
echT PressScience

Doi:10.32604/cmc.2025.066267

ARTICLE

An SAC-AMBER Algorithm for Flexible Job Shop Scheduling with Material Kit

Bo Li, Xiaoying Yang*, Zhijie Pei, Xin Yang and Yaqi Wu

School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang, 471003, China
*Corresponding Author: Xiaoying Yang. Email: lyyxy111@163.com
Received: 03 April 2025; Accepted: 20 May 2025; Published: 03 July 2025

ABSTRACT: It is well known that the kit completeness of parts processed in the previous stage is crucial for the
subsequent manufacturing stage. This paper studies the flexible job shop scheduling problem (FJSP) with the objective
of material kitting, where a material kit is a collection of components that ensures that a batch of components can be
ready at the same time during the product assembly process. In this study, we consider completion time variance and
maximum completion time as scheduling objectives, continue the weighted summation process for multiple objectives,
and design adaptive weighted summation parameters to optimize productivity and reduce the difference in completion
time between components in the same kit. The Soft Actor Critic (SAC) algorithm is designed to be combined with
the Adaptive Multi-Buffer Experience Replay (AMBER) mechanism to propose the SAC-AMBER algorithm. The
AMBER mechanism optimizes the experience sampling and policy updating process and enhances learning efficiency
by categorically storing the experience into the standard buffer, the high equipment utilization buffer, and the high
productivity buffer. Experimental results show that the SAC-AMBER algorithm can effectively reduce the maximum
completion time on multiple datasets, reduce the difference in component completion time in the same kit, and
thus optimize the readiness of the part kits, demonstrating relatively good stability and convergence. Compared with
traditional heuristics, meta-heuristics, and other deep reinforcement learning methods, the SAC-AMBER algorithm
performs better in terms of solution quality and computational efficiency, and through extensive testing on multiple
datasets, the algorithm has been confirmed to have good generalization ability, providing an effective solution to the
FJSP problem.

KEYWORDS: Soft actor-critic; DRL; adaptive multi-buffer experience replay; FJSP; material kit

1 Introduction
With the continuous development of the manufacturing, production, and energy industries, scheduling

problems have received increasing attention in recent years [1,2]. It is primarily divided into the Job Shop
Scheduling Problem (JSP) and the Flow Shop Scheduling Problem (FSP) [3]. JSP, a classic manufacturing
scheduling problem, aims to allocate tasks for multiple workpieces under resource constraints to optimize
efficiency [4]. Compared with the job-shop scheduling problem, the Flexible Job-shop Scheduling Problem
(FJSP) relaxes the restrictions on machines so that each operation can be processed on multiple compatible
machines for each job, which makes FJSP more flexible and sophisticated [5]. Traditional FJSP optimization
typically focuses on minimizing makespan [6], for example, in the production of bearings, which are mainly
composed of inner rings, outer rings, rollers, and cages, if one of the parts is missing, the assembly cannot be
carried out, which will prolong the assembly time, and there will be a risk of not being able to deliver on time.
Another example is in the aircraft processing parts process, the lack of any one part will lead to belonging
to the same kit or assembly of all parts processing lag, and the subsequent welding assembly can not be

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.066267
https://www.techscience.com/doi/10.32604/cmc.2025.066267
mailto:lyyxy111@163.com

3650 Comput Mater Contin. 2025;84(2)

carried out [7]. Thus, it is clear that the production of parts in complete sets is critical to assembly-based
manufacturing. FJSP with material kit constraints needs to consider the parts in the optimization process, so
that all the relevant parts can be completed as synchronously as possible to meet the assembly requirements,
compared with the traditional FJSP only focuses on processing efficiency, its scheduling is more complex
and close to the actual production. Therefore, it is a challenge to optimize production efficiency by making
the part-alignment requirement one of the constraints of FJSP.

Most of the current researches use heuristic algorithms, meta-heuristic algorithms, and deep reinforce-
ment learning methods to solve FJSP problems with constraints such as fuzzy processing time, new job
insertion, and machine unavailability.

