formulation is introduced that selectively
suppresses person-identifying features while reinforcing those relevant to other desired tasks without retraining large
autoencoder-based architectures. The proposed framework is, to our knowledge, the first AP-based anonymization
technique that (i) defends simultaneously against time- and frequency-domain attacks and (ii) allows per-task trade-off
control on a single forward-back-propagation run, enabling real-time, on-device deployment on commodity hardware.
On three public datasets, the proposed method reduces person-identification accuracy from 60–90% to near-chance
levels (≤5%) while preserving the original activity-recognition F1 both in the time and frequency domains. Compared
with the baseline AAE, the proposed method improves downstream task F1 and lowers waveform mean squared
error, demonstrating a better privacy-utility trade-off without additional model retraining. These findings underscore
the effectiveness and flexibility of AP in privacy-preserving sensor-data processing, offering a practical solution that
safeguards user identity while retaining rich, application-critical information.
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1 Introduction
Wearable devices have rapidly evolved in recent years, enabling continuous and large-scale collec-

tion of sensor data related to human activity, physiology, and environment. These sensors, embedded in
smartwatches, smartphones, or fitness bands, capture diverse signals such as acceleration, heart rate, and
gyroscopic measurements. Such capabilities have facilitated breakthroughs in healthcare applications [1–3],
sports science [4], and human-computer interaction [5]. However, the increased availability and granularity
of sensor data have also raised critical privacy concerns [6,7]. Sensitive attributes, ranging from demographic
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information to health indicators, can be inferred from seemingly harmless motion signals when advanced
machine learning techniques are applied [8,9].

To mitigate the risk of re-identification and protect sensitive personal attributes, various anonymization
frameworks have been proposed [10,11]. One well-studied approach is the Anonymizing AutoEncoder
(AAE) [12,13], which integrates autoencoder-based transformations with a supervised loss term to degrade
identity-related features while preserving a target classification task (e.g., Human Activity Recognition;
HAR). While AAE can effectively lower identification accuracy, it often introduces substantial distortions in
the waveform, reducing the data’s utility for tasks beyond the one explicitly used in training the autoencoder.
Moreover, it assumes that new analysis models will be trained on the anonymized data itself, making it
difficult to reuse established models trained on non-anonymized (raw) signals.

This study proposes a new sensor data anonymization framework Anonymizing Adversarial Perturba-
tion (AAP), which applies subtle perturbations to inputs, leveraging adversarial perturbations (AP) [14], to
balance privacy and multi-task utility. The proposed method uses identity classification models to generate
targeted, minimal distortions that degrade re-identification accuracy, while concurrently reinforcing or
preserving important features for other tasks such as gender or detailed HAR. This extended scheme is
referred to as Frequency-informed AAP (F-AAP) and Multi-task Frequency-informed AAP (MF-AAP).
Through extensive experiments on publicly available sensor datasets (Motion Sense [15], MHEALTH [16],
and UniMiB SHAR [17]), this study demonstrates that:

1. The proposed adversarial-perturbation approach preserves richer waveform characteristics than
autoencoder-based anonymization, enabling higher accuracy on tasks not explicitly considered dur-
ing anonymization.

2. Incorporating multiple models trained in time and frequency domains leads to greater resilience
against re-identification, even if adversaries transform the signals using short-time Fourier Transform
(STFT) methods.

3. A multi-task formulation allows users to selectively strengthen or weaken different task-related features
with no need to retrain large generative networks, greatly improving flexibility in real-world deploy-
ments.

Although anonymization methods based on autoencoders [12] and Generative Adversarial Networks
(GANs) [11] can obscure user identity, they require large models and retraining and often degrade
downstream–task accuracy. Moreover, prior work implicitly assumes that an attacker operates in the time
domain, overlooking the fact that simple spectral transforms can re-expose user-specific cues. To date, no
study has applied adversarial perturbations to sensor signals while simultaneously preserving the utility of
multiple downstream tasks. This gap motivates the present work, which introduces AAP, F-AAP, and MF-
AAP to (i) anonymize wearable-sensor data with minimal waveform distortion, (ii) remain robust in both
time and frequency domains, and (iii) retain high accuracy for activity, position, and gender recognition.
Overall, the adversarial-perturbation methodology offers a lightweight yet powerful alternative to AAE-
based sensor data anonymization. By focusing on minimal and targeted modifications, it achieves strong
privacy guarantees while maintaining high utility across diverse tasks, which is essential for the next
generation of wearable sensing systems.

The objectives of this study are as follows:

O1 Reduce person-identification accuracy to chance level while introducing minimal waveform
distortion.

O2 Achieve robustness against spectral attacks by leveraging both time- and frequency-domain models.
O3 Enable selective utility preservation for multiple downstream tasks without retraining large networks.
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The remainder of this paper is organized as follows: Section 2 reviews related work; Section 3 defines
the privacy-preserving scenario of this study; Section 4 details the proposed AAP, F-AAP, and MF-
AAP; Section 5 presents experimental setup and results; Section 6 discusses limitations and future work;
finally, Section 7 concludes the paper.

2 Related Work
Sensor data have been extensively leveraged in diverse domains, ranging from industrial settings

and urban infrastructures to healthcare and daily life. Nevertheless, such broad applicability has also
prompted critical discussions on privacy and security. This section first introduces representative use cases of
sensor data, followed by an overview of HAR methodologies. Existing anonymization techniques, including
conventional statistical methods, GAN-based approaches, and autoencoder-based methods, are surveyed,
after which recent advances in adversarial perturbation for privacy are discussed. The present study is then
positioned in relation to these prior works.

2.1 Applications of Sensor Data
Sensor deployments in industrial IoT environments have enabled real-time monitoring and optimiza-

tion of manufacturing processes. Xu et al. [18] proposed a hierarchical resource allocation algorithm that
takes into account safety, privacy, and reliability constraints, thereby enhancing efficiency across industrial
operations. In the context of smart cities, Talebkhah et al. [19] reported ongoing projects that utilize sensor
networks for traffic control, environmental surveillance, and disaster management. These initiatives highlight
the transformative potential of large-scale sensor deployments in urban planning and sustainability.

Wearable technologies are also finding widespread adoption in sports science and consumer fitness.
Lam Po Tang [4] demonstrated how wearable sensors collecting heart rate and posture data can be harnessed
to refine training regimens and speed recovery. Meanwhile, newly developed smart garments and textiles are
emerging to measure physiological signals in everyday settings. In healthcare, sensor-based HAR has proven
beneficial for patient care and clinical efficiency. Lee et al. [20] introduced a lifelogging system employing
three-axis accelerometers and combined statistical and spectral features to achieve high-accuracy HAR for
daily-life analysis. Similarly, Xu et al. [21] exploited random forest classifiers augmented with contextual
information to recognize activities among seniors. Inoue et al. [22] developed a system for analyzing nursing
workflows, aiming to improve operational efficiencies in clinical environments. Sensor technologies have
likewise progressed across a broad spectrum, encompassing systems for pain monitoring and mitigation [3]
as well as implantable in-vivo sensors [2]. While these studies underscore the utility of sensor data, they also
underline the growing importance of privacy protection to secure personal information against misuse.

2.2 HAR
HAR encompasses a range of techniques aimed at classifying sensor signals into specific behavioral

categories. Traditional HAR approaches predominantly employed handcrafted statistical or spectral features,
which were then input into machine learning algorithms. Kwapisz et al. [23] used smartphone accelerometers
to identify walking and stair-climbing behaviors, demonstrating how fundamental statistical features can
boost model accuracy. By contrast, Shoaib et al. [24] combined data from smartphones and wristbands to
handle more complex activities and highlighted the value of sensor diversity. Voicu et al. [25] integrated
readings from accelerometers, gyroscopes, and gravity sensors, showcasing the feasibility of accurate activity
classification solely using commercial smartphones. There are also cases where accelerometers have been
applied to enhance the security of voice authentication [26].
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In more recent developments, deep learning models, particularly convolutional neural networks and
recurrent neural networks, have been adopted in an end-to-end manner. Li et al. [27] found that deep
neural networks outperform methods reliant on hand-crafted features when analyzing wearable sensor data.
DenseNet-inspired architectures have also been proposed to capture spatiotemporal dependencies effec-
tively, as exemplified by Ronald et al. [28] in their HARDenseNet. Ronald et al. [29] integrated ResNet and
Inception modules to develop iSPLInception, achieving high accuracy in HAR tasks. In recent years, efforts
to leverage Transformer architectures for human activity recognition have also become widespread [30–32].
While deep learning has propelled the performance of HAR systems, it has also amplified privacy concerns,
because large-scale sensor data collection can reveal sensitive personal details.

2.3 Sensor Data Anonymization
In the field of sensor data anonymization for HAR, several comprehensive surveys have been con-

ducted [33,34]. Based on these surveys, existing algorithm-based anonymization methods can be broadly
classified into three categories: (a) Statistical Anonymization, (b) Generation-based Anonymization, and (c)
Reconstruction-based Anonymization.

2.3.1 (a) Statistical Anonymization Techniques
Several statistical approaches exist for sensor data anonymization, each attempting to mask identity-

revealing details while preserving data utility. Filtering eliminates identifiable patterns in sensor signals
through time- or frequency-domain transformations [35]. For instance, removing certain frequency bands
may obscure users’ unique motion signatures. However, this strategy risks losing salient information
necessary for downstream tasks. Data perturbation injects random noise to conceal personal features without
fully distorting the dataset’s broader statistical properties. Gaussian noise addition [36] is a commonly cited
example. Striking a balance is vital: excessive noise diminishes data utility, while insufficient noise leaves
identifying cues intact.

Data generalization replaces precise readings with coarser-grained versions. For example, converting
timestamps to approximate time bins or rounding sensor measurements to broader intervals can mitigate
re-identification risks [37]. By introducing k-anonymity [38], each data record becomes indistinguishable
from at least (k − 1) others, but at the cost of reduced specificity for analytics [39]. Differential privacy
provides a formal mechanism to limit the impact of any single record on aggregate statistics. However,
implementing it in sensor-based HAR remains nontrivial, since ensuring robust privacy often requires a
high level of noise, thereby degrading recognition accuracy [10]. Random Projection (RP) [40] is a technique
that projects high-dimensional data into a randomly chosen lower-dimensional subspace, leveraging the
Johnson-Lindenstrauss lemma to approximately preserve pairwise distances. This property hampers direct
reidentification attempts because reconstructing the original sensor signals becomes more difficult. However,
when the projection dimension is chosen with care, the sensor data can still retain sufficient utility for
subsequent recognition tasks such as classification or clustering. A trade-off nevertheless remains: an overly
aggressive reduction in dimensionality may obscure features essential for analytics, whereas a projection that
is too large may continue to expose identifying signatures.

While these statistical methods are relatively straightforward, they each face inherent constraints,
especially when aiming to maintain the fidelity necessary for sophisticated HAR tasks.
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2.3.2 (b) Generation-Based Anonymization
GANs [41] have emerged as a promising tool for synthesizing sensor data that preserve certain target

attributes while concealing sensitive ones. Menasria et al. [11] introduced Private GAN (PGAN) frameworks
(PGAN1 and PGAN2), focusing on selectively safeguarding private attributes and retaining public informa-
tion. By generating data from a learned distribution rather than sharing direct measurements, the approach
lessens re-identification risks. In addition, anonymization methods based on the GAN with conditional
AE [42] and approaches that combine GANs with microaggregation [43] have also been proposed. However,
GAN-based methods often demand large-scale datasets and can be difficult to tailor for individualized
user privacy.

Some studies have tackled anonymization by applying adversarial training (AT) in the feature space
without generating waveforms [44,45]. These methods can be regarded as approaches for generating an
anonymized feature space. Furthermore, anonymization methods based on diffusion models have also been
proposed in recent years [46].

2.3.3 (c) Reconstruction-Based Anonymization
Malekzadeh et al. [12] proposed an Anonymizing AutoEncoder (AAE) that simultaneously degrades

user identification accuracy and retains utility for a designated recognition task (e.g., HAR), and
Bigelli et al. [13] extend AAE for preventing some privacy attributes. AAE functions by transforming
each sensor sample using an autoencoder constrained by classification losses for user ID and activity,
alongside a mean squared error (MSE) term to mitigate distortion. Although AAE generally performs well
for its intended use case (i.e., training new HAR models on anonymized data), it can exhibit considerable
waveform modifications (Fig. 1) and lacks explicit mechanisms for preserving information relevant to tasks
other than the primary classification. Moreover, anonymity under frequency-domain analysis remains
insufficiently addressed.

Figure 1: Samples of waveform changes before and after conversion using the reconstruction-based method and the
proposed method
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As a related approach, in image-based human activity recognition, autoencoder-based method [47] have
been proposed to address reconstruction-based threats. An integrative method utilizing autoencoders has
also been proposed [48].

2.3.4 AP for Privacy
AP [14] were initially studied in computer vision and speech recognition as imperceptible noise that

induces misclassifications. Strategies such as Basic Iterative Method (BIM) [49], Diverse-Inputs Iterative
Fast Gradient Sign Method (DI2-FGSM) [50], and Translation-Invariant FGSM (TI-FGSM) [51] refine the
basic FGSM [52] approach to enhance attack strength or transferability by iterating over gradient updates or
employing transformations and smoothing filters [53]. Outside of pure security contexts, these methods can
be repurposed for anonymization: minor signal distortions strategically undermine identity classification
while leaving much of the original data structure intact.

Although AP have been validated in image and audio domains, their application to time-series
sensor data, particularly for privacy protection, remains an emerging area. AP-based anonymization can
offer advantages over generative or statistical approaches by requiring minimal structural adjustments to
raw signals.

2.4 Positioning of the Present Work
This section clarifies the positioning of the proposed methods relative to existing anonymization

approaches. Table 1 compares six representative methods using seven columns, each reflecting a key property
of sensor-data anonymization techniques.