Many researchers have proposed using heuristic algorithms to solve the FJSP. Ding et al. [8] employed
a Fluid Randomized Adaptive Search Algorithm (FRASA) to address the FJSP with fluid dynamic charac-
teristics. Lim and Moon [9] introduced a two-stage iterative mathematical programming-based heuristic
approach, utilizing a decomposition scheme that prioritizes operation allocation to minimize the makespan.
Boudjemline et al. [10] investigated a multi-objective FJSP aiming to simultaneously minimize the makespan,
maximum machine load, and total workload and proposed a genetic algorithm applicable across various
fields using spreadsheets. Typically, due to the complexity and flexibility of flexible job shops, heuristic
algorithms do not perform well in solving FJSP.

However, in some studies, metaheuristic algorithms have demonstrated superior capabilities in solving
flexible job scheduling problems. Fan et al. [11] proposed a hybrid Jaya algorithm integrated with Tabu
search, which employs an incremental parameter setting strategy and period estimation to accelerate the
spatial search process while ensuring a sufficiently large search space. Liao et al. [12] utilized the ABC
II metaheuristic algorithm to solve FJSP with additional resource constraints. Hu et al. [13] addressed
the flexible assembly job shop scheduling problem considering energy consumption and environmental
pollution using a multi-objective artificial bee colony algorithm. Han and Gong [14] proposed an FJSP model
that considers the worker learning forgetting effect and worker collaboration, and solved this bi-objective
scheduling problem using a hybrid algorithm based on the nondominated hierarchy; Wang et al. [15]
constructed a comprehensive scheduling model that contains four objectives, and proposed an improved
decomposed multi-objective evolutionary algorithm to solve the problem; Feng et al. [16] proposed a multi-
objective FJSP model containing machine failures, emergency order insertion, and designed an improved
NSGA-III algorithm for dynamic scheduling. Although traditional multi-objective evolutionary algorithms
can obtain excellent Pareto solution sets, they usually require a large number of computations and are difficult
to be adjusted in real time during the production process. For multi-objective trade-offs, some methods use
fixed weight combinations or hierarchical indexes, which are often difficult to flexibly adjust the relationship
between objectives in practical applications.

Grumbach et al. [17] proposed combining Deep Reinforcement Learning (DRL) and metaheuristic
algorithms to solve the Dual-Resource Constrained Flexible Job Shop Scheduling Problem (DRC-FJSSP)
with practical orientation. Song et al. [18] addressed the stochastic economic lot scheduling problem by
proposing a DRL approach that learns dynamic scheduling policies for SELSP in an end-to-end manner. Lei
et al. [19] proposed an end-to-end hierarchical reinforcement learning framework for the large-scale dynamic
flexible job shop scheduling problem. In this framework, high-level intelligences classify the DFJSP as a static
FJSP subproblem, and two low-level intelligences are responsible for job operation sequencing and machine
assignment tasks, respectively; Wu et al. [20] proposed a two-tier DDQN framework for dynamic FJSP for
real-time selection of scheduling rules and simultaneous optimization of the sum of job delays and the
maximal completion time; Xu et al. [21] designed a dynamic environment containing multiple perturbation
events and used a two-tier integrated DQN to optimize maximum completion time, average equipment

Comput Mater Contin. 2025;84(2) 3651

utilization, and average job drag time, respectively. However, when solving multi-objective problems, the
DRL methods studied above often set multiple reward functions to balance each metric, or design multi-layer
intelligences to train on multi-objectives, which will increase the complexity of constructing DRL reward
functions, state spaces, and intelligences.

The research on FJSP with material kit is less studied at present. Xu et al. [22] constructed a corre-
sponding mathematical model for the processing-assembly cooperative scheduling problem in a composite
parallel production line environment by considering the matching constraints; Qiu et al. [23] faced the on-
line scheduling problem of a two-phase flexible assembly flow shop by considering the complex constraints
of multi-product deliveries and matching assemblies; Huang et al. [24] proposed a new hybrid distribution
model for the material distribution scheduling of assembly lines. However, most of these researches adopt a
two-stage hierarchical construction of mathematical models in order to ensure the synergy of part assembly,
which may lead to the inconsistency of the objectives of the two phases, which will complicate the trade-
off mechanism and increase the complexity of the model, and the need to solve the sub-objectives of each
phase before solving the overall objective will increase the computational process, which may lead to the
deterioration of the quality of the solution.