Table 1: Characteristics comparison of various anonymization methods

Method Ann. Stab. Anon. Pres. Int. adj. Freq. Flex. HAR
Statistical None High Middle Middle ✓ ✗ ✗ ✗

GAN-based [11] Personal Low High Low ✗ ✗ ✗ ✗

AT-based [44,45] Personal Middle High Low ✗ ✗ ✓ ✓
AAE [12,13] Personal Middle High Low ✗ ✗ ✗ ✓

AAP Personal High High High ✓ ✗ ✗ ✓
F-AAP Personal High High High ✓ ✓ ✗ ✓

MF-AAP Various info. Middle High High ✓ ✓ ✓ ✓

2.4.1 Abbreviations and Their Meanings
• Method: The name or category of each anonymization approach.
• Ann. (Requiring annotation): Indicates whether annotation labels are required to train the anonymiza-

tion model. While GAN-based and autoencoder-based methods use personal labels to maximize the
personal identification loss (for training a discriminator or autoencoder), AAP uses them to minimize
the personal identification loss. In addition, both AAE and AAP rely on target labels (e.g., activity labels)
to enhance human activity recognition (HAR) performance.

• Stab. (Stability): The extent to which an approach preserves the original waveform structure. High
means minimal distortion, Middle indicates moderate change, and Low suggests a high degree of
alteration.
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• Anon. (Anonymity): The effectiveness in degrading person-identification accuracy (i.e., increasing
re-identification difficulty). High implies strong anonymization (significantly reducing user-specific
signals), Middle indicates partial anonymization, and Low suggests limited success in concealing identity.

• Pres. (Information preservation): How effectively each method retains task-relevant information in
the anonymized data. High indicates minimal loss of essential features, Middle indicates moderate loss,
and Low indicates that critical signals needed for downstream tasks may be severely disrupted.

• Int. adj. (Intensity adjustability): Whether the method offers flexible control over anonymization
strength. GAN-based and autoencoder-based methods typically make re-identification more difficult
only during the training phase; thus, their anonymization strength is not easily adjustable at inference
time. By contrast, Statistical and AAP approaches can tune noise intensity to balance privacy and utility
on demand.

• Freq. (Frequency-domain robustness): Whether the method remains effective against frequency-
domain analysis. A check mark (✓) signifies that the anonymization withstands transformations such
as STFT, whereas a blank cell indicates vulnerability to frequency-based attacks.

• Flex. (Flexibility): The ability to selectively preserve or anonymize different attributes of the data.
MF-AAP, for example, can flexibly determine which characteristics (e.g., gender or device position) are
retained and which are suppressed.

• HAR: Whether or not consideration is given to maintaining behavior recognition accuracy.

2.4.2 Comparative Features of the Proposed Approach
As shown in Table 1, traditional Statistical methods generally do not require unique annotation labels

but do not explicitly anonymize user attributes. Although they allow parameter tuning (Int. adj. ✓), their
anonymization and information preservation capabilities remain at only moderate levels (Anon. =Middle,
Pres. = Middle). By contrast, GAN- and AT-based techniques can strongly reduce user identification risk
(Anon. = High), as with differential privacy. However, no prior work has been found that leverages GANs
to maintain or improve HAR accuracy. Moreover, they demand large training datasets and specialized
hyperparameter tuning for stable operation (Stab. = Low) and tend to lose fine-grained information for
multiple tasks (Pres. = Low).

AAE (Anonymizing AutoEncoder) reaches high anonymity (Anon. = High) while preserving certain
targeted behaviors, but it requires strict hyperparameter tuning for stabilising model training because of
using the minimax optimization such as GANs (Stab. =Middle) and has limited capacity for retaining diverse
information (Pres. = Low). Additionally, most autoencoder-based approaches do not provide an explicit
intensity parameter for fine-tuning (Int. adj. is blank), nor do they address frequency-based vulnerabilities.

The proposed methods address these limitations in a stepwise manner. AAP introduces AP specifically
targeting user identity signals while preserving the waveform structure (Stab. =High) and essential features
for various tasks (Pres. = High). Under the new column definition, AAP requires both personal labels and
specific target labels for training (Ann. = Personal & Target), thereby allowing it to degrade identification
accuracy while keeping task-relevant information (e.g., activity). Unlike AAE, it retains a check mark for Int.
adj. by allowing users to tune parameters such as intensity of perturbations. However, basic AAP does not
include explicit defenses in the frequency domain (Freq. column is blank).

F-AAP extends AAP by integrating frequency-domain models (Freq. ✓), enabling it to maintain
high anonymity (Anon. = High) even under STFT-based analysis, while still preserving waveform stability
(Stab. = High) and crucial task information (Pres. = High). In terms of annotation, F-AAP remains
similar to AAP (Ann. = Personal & Target), but now provides robust anonymization in both time and
frequency domains.
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Finally, MF-AAP broadens its training requirements to cover various user attributes alongside the main
classification targets (Ann. =Various info. & Target). This multi-task design preserves complex task-specific
features (Pres. = High) and achieves strong anonymity (Anon. = High), though the added complexity can
slightly reduce stability of model training a little (Stab. =Middle). Moreover, MF-AAP carries a check mark in
every remaining category, including Flex. (✓) for selectively suppressing certain user attributes (e.g., gender)
while retaining others (e.g., activity). This flexibility allows practitioners to adaptively tune or reinforce
features relevant to different downstream applications.

In summary, AAP, F-AAP, and MF-AAP collectively surpass prior methods in balancing anonymity and
utility, offering explicit adjustability, multi-task preservation, and robust frequency-domain defenses. These
advantages position the proposed methods as promising solutions for high-fidelity sensor-data anonymiza-
tion across a wide range of use cases. Building on the above comparison, the distinct novelties of this study
are: (i) a new adversarial-perturbation paradigm that dispenses with GAN/auto-encoder architectures, (ii)
the first sensor-signal anonymization defence that is simultaneously robust in both time and frequency
domains (F-AAP), (iii) an attribute-selective privacy–utility controller that preserves multiple downstream
tasks without retraining (MF-AAP), and (iv) comprehensive cross-dataset evidence demonstrating a new
state-of-the-art privacy–utility trade-off.

3 Privacy-Preserving Scenario

3.1 Scenario and Elements
This section presents the overall privacy-preserving scenario assumed in this study, along with the

requirements that must be satisfied in this context. As illustrated in Fig. 2, the system adopts a server–client
architecture for collecting and utilizing sensor data obtained from smartphones and wearable devices. The
scenario consists of the following four elements:
User devices

Users employ smartphones or wearable devices to measure the sensor data, attaching the corresponding
activity labels before transmitting the data to the application server. Rather than sending the raw sensor data
directly, the user devices perform anonymization locally. In doing so, any information enabling personal
identification is blocked at the source, preventing raw data from ever reaching the server.
Application server

The application server aggregates and manages the anonymized data and activity labels from multiple
user devices, offering services such as lifelogging or other sensor-driven applications. In addition, the server
may provide the collected anonymized data to approved third parties for further utilization—e.g., activity
analysis or the training of activity-recognition models. However, since no personally identifying information
is transmitted, the risk of linking data to specific individuals on the server side is minimized.
Data consumers

After receiving anonymized data from the server, data consumers perform various tasks such as activity
classification or in-depth behavioral analysis. Additional use cases are anticipated through transfer learning
or self-supervised approaches, wherein the anonymized data may be repurposed for tasks beyond basic
activity recognition.
Attacker

It is assumed that potential adversaries may attempt to illegally acquire data from the server via
methods such as malware, man-in-the-middle (MitM) attacks, or phishing. Particularly problematic is
the case where attackers hold a pre-trained person-identification model based on previously leaked raw
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data. Even if the data on the server are anonymized, the attacker could re-identify individuals if the
anonymization is insufficient. This research therefore aims to degrade identification accuracy significantly
through on-device anonymization.