From the above literature, current FJSP research focuses on dynamic constraints such as fuzzy process-
ing time, new job insertion and machine unavailability, but workpiece flush production often has a large
impact on the start time of the next stage of production, so it is necessary to consider workpiece production
flush in the production process, even though a small number of studies have mentioned the conditions of
flush production in the process of considering the assembly production, but these studies mainly constructed
two-stage mathematical models for the assembly stage, which will increase the complexity of the model;
meanwhile, in the study of multi-objective FJSP process, many researchers have faced problems such as the
need for a large number of computations and multi-objective trade-offs, although they have used multi-
objective heuristic and meta-heuristic algorithms to improve the scheduling performance at the same time.
And while DRL methods have the advantage of being able to respond quickly to the objectives when solving
multi-objective problems, they tend to set more reward functions and intelligences that increase the difficulty
of constructing Markov decisions.

To summarize, few scholars have studied the FJSP problem for workpiece flush production, and most
of the studies on solving multi-objective problems using DRL with the construction of multi-stage, multi-
intelligent body, and multi-reward function, but it will increase the computational process. Therefore, this
study integrates part flushness into the scheduling model, considers the multi-objectives of minimizing the
maximum part completion time and minimizing the variance of the part completion time, and combines
the two optimization objectives into a composite metric by using weighted summation. In terms of objective
trade-offs, the weighted summation method fuses the two objectives into a single reward function so
that the DRL intelligences can automatically learn to balance the objective weights during the training
process instead of fixing the weights beforehand or simply seeking the Pareto frontiers, and the trained
DRL strategies can quickly respond online without re-running time-consuming multi-objective optimization
algorithms; meanwhile, this study proposes a SAC-based improvement method an Adaptive Multi-Buffer
Experience Replay(AMBER) algorithm, which designs three experience buffers for the FJSP problem, and
can alleviate the reward sparsity of SAC algorithm while being able to provide more effective strategies for the
intelligentsia. Finally, the feasibility of the proposed method and model is verified by setting up experiments
on Hurink, Brandimarte and Dauzere benchmarks. The main contributions of this paper are as follows:

(1) A flexible job shop scheduling model is designed to incorporate kit production requirements
among jobs.

3652 Comput Mater Contin. 2025;84(2)

(2) The AMBER experience replay buffer algorithm is proposed, which classifies and manages experiences
of varying importance in the Soft Actor-Critic (SAC) framework by designing three distinct buffers:
a standard buffer, a high equipment utilization buffer, and a high productivity buffer. This approach
addresses the issues of low experience utilization and learning efficiency during training.

(3) In this study, the improved algorithm is initially trained on the Hurink dataset and fine-tuned on
the Brandimarte dataset, demonstrating its effectiveness across different datasets. Additionally, the
feasibility of the model under kit production constraints is further validated by randomly sampling
data from the Hurink and Dauzere datasets.

The paper is organized as follows: Section 2 describes a Kit Production-Oriented Flexible Job Shop
Scheduling Model. Section 3 demonstrates a SAC-AMBER algorithm for FJSP. Section 4 shows the experi-
ment and analysis. Section 5 concludes the paper.

2 Kit Production-Oriented Flexible Job Shop Scheduling Model

2.1 Problem Description
In the Flexible Job Shop Scheduling Problem (FJSP), the production process involves N jobs{J1, J2, ⋅ ⋅ ⋅,

JN}, each consisting of P operations{O1, O2, ⋅ ⋅ ⋅, OP}. Each operation can be processed on any one of multiple
available machines{M1, M2, ⋅ ⋅ ⋅, MA} [25]. In FJSP, all jobs are multi-operation and multi-job: the shop
floor contains multiple jobs, and each job comprises multiple operations [26]. The machines are selective,
meaning each operation can be processed on multiple machines, and different machines may have varying
processing times. Therefore, we must consider not only the sequence of operations but also the selection of
appropriate machines for each operation [27]. At any given time, as long as the primary resources permit,
different operations can be processed on different machines simultaneously.