Figure 2: Overview of the assumed privacy-preserving scenario

3.2 Risk Examples Based on the Attacker’s Possessed Information
Under the conditions of this scenario, attackers may possess the following types of information, which

can lead to different privacy risks:
(a) Application server login credentials

By impersonating legitimate users or administrators, attackers can access the anonymized data and
associated activity labels on the server. However, since direct personal identifiers are absent, re-identification
risk remains low unless the attacker can cross-reference external sources of raw sensor data.
(b) Personal identification model + (a)

In addition to (a), by using a person-identification model trained on previously leaked raw sensor data,
there is a risk that an attacker can link the sensor data in the server to specific individuals if the anonymization
is insufficient. This enables them to correlate behaviors with identified users.
(c) Raw sensor data + personal ID + (a)

If the attacker already has direct access to users’ sensor data and personal IDs from some other breach,
they can build or refine a personal identification model and pose essentially the same threat as in case
(b). In addition, if the anonymization method has also leaked, they can reproduce the anonymized sensor
data and build the user identification model supporting anonymized sensor data.

3.3 Anonymization Requirements
Generally, anonymization in data handling is expected to address the following five points:

(1) Removal or masking of personally identifying information
(2) Reduction of re-identification risk
(3) Preservation of data utility
(4) Compliance with relevant laws and regulations
(5) Transparency and accountability
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In the scenario of this study, requirement (1) is already addressed on the user device side by design, and
(4) and (5) fall under policy or operational guidelines. Hence, for sensor data anonymization, the primary
concerns are (2) reducing re-identification risk and (3) preserving data utility.

Past research has proposed many anonymization methods that obscure personally identifying informa-
tion while retaining features vital for tasks such as activity classification [12]. However, when the transformed
data deviate substantially from the original waveform, important information for secondary use cases may
be lost. For instance, if only the “activity label” is retained, the raw waveform’s additional characteristics,
potentially valuable for other analyses, become inaccessible. Therefore, the objective is to degrade certain
specific aspects of the data (namely person-identification signals) while still preserving as much of the
original data characteristics as possible. On the other hand, it should be noted that these are trade-offs.

Based on the above considerations, three requirements emerge for anonymization in the scenario of this
study:

• Transform the data such that a person-identification model trained on real (raw) data can only achieve
chance-level accuracy when applied to the anonymized data.

• Retain information necessary for key tasks, particularly activity recognition, so that classification
performance remains sufficiently high.

• Preserve diverse features to support broader use, such as other classification tasks (e.g., position
estimation) beyond simple activity analysis.

By satisfying these requirements, even attackers armed with person-identification models built from
leaked raw data will be significantly hampered in re-identifying individuals. Meanwhile, data consumers can
still utilize the anonymized data for activity recognition and new downstream applications, thus helping to
reduce user reluctance to share sensor data in an era of heightened privacy awareness.

4 Proposed Method
This study proposes a new adversarial-perturbation-based approach to supplement the limitations of

existing anonymization methods such as AAE, which often suffer from excessive waveform distortions or
focus on only a specific task. For instance, in the context of person images, AP can reduce classification
accuracy of a face-recognition model while preserving the visual appearance. However, because these visual
changes are quite subtle, a person-recognition model might be deceived, yet humans can still identify the
individual by simple inspection, hence it fails to achieve anonymization. In contrast, when data are inherently
difficult to identify visually, as with sensor signals, the act of degrading the classification model’s accuracy
itself effectively serves as anonymization. Thus, in the field of activity recognition, where human observation
cannot easily detect identities, AAP leverages this unique property of sensor data. No prior reports have
been identified that employ AP to anonymize sensor data, suggesting that the present approach opens a new
direction for anonymization research.

This section first introduces AAP, which applies AP in the time domain to reduce person-identification
accuracy while minimizing waveform distortion, thereby explaining the fundamental process of the
proposed framework. The approach is then extended to F-AAP, which combines time-domain and
frequency-domain models to ensure that anonymization remains robust in the frequency domain. Finally,
it is further extended to MF-AAP, which simultaneously considers multiple tasks (e.g., device-position
estimation) and selectively degrades only person-identification accuracy. Across all proposed methods, the
input and output formats follow those of the related study [12]. Specifically, sensor waveforms segmented
into fixed-length windows by a sliding-window preprocessing step are supplied as input, and anonymized
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waveforms of the same length are produced as output. No additional preprocessing is applied. The concrete
experimental settings are described in Section 5.

4.1 Anonymization with a Simple Adversarial Perturbation (AAP)
An anonymization scheme must balance privacy protection (i.e., lowering person identification accu-

racy) with data utility (i.e., retaining essential information). Although increasing waveform distortion can
enhance anonymization, it risks destroying the inherent features of the data. AP, on the other hand, can
significantly disrupt a classifier’s inference while introducing only a minimal visible change to the data.
Inspired by AP methods developed in the image domain, the technique is adapted to sensor data in order
to preserve the original waveforms as much as possible while drastically reducing person-identification
accuracy, and this variant is referred to as AAP.

Fig. 3 illustrates the flow of AAP. The method employs IFGSM [49], which iteratively applies the AP
by FGSM [52]. In advance, a person-identification model (Mid ) is trained on the raw data (with parameters
θid). At anonymization time, the loss gradient ∇X with respect to the input sensor data X and the person
label yid is computed and incrementally added t times to produce the anonymized data X t . Eq. (1) shows an
example transformation step at iteration t.

X t = X t−1 + α sign(∇X Jθ id(X t−1 , yid)). (1)

Here, X t is the anonymized data at the t-th iteration, and Jθ id(⋅) is the loss function of the person-
identification model. The final magnitude of waveform change depends on parameters α and the number of
iterations t. In this context, α denotes the step size added at each iteration. Unlike prior adversarial-attack
studies, this work does not impose an explicit Lp budget. Instead, the step size α is selected via grid search
so that the person identification F1 scores drop to chance level. Unlike autoencoder-based methods (e.g.,
AAE), AAP does not reconstruct the original waveform, only minor perturbations are added. This property
allows the scheme to degrade classification accuracy using small noise while offering a means to fine-tune
the degree of anonymization at deployment by adjusting these parameters.

While AAE encodes waveforms into latent variables and then reconstructs them, often yielding a sig-
nificant gap between original and reconstructed data, AAP only adds minimal noise to reduce identification
accuracy. Consequently, one may expect that additional information (e.g., frequency characteristics) remains
more readily preserved under AAP. Subsequent experimental evaluations (see Section 5) demonstrate that
AAP offers broader data utility than AAE.

Figure 3: Anonymization process by AAP. AAP takes the sensor waveform X and the person label yid as input,
computes the gradient∇X with respect to X using a pretrained person-identification model Mid , and adds this gradient
to the original waveform as a perturbation
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4.2 Frequency-Informed Adversarial Perturbation for Anonymization (F-AAP)
AAP focuses on classification models in the time domain. However, if an attacker trains a person-

identification model in the frequency domain, standard AAP might fail to anonymize effectively. Since sensor
data (e.g., accelerometry or biosignals) often contain unique frequency components tied to individual users,
restricting anonymization efforts solely to the time domain can be insufficient.