For the FJSP, some basic assumptions should be satisfied:

(1) All jobs are available for processing at time zero.
(2) A machine can process only one job at a time.
(3) Once the processing of an operation for a job starts, it cannot be interrupted.
(4) There are no precedence constraints between different jobs.
(5) All jobs have the same priority.
(6) For the same job, the next operation cannot start until the previous operation is completed.

2.2 Kit Production-Oriented Flexible Job Shop Scheduling Model
As shown in Table 1, the variable list provides the definitions of each variable used in the formulas.

Table 1: Meaning of the notation

Notation Meaning
G Number of kit groups
Gg Set of workpieces in kit group g
Jp The p-th workpiece to be processed

Opk The k-th operation of the workpiece Jp
M Set of all machines
Ml The l-th machine

Mpk Set of available machines for Opk
tpkl Processing time of Opk on-machine

(Continued)

Comput Mater Contin. 2025;84(2) 3653

Table 1 (continued)

Notation Meaning
Mpkl Machine h selected for operation Opk
xpkl Binary variable indicating if Opk is processed on

Ml,
ypkab = 1 Opk is a predecessor of Oab in Ml

ypkab = −1 Opk is a successor of Oab in Ml
Spk Start time of Opk
Epk End time of Opk
Cp Completion time of the last operation of the

workpiece Jp
Cmax Maximum completion time of all workpieces
AVGg Average completion time of kit group G

In the actual production process, a finished product is usually assembled from multiple parts. Therefore,
in order to ensure the readiness of sets of parts in the assembly process, it is necessary to consider the balance
of multiple product completion times in the production scheduling process. To address this issue, this study
introduces a dual optimization objective that aims to more fully reflect the complexity and diversity of the
actual production environment. The objective of minimizing the maximum completion time alone may lead
to serious deviations in the completion time of certain operations, which in turn delays the subsequent
assembly. Although making the material kit as a constraint can alleviate this problem, it is difficult to
strictly satisfy this constraint in complex manufacturing environments, and it will limit the flexibility of the
scheduling strategy and reduce the diversity of the solution space and the availability of optimal solutions.
Therefore, in this study, the optimization objectives are set to minimize the production cycle time and reduce
the completion time variance of different kits of products as shown in Eqs. (1) and (2). The multi-objective
optimization approach helps to achieve the trade-off between different scheduling objectives and better cope
with the uncertainty in the actual production.

F1 = Cmax (1)
F2 = Var(Gg) (2)

AVGg =
1
∣Gg ∣

∑
p∈Gg

Cp (3)

Var(Gg) =
1
∣Gg ∣

∑
p∈Gg

(Cp − AVGg)2 (4)

The constraints are expressed as follows:
s.t.

tpk l > 0, Spk ≥ 0, ∀p, k, l (5)
Cp < Cmax,∀p (6)
Ml ∈ M ,∀l (7)
∑

h∈M pk

xpkh = 1, ∀p, k (8)

3654 Comput Mater Contin. 2025;84(2)

Epk − Spk ≥ tpk l , ∀p, k, h (9)
(Epk − tpkh − Epk−1)xpkh ≥ 0, ∀p, k, h (10)
(Eab − tabh − Epk)xpkh xabh(ypkab + 1) + (Epk − tpkh − Eab) xpkh xabh (1 − ypkab) ≥ 0, ∀p, k, a, b, h (11)

Eq. (5) indicates that the processing time of all operations is greater than 0, and processing can start at
time zero on the machines; Eq. (6) ensures that the completion time of the last operation of each job does not
exceed the makespan; Eq. (7) states that all machines are included in the machine set. Eq. (8) specifies that
each operation of each job can be assigned to only one machine for processing; Eq. (9) defines the completion
time of an operation minus its start time as greater than or equal to its processing time; Eq. (10) requires that
operations assigned to the same machine must follow a sequential order; Eq. (11) ensures that each machine
can process only one operation at any given time.

3 Deep Reinforcement Learning with SAC-AMBER for Flexible Job Shop Scheduling

3.1 Deep Reinforcement Learning with SAC
Reinforcement learning (RL) enables an agent to learn and achieve goals by interacting with the

environment [28]. The agent selects actions based on the current state and adjusts its strategy through
environmental rewards, aiming to maximize cumulative rewards. RL problems are typically modeled using
Markov Decision Processes (MDPs), defined by the tuple <S, A, P, r, γ>, where S is the state set, A is the
action set, P is the transition function, r is the reward function, and γ is the discount factor [29].

In deep RL, Soft Actor-Critic (SAC) is an off-policy algorithm combining maximum entropy learning
with the Actor-Critic framework. SAC optimizes an entropy-regularized objective, maintaining policy ran-
domness to enhance robustness and generalization. SAC has been successfully applied in various domains:
Some researchers used SAC to maximize energy management systems; Some researchers designed a discrete
decision-making strategy based on Discrete Soft Actor-Critic with Sample Filtering (DSAC-SF) for highway
driving efficiency and safety; Some researchers proposed a multi-agent actor-critic approach with a heuristic
attention mechanism for multi-agent pathfinding; and Some researchers applied SAC to intelligent passively
mode-locked fiber laser (PMLFL) systems. However, its application to flexible job shop scheduling problems
(FJSP) remains unexplored. This study extends SAC to discrete action spaces and proposes a novel experience
replay method tailored for FJSP. Optimizing the sampling mechanism enhances SAC’s exploration capability
in complex scheduling environments, offering a new solution for FJSP.

3.2 Design of an Adaptive Multi-Buffer Experience Replay Mechanism (AMBER)
For off-policy reinforcement learning, the experience replay buffer stores past interactions between the

agent and the environment, enabling the agent to learn from historical data rather than relying solely on
new data generated by the current policy [30]. However, traditional experience replay typically employs a
single replay buffer, where experiences are stored sequentially without distinguishing their importance. This
often results in the overwriting of critical experiences [31]. To address these limitations, we propose the
use of AMBER (Adaptive Multi-Buffer Experience Replay) as a replacement for the traditional experience
replay buffer.

The AMBER (Adaptive Multi-Buffer Experience Replay) algorithm improves off-policy reinforcement
learning by introducing three buffers: the Standard Experience Buffer (SEB), the High Utilization Experience
Buffer (HUEB), and the High Productivity Experience Buffer (HPEB). SEB stores all experiences for diversity,
while HUEB and HPEB store critical experiences where equipment utilization exceeds threshold ε and
productivity exceeds threshold η, respectively. At the end of each episode, AMBER classifies experiences

Comput Mater Contin. 2025;84(2) 3655

into the corresponding buffers based on utilization and productivity, with all experiences stored in SEB.
During training, AMBER samples from SEB, HUEB, and HPEB using dynamically adjusted ratios λ and β,
prioritizing HUEB and HPEB to accelerate convergence and enhance learning efficiency.

The parameters ε and η can be dynamically adjusted based on information entropy thresholds.
The empirical distribution entropy of equipment utilization and productivity is initially computed, as

expressed in Eqs. (12) and (13).

H(U) = −∑ p(u) log p(u) (12)
H(P) = −∑ p(p) log p(p) (13)

here, U denotes the set of equipment utilization rates, p(u) represents the probability distribution of
utilization u, and H(U) is the entropy of equipment utilization. Similarly, P denotes the set of productivity
values, p(p) is the probability distribution of productivity p, and H(P) is the corresponding entropy.

ε, η update formula, as shown in Eqs. (14) and (15):

εt+1 = εt + b ⋅H (U) (14)
ηt+1 = ηt + b ⋅H (U) (15)

here, εt and ηt represent the current thresholds for equipment utilization and productivity, respectively, while
εt+1 and ηt+1 denote the updated thresholds for equipment utilization and productivity. The term b is a tuning
coefficient that controls the influence of entropy on threshold adaptation, typically constrained within the
range (0, 1).