F-AAP is introduced, which concurrently derives gradients from both time-domain and frequency-
domain models to guide perturbations so that person-identification becomes difficult in both domains. As
depicted in the left of Fig. 4, the sensor data X(T) are transformed into the frequency domain X(F) via
STFT, and then combine the time-domain and frequency-domain losses. Eq. (2) shows that the gradients
∇X(T) Jθ(T,id) and ∇X(F) Jθ(F,id) are used, subsequently mapping back via ISTFT and aggregating the signs.

X t = X t−1 + α ∑
d∈{T,F}

δd ⋅ sign(∇X Jθ(d)
id
(X(d)t−1 , yid)). (2)

Here, d = T denotes the time domain, and d = F denotes the frequency domain; setting δT = 1,
δF = 1 leverages both gradients, whereas setting one of them to 0 reverts to standard AAP or a single-domain
approach. By integrating these two domains, F-AAP hinders attacker-driven identification whether in the
time or frequency domain, while still preserving essential information in the data.

Figure 4: Anonymization processes by F-AAP (left) and MF-AAP (right)

4.3 Adversarial Anonymization Considering Multiple Tasks (MF-AAP)
Finally, beyond neutralizing person-identification models in the time and frequency domains, certain

use cases may demand preservation of other tasks’ accuracy (e.g., activity recognition, gender inference, or
device-position estimation). For instance, a user may wish to obfuscate personal identity but keep activity
recognition or gender prediction operational on the device.

To address such needs, F-AAP is extended to MF-AAP, which simultaneously handles “tasks that require
accuracy preservation” (e.g., activity, gender, or position) and “tasks whose accuracy should be reduced” (i.e.,
person identification). As illustrated on the right of Fig. 4 and formalized in Eq. (3), each task is assigned a
weight σtask ∈ {+1, 0, −1}, for example, σid = +1 (intentionally lowering person-identification accuracy) and
σact = −1 (preserving or boosting the target task). Gradients are summed after applying these weights to
produce a single perturbation that simultaneously degrades person identification while retaining accuracy
for other tasks.
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X t = X t−1 + α ∑
d∈{T,F}

δd ⋅ sign
⎛
⎝ ∑

task∈{id,act, . . . }
σtask ⋅ ∇X Jθ(d)

task
(X(d)t−1 , ytask)

⎞
⎠

. (3)

Hence, MF-AAP can preserve the performance of tasks like activity classification while deliberately
reducing only person-identification accuracy. Because one can set σtask for each task independently, users can
flexibly choose which information to protect and which to retain allowing them to tailor the anonymization
to different deployment scenarios.

5 Evaluation Experiment
In this section, the three proposed methods (AAP, F-AAP, and MF-AAP) are experimentally evaluated

against the following research questions (RQs) to address the gaps identified in the Introduction. RQ1 tests
whether a perturbation (AAP) outperforms the prevailing AAE baseline in the privacy-utility trade-off; RQ2
examines whether adding a frequency-domain surrogate (F-AAP) preserves anonymity when an attacker
operates in the spectral domain; and RQ3 validates that a multi-task extension (MF-AAP) can suppress only
person-ID accuracy while preserving utility for other tasks such as activity and position recognition. Privacy
is quantified by the macro-F1 score of person identification, whereas utility is measured by F1 (classification)
or MSE (regression) on the downstream tasks.

• RQ1: Does the AP-based anonymization approach (AAP) outperform existing methods (e.g., AAE) in
terms of both anonymization effectiveness and information preservation?

• RQ2: Is F-AAP effective at achieving robust anonymization in the frequency domain?
• RQ3: Can MF-AAP selectively suppress only person identification accuracy while preserving perfor-

mance on other tasks?

5.1 Experimental Setup
5.1.1 Datasets and Pre-Processing

Three publicly available sensor datasets commonly employed in human activity and identity recognition
are utilized:

• Motion Sense [15]: 24 subjects (gender-balanced), 6 activity classes.
• MHEALTH [16]: 10 subjects, 12 activity classes, sensors placed at 3 different body positions.
• UniMiB SHAR [17]: 30 subjects, 17 activity classes (9 daily-life and 8 fall-related activities).

All datasets contain sensor signals sampled at 50 Hz. Sliding windows (window size = 128,
stride = 128) are applied to segment the data, followed by standardization. To assess anonymization
effectiveness in both the time and frequency domains, the segmented data are transformed into spectrograms
using STFT. Complex-valued spectrograms are represented by separately considering real and imaginary
parts, effectively doubling the number of input channels.

In this paper, data from different domains are denoted by “T” for the time domain and “F” for the
frequency domain. For example, the notations “Raw(T)”, “Raw(F)”, and “AAE(F)” are employed. Here,
Raw(F) refers to data obtained by applying STFT to Raw(T). In contrast, AAE(F) does not denote STFT of
AAE(T); rather, it represents data anonymized using an AAE model that has been trained in the frequency
domain. The same definition applies to AAP(F).
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5.1.2 Evaluation Tasks
Multiple classification tasks are defined to comprehensively evaluate anonymization and information

retention capabilities:

• Person Identification (Person ID): Identifying subjects from sensor data.
• Activity Recognition (Activity): Classifying general activity types.
• Sensor Position Estimation (Position): Determining the sensor’s location on the body.
• Gender Recognition (Gender): Classifying subjects’ gender.
• Detailed Activity Recognition (Detailed Act): Classifying finely-grained activity categories.

The exact tasks and class numbers differ according to dataset characteristics.

5.1.3 Models and Training Procedure
A VGG-based architecture (VGG10) [54] is mainly employed as the primary evaluation model for

all classification tasks, due to its established effectiveness and simplicity. To assess model transferability,
additional experiments are conducted using a ResNet10 architecture [55], known for its robustness in deep
learning literature.

The datasets are divided into training and test subsets (70% train, 30% test), ensuring balanced distri-
butions of subjects and activities. The Adam optimizer with an initial learning rate of 0.001 is used for model
optimization, and a cosine annealing scheduler progressively decreases the learning rate. The training runs
for 500 epochs with a batch size of 128. Cross-entropy loss is used for training, with class-specific weighting
to mitigate class imbalance effects. These hyperparameters were selected based on preliminary experiments.

The classification performance of AAP depends on both the constant α values and the number of
perturbation iterations. In these experiments, the F1 score under settings where the person identification
accuracy falls to or below the chance level are reported. To select this operating point, a grid search is
performed over α ∈ {0.0125, 0.025, . . . , 0.25}, then choose the smallest α at which person-identification F1
scores dropped to or below the chance rate (e.g., 12.5% for eight classes), and finally evaluated all downstream
tasks (activity, device-position, etc.) using that α, thus maximizing utility while satisfying the privacy
constraint. The number of perturbation iterations is fixed at t = 15. The step size α is tuned in a sensitivity
analysis and is held constant across all datasets in both the time and frequency domains.

5.1.4 Evaluation Metrics
Classification performance is evaluated using the mean F1 score averaged over five runs with different

random seeds. The F1 score is a balanced metric based on the harmonic mean of precision and recall,
well-suited to evaluate performance under class imbalance. To quantify changes introduced by anonymiza-
tion, MSE between original and anonymized waveforms are calculated. Additionally, domain robustness
(time/frequency) is evaluated using specialized metrics such as the id score and act score, detailed further in
subsequent sections. These comprehensive evaluations allow us to compare the proposed approaches against
the existing method (AAE) in terms of anonymization effectiveness and information preservation.

5.2 RQ1: Evaluation of the Effectiveness of AAP
5.2.1 Experimental Setup

In this section, the ability of AAP to simultaneously maintain high anonymity and improve information
retention compared with the existing method (AAE) is evaluated. Anonymity is quantified by the degrada-
tion in person-identification performance, while information retention is measured by (i) the preservation
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of classification accuracy on other tasks (e.g., activity, gender, and sensor-position recognition) and (ii) the
magnitude of waveform change (quantified by the MSE between the original and anonymized signals). These
metrics are compared comprehensively to assess the effectiveness of AAP.

The evaluation procedure is as follows:

1. For each dataset (Motion Sense, MHEALTH, and UniMiB SHAR), generate anonymized data by AAE
and AAP.

2. Measure the classification performance (F1 score) of models built using VGG10 on these datasets (raw,
AAE, and AAP).

3. Quantify the amount of waveform change by computing the MSE between the raw and anonymized data.

5.2.2 Evaluation via Classification Models
Table 2 shows the results. All models were trained using data in the time domain. The three leftmost

columns denote the target estimation tasks, and the ten rightmost columns present the corresponding
estimation results (mean F1 scores). The model architectures used are VGG10 and ResNet10, with VGG10
specifically employed for anonymization. “Raw,” “RP [40],” “NOS2R2 [36],” “AAE [12],” “AAP,” “F-AAP,” and
“MF-AAP” in the test data column indicate the test data and the anonymization methods applied.

Table 2: Comparison of anonymization performance on time-domain data [%]. In this scenario, the attacker has each
model trained by time-domain sensor data

Model architecture VGG10 ResNet10

Test data Raw RP
[40]

NOS2R2
[36]

AAE
[12]

AAP F-
AAP

MF-
AAP

Raw AAE
[12]

AAP F-
AAP

MF-
AAP

Test data Dataset Class

Person
Motion sense 24 56.7 0.6 3.3 1.8 2.4 3.7 3.4 58.5 1.6 3.3 4.1 4.0

mHealth 10 85.1 2.5 7.7 4.3 2.5 2.5 4.8 86.8 5.3 8.8 9.3 9.2
UniMiB 30 78.5 0.5 2.7 0.5 2.6 2.8 1.7 71.2 0.8 3.1 3.2 2.6

Activity
Motion Sense 6 80.2 6.8 40.9 40.6 79.0 79.7 99.6 81.8 37.7 63.6 64.7 74.6

mHealth 12 82.8 1.6 20.0 10.9 71.8 70.0 90.5 80.4 9.7 59.4 61.0 69.2
UniMiB 2 97.3 28.6 81.5 26.2 96.8 96.7 100.0 97.8 58.5 92.9 92.7 94.5

Gender Motion sense 2 63.2 36.8 56.2 49.6 60.8 59.7 97.0 62.5 52.5 59.2 56.6 71.2
Position mHealth 3 90.0 19.7 37.3 42.8 86.9 87.1 98.3 89.6 36.1 82.3 84.8 92.1

Detailed Act. UniMiB 17 68.7 0.8 22.5 1.8 63.4 61.6 99.5 63.5 1.8 35.8 35.1 44.7

Using VGG10, identical to the anonymisation network, person-identification F1 scores drop below
chance across all datasets, verifying effective identity removal; raw signals had yielded 50%–80% accuracy.
Activity-recognition performance, however, reveals clear differences among methods. Traditional statistical
transformations, RP [40] and NOS2R2 Gaussian noise [36], and the auto-encoder AAE [12] markedly
degrade recognition accuracy. Each of these techniques induces a substantial distributional shift: RP rotates
and compresses feature geometry, NOS2R2 injects broadband noise, and AAE generates a new latent space
that assumes subsequent retraining on anonymised data. Models fitted to the original distribution therefore
fail to extract useful patterns, producing large accuracy losses unless costly retraining is performed.
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AAP, by contrast, adds minimal task-aware noise and preserves the structure on which existing
classifiers rely. Across datasets, activity-recognition accuracy with AAP remains within 0.5–11% of the
baseline while identity prediction stays at random level. On the UniMiB dataset, for example, detailed-
activity classification falls to 1.8% with AAE but still reaches 63.4% under AAP. These results demonstrate
that AAP achieves a favourable privacy–utility compromise: identity cues are suppressed, yet behaviourally
relevant information is largely retained, and no model retraining is required.

Next, to evaluate robustness against changes in model architecture, the results obtained with ResNet10
are considered. Similar to VGG10, the person-identification accuracy consistently falls below chance level
across all datasets. However, it was observed that the perturbation magnitude parameter α required for
AAP tends to be higher compared than in the case with VGG10. In terms of activity recognition accuracy,
trends similar to those observed with VGG10 were evident, with AAP consistently outperforming AAE.
Nonetheless, due to the increased perturbation magnitude, performance with ResNet10 slightly decreased
compared to that obtained with VGG10. This trend is similarly observed in other labels. Therefore, the
proposed method demonstrates robustness against variations in model architecture, although increased per-
turbations slightly degrade information retention performance. The proposed perturbations are optimized
on a per-dataset basis. Future work will explore domain-adversarial objectives and meta-learning schemes
to improve cross-dataset transfer.

5.2.3 Evaluation of Waveform Preservation
In addition to evaluating classification performance, waveform preservation is assessed by comparing

the MSE values (Table 3) and visualizing waveform changes (Fig. 5), both performed on time-domain data.
The MSE values indicate that AAP produces considerably lower fluctuations than AAE across all datasets,
which supports the improved classification performance observed earlier. Similarly, the visual results confirm
that the variation from the original waveform is minimal. These results demonstrate that the proposed
method effectively disrupts person recognition by classifiers while preserving the essential characteristics of
the original signal.

Table 3: MSE between the original and anonymized signals for VGG10 model in time-domain data (m/s2)2

AAE AAP F-AAP MF-AAP
Motion sense 0.7587 0.0443 0.0486 0.0979

mHealth 0.7761 0.0206 0.0314 0.0511
UniMiB 0.9106 0.0194 0.0317 0.0544

In summary, the experimental results indicate that AAP not only effectively degrades person-
identification accuracy but also preserves waveform characteristics, allowing models trained on raw data to
be used directly without retraining. This leads to a more versatile anonymization approach compared to AAE.