As shown in Eqs. (16) and (17), the ratios λ and β are adaptively adjusted based on rewards, but it is
necessary to ensure that λ and β do not exceed 1. Here, ΔR represents the change in rewards between the
current episode and the previous episode, and k is a parameter that controls the adjustment speed.

λnew = λol d × (1 + k ⋅ ΔR
∣R∣) (16)

βnew = βol d × (1 + k ⋅ ΔR
∣R∣) (17)

3.3 Design of the SAC-AMBER Algorithm for the Flexible Job Shop Scheduling Problem (FJSP)
In this study, the SAC-AMBER algorithm is designed for the Flexible Job Shop Scheduling Problem

(FJSP). As shown in Fig. 1, the SAC agent interacts with the environment, receiving experiences {St, Rt, at,
St+1}, which are passed to the AMBER buffer. AMBER selects experiences based on predefined ratios and
forwards them to the SAC agent network.

3656 Comput Mater Contin. 2025;84(2)

Figure 1: Flowchart of the SAC-AMBER algorithm

The pseudo-code for the SAC-AMBER algorithm is designed as follows (Algorithm 1):

Algorithm 1: SAC-AMBER training algorithm
1: Input: s, a, r, d
2: Output: Trained policy network πθ and Q-value networks Qϕ1, Qϕ2.
3: Initialize policy network parameters θ and Q-network parameters ϕ1, ϕ2.
4: Initialize replay buffers B, BXX , BYY .
5: Initialize Discount factor γ, temperature parameter α, target update rate τ
6: for each iteration do
7: for each environment step do
8: Sample action from policy: a ~ πθ (s).
9: Execute action a, observe next state s ′, reward r, and done flag d.
10: Store experience (s, a, r, s′, d) in replay buffer B.
11: if d = True then
12: Calculate utilization utilization and productivity productivity.
13: if utilization > ε then
14: Store episode experience in BXX :
15: end if
16: if productivity > η then
17: Store episode experience in BY Y .
18: end if
19: end if
20: end for
21: for each gradient step do
22: Sample batch BXX from B.
23: Sample batch BYY from B.
24: Combine batches: Bcombine ← B ∪ BXX ∪ BYY .

(Continued)

Comput Mater Contin. 2025;84(2) 3657

Algorithm 1 (continued)
25: Compute target value
26: Update Q-network parameters ϕ1, ϕ2:
27: Update policy network parameter θ:
28: Adjust temperature parameter α ← α − ηα∇α (πθ (a∣s) − Htarget)
29: Update target network parameters: ϕitarget ← τϕi + (1 − τ)
30: end for
31: end for

In deep reinforcement learning, the state space, action space, reward function, and environment are
critical components. The environment primarily involves the modeling of the FJSP problem, including
information on the states of jobs and processing units. The following sections focus on the design of the
SAC-AMBER algorithm for FJSP, specifically addressing the state space, action space, and reward function.

1. Design of the State Space
The state is crucial in deep reinforcement learning, as it forms the foundation for the agent’s decision-
making and directly influences learning efficiency and generalization capabilities. In the Flexible Job
Shop Scheduling Problem (FJSP), the state space is designed at three levels S = [Sa, Sb, Sc]:

Here, Sa = [Sa,1, Sa,2, Sa,3, Sa,4] represents the state related to job features. Sa,1 denotes the machine
numbers assigned to all job operations up to the current training step t. Machine numbers are indexed
starting from 1, and if an operation is displayed as 0, it indicates that the operation has not yet been assigned
a machine for processing. Sa,2 represents the processing times of all job operations up to the current training
step t. If no machine has been selected for processing, the value is displayed as 0. Sa,3 indicates the start
times of job operations. If a negative value is displayed (since the start time of the first operation could be 0,
requiring differentiation), it means the operation has not yet started processing on a machine. Sa,4 represents
the completion times of job operations