5.3 RQ2: Effectiveness in Frequency Domain
Next, anonymization performance in the frequency domain is discussed. To the best of current

knowledge, existing anonymization studies for activity recognition have not considered scenarios in which
an attacker converts sensor waveforms into the frequency domain to conduct person-identification attacks.
Thus, the present study investigates person-identification accuracy and activity-recognition accuracy when
time-series sensor waveforms are transformed into the frequency domain using STFT.
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Figure 5: Waveform changes before and after anonymization

The experimental results are presented in Table 4. Experimental conditions are identical to those
described in the previous section, except that the attacker’s model targets frequency-domain data, requir-
ing preprocessing to convert time-series sensor waveforms into the frequency domain before inputting
them into the model. Examining the person-identification accuracy, it is observed that performance for
all methods remains around the chance level. However, because AAP considers only the time domain,
achieving anonymization below the chance level requires significantly increasing the perturbation magnitude
parameter α. Consequently, although the performance of AAP remains superior to AAE, accuracy in activity
recognition and other estimation tasks decreases compared to the results shown in Table 2. In contrast,
F-AAP, which explicitly accounts for the frequency domain, maintains strong anonymization performance
even with smaller α values, thus effectively preserving accuracy in activity recognition and other tasks.
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Nevertheless, it was also found that the effectiveness of F-AAP diminishes when the model architecture
changes, such as in the case of ResNet10.

Table 4: Comparison of anonymization performance on frequency-domain data [%]. In this scenario, the attacker has
each model trained by frequency-domain sensor data

Model architecture VGG 10 ResNet 10

Test data Raw AAE AAP F-AAP MF-AAP Raw AAE AAP F-AAP MF-AAP

Target Dataset Class
Motion sense 24 54.9 0.3 4.1 3.4 3.9 55.8 0.7 3.9 3.9 3.9

Person mHealth 10 83.6 5.4 9.2 4.8 6.2 79.6 4.5 9.7 9.7 0.0
UniMiB 30 70.8 0.2 3.2 1.6 2.9 67.9 0.2 3.2 3.1 3.3

Motion sense 6 85.8 4.7 23.2 83.9 93.2 84.3 7.4 31.7 41.8 48.7
Activity mHealth 12 74.9 6.6 38.4 67.9 96.4 79.3 5.5 47.8 49.6 56.7

UniMiB 2 99.2 37.1 91.9 98.8 99.9 99.3 28.6 91.2 93.4 95.6

Gender Motion sense 2 63.2 41.8 54.3 58.4 96.5 60.4 35.0 55.8 55.2 74.5
Position mHealth 3 89.0 22.0 77.0 88.6 99.1 89.9 21.4 80.0 80.4 85.2

Detailed Act. UniMiB 17 63.5 1.2 14.3 51.0 97.6 62.4 0.7 12.3 26.3 35.5

These observations indicate that F-AAP effectively maintains anonymization performance against
person-identification attacks in the frequency domain while mitigating adverse impacts on the accuracy
of activity recognition and other tasks. However, robustness to differences in model architecture remains a
challenge that should be addressed in future work.

5.4 RQ3: Selectively Suppress Person Identification Accuracy
The previously evaluated methods, AAP and F-AAP, require only the person labels during anonymiza-

tion. Although these methods are easy to implement, their capability for information retention is limited. In
contrast, the proposed method, MF-AAP, requires additional labels (e.g., activity, gender, etc.) in anonymiza-
tion. However, this requirement enables selective control over information retention or suppression.
Thus, this experiment investigates the effects of introducing perturbations designed to suppress person-
identification performance while simultaneously enhancing the recognition performance of other attributes.

The results of this investigation are presented under the MF-AAP columns in Tables 2 and 4. Regardless
of the model architecture or the target domain, the performance of person identification could be consistently
suppressed below the chance level through adjustments of the parameter α. Furthermore, examination
of activity recognition and other estimation accuracies shows performance improvements across all con-
ditions. Notably, this improvement is particularly prominent for VGG10, which is the anonymization
model itself, where most attributes achieved recognition accuracies exceeding 90%. Therefore, the results
clearly demonstrate that MF-AAP can intentionally control both the enhancement and suppression of
classification performance.

This phenomenon can be interpreted as embedding label information into the original data. AAP and
F-AAP achieve anonymization by estimating person labels from input data and adding perturbations in the
opposite direction of the gradient calculated with respect to those inputs. Although activity recognition and
other labels are not explicitly utilized in the anonymization process, information retention is pursued by
minimizing the perturbation magnitude. Conversely, MF-AAP employs multiple labels during anonymiza-
tion and introduces perturbations using both forward and inverse gradients. Adding forward gradients to
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the input introduces slight perturbations that improve classification performance, effectively embedding
label-specific features into the original data.

6 Discussion

6.1 Effects of α
As a key feature of AAP, the intensity of the perturbation (α) can be adjusted to control the degree of

anonymization (Int. adj.). In the experiments thus far, α is tuned so that person identification performance is
forced to fall below the chance level. This section investigates how increasing or decreasing α affects overall
performance. The following score is introduced as a new metric:

S =
saap − c
sraw − c

(4)

Here, S is calculated for each estimation target (Person, Activity, and others) based on its chance rate c,
representing the relative ratio to the score sraw achieved using raw data as the upper bound. Because a higher
value is more desirable, S′person = 1.0 − Sperson is defined only for the person-identification task. Finally, each
score is clamped between 0.0 and 1.0.

Fig. 6 presents how the scores of each method change with different α values. For comparison, AAE
is also plotted; however, because AAE does not allow adjusting the anonymization level after training, its
value remains constant. Since the model architecture used here is ResNet10, these results illustrate the case
where the evaluation model (ResNet10) differs from the model architecture employed in the anonymization
(VGG10). From the figure, it is evident that, while AAE serves as a baseline with strong anonymization
performance, it substantially degrades the estimation accuracy for Activity and Other, indicating significant
information loss. In contrast, the proposed methods show that by setting α in the range of approximately
0.2–0.7, one can achieve comparable anonymization performance to AAE while still preserving performance
on the other tasks.

Figure 6: Comparison of target estimation score using ResNet10 in time-domain data across the mHealth, Motion
Sense, and UniMiB datasets. Colors denote the different targets, and line styles indicate the applied methods (AAE,
AAP, F-AAP, and MF-AAP)

When comparing the characteristics among the methods, AAP, F-AAP, and MF-AAP respond to
changes in α in descending order of sensitivity. For instance, in the Motion Sense dataset, person identifi-
cation accuracy saturates around α = 0.07 for AAP, α = 0.13 for F-AAP, and α = 0.16 for MF-AAP. In each
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case, the anonymization performance is comparable to that of AAE, and in many instances, even when α is
further increased, these methods still retain more information than AAE.

6.2 Task-Interdependencies Analysis
Based on the preceding results, interdependencies among the subtasks are examined. First, the F1 scores

obtained with Raw and AAP inputs in Table 4 are compared. Relevant rows are extracted and reorganized
in Table 5, which lists the absolute drop ΔF1 and the relative reduction RR = ΔF1/F1,Raw. In the Motion Sense
dataset, Activity suffers a substantial decrease of 62.6%, whereas Gender declines by only 8.9%. A similar
pattern appears for Activity versus Position in mHealth. Conversely, on UniMiB the degradation in coarse
activity recognition is minor (−7.3%), while fine–grained actions (Detailed Act.) deteriorate by 49.2%.

Table 5: Comparison of performance degradation on frequency-domain data (values in %). Based on Table 4. ΔF1 is
the F1 score drop from Raw to AAP; RR is the relative reduction, ΔF1/F1,Raw (%). MI denotes the mutual information
(bit) between the predicted class labels obtained on the Raw data

Activity Another MI

Raw AAP ΔF 1 RR Raw AAP ΔF 1 RR [bit]
Motion sense Activity vs. Gender 85.8 23.2 −62.6 −73.0 63.2 54.3 −8.9 −14.1 0.010

mHealth Activity vs. Position 74.9 38.4 −36.5 −48.7 89.0 77.0 −12.0 −13.5 0.044
UniMiB Activity vs. Detailed Act. 99.2 91.9 −7.3 −7.4 63.5 14.3 −49.2 −77.5 0.543

Next, the findings are interpreted through mutual information (MI). The MI column in Table 5 reports
the bit-wise MI between the predicted labels of each task on the unperturbed (Raw) data. The MI for the
Activity–Gender and Activity–Position pairs is very low (0.01–0.044 bit), indicating near-independence. In
contrast, the Activity–Detailed Act. pair exhibits a high MI of 0.543 bit, revealing strong information overlap.
These quantitative results align with intuition: coarse activity labels share little information with gender or
sensor placement, whereas fine-grained action classes inherently overlap with the broader activity categories.

6.3 Computational Efficiency
First, we examine the architectural differences among the anonymization methods.

• AAE consists of an encoder-decoder pair, two identity-recognition subnetworks (one attached to the
encoder, one to the decoder), and one activity recognition subnetwork.

• The plain AAP variant contains only one identity-recognition network.
• F-AAP employs two identity-recognition networks, one for the time-domain input and one for the

frequency-domain input.
• MF-AAP holds twice as many subnetworks as the number of downstream tasks.

Next, we consider the computational steps required at inference time (i.e., during anonymization).

• For AAE, a single forward pass through the encoder and then the decoder is sufficient.
• AAP must execute a forward pass and a backward pass through its identity model for every iteration of

the perturbation update.
• F-AAP adds forward-backward passes in both the time and frequency domains plus the cost of STFT

and inverse STFT.
• In MF-AAP, the number of model inferences scales with the number of tasks.
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These observations are summarized in Table 6. Assuming that a backward pass costs roughly twice
as many FLOPs as a forward pass, the theoretical requirements become AAE: 81.5 MFLOPs, AAP: 99.5 t
MFLOPs, where t denotes the number of iterations. The Latency [s] row in Table 6 reports the actual
anonymization time measured on the mHealth test set. All experiments were run on a machine equipped
with an Intel Core i9–13900KF, 32 GB RAM, and an NVIDIA RTX 4090 GPU.

Table 6: Comparison of computational costs for each anonymization method

Metric AAE AAP F-AAP MF-AAP
# iterations 1 t = 15 t = 15 t = 15
MFLOPs 81.5 99.5 t – –

Latency [s] 0.09 0.38 15.97 16.78

From the table we observe that, although AAP takes about four times longer than AAE, the gap is
far smaller than the FLOP counts alone would suggest. Conversely, the running time of F-AAP and MF-
AAP is dominated by the additional STFT/ISTFT transforms, leading to a substantial increase in total
computation time.

6.4 Limitations
6.4.1 Scenario in Which the Anonymization Method and Raw Data Are Leaked

In the previous section, the privacy risk under scenario (b), in which a personal identification model and
scenario (a) application-server login credentials were compromised, was evaluated, and it was demonstrated
that the proposed anonymization approach could adequately preserve useful information while protecting
privacy (Section 3.2). This section further examines scenario (c), in which raw sensor data and personal IDs
are also leaked. When only scenario (c) is compromised, the attacker can implement a personal identification
model trained on raw data, resulting in a risk level similar to scenario (b). However, if the anonymization
method is independently leaked from another source, the attacker may be able to reconstruct the anonymized
sensor data.

To quantify this risk, performance in a setting where the attacker has access to a portion of labeled
anonymized sensor data is compared. Table 7 presents the results, indicating that if a model trained on
anonymized data is also exposed, none of the proposed methods can effectively maintain anonymization.
Moreover, person identification becomes even easier than with the raw data alone, primarily because the
proposed anonymization leverages adversarial training [52]. While AAE also allows for some degree of
person identification under these circumstances, it does so to a lesser extent than the methods. Therefore,
these findings suggest that developing anonymization techniques robust against leaks of anonymized
waveforms remains an important open challenge.
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Table 7: Comparison of anonymization performance on time-domain sensor data when the anonymized dataset were
leaked

Model architecture VGG10 ResNet10

Train & test data AAE AAP MF-AAP AAE AAP MF-AAP

Target Dataset Class
Motion sense 24 48.6 81.7 84.2 47.6 81.1 82.8

Person mHealth 10 57.8 93.6 93.9 60.7 88.0 89.2
UniMiB 30 50.6 88.5 74.7 47.1 83.2 69.6

Motion sense 6 96.8 81.3 95.1 96.7 81.7 94.2
Activity mHealth 12 81.2 70.8 100.0 80.8 80.2 100.0

UniMiB 2 96.3 96.6 98.9 96.5 96.1 97.8

Gender Motion sense 2 66.0 65.7 82.3 67.3 64.2 82.9
Position mHealth 3 87.3 89.0 100.0 86.6 88.4 100.0

Detailed Act. UniMiB 17 52.0 57.4 79.7 51.1 50.4 63.4

6.4.2 Other Attacks
Since the proposed method conceals information by adding the inverse gradient of the person-

identification loss to sensor data, it is primarily tailored to obscuring features associated with a known
label (e.g., person identity). Consequently, it may be vulnerable to side-channel attacks that can infer
sensitive information without explicitly identifying the individual. For example, in keystroke inference [56],
an attacker might extract touchscreen inputs from motion-sensor data. The proposed approach would
require explicit label information for these keystrokes (i.e., keys pressed) to compute the inverse gradient
for anonymization, which becomes prohibitively expensive to implement in practice. Moreover, if a method
infers user location from motion-sensor data without using GPS information [57], effective label assignment
could be infeasible. In such cases, the proposed approach cannot be applied, underscoring a broader
limitation when label annotation is either incomplete or difficult to obtain.

7 Conclusion
This study presented a novel sensor-data anonymization framework leveraging AP for privacy protec-

tion in wearable sensing applications. Unlike autoencoder-based methods such as the AAE, the proposed
approach adds minimal, targeted noise to raw waveforms, thereby suppressing person-identification
accuracy while retaining greater task-relevant information. Frequency-informed (F-AAP) and multi-task
(MF-AAP) extensions are further introduced to address threats from frequency-domain analysis and to
selectively preserve specific classification tasks (e.g., activity recognition and gender estimation). Extensive
evaluations on three public datasets demonstrated that the proposed methods can degrade identification
performance to near-chance levels even against unseen model architectures, while substantially preserving
or enhancing performance on other tasks. Moreover, experimental results indicate that critical waveform
characteristics remain relatively intact, facilitating the reuse of established downstream models trained on
raw data. These findings suggest that AP-based anonymization offers a compelling and flexible alternative
to conventional approaches, meeting the increasing need for effective privacy protection without sacrificing
diverse analytical utility.
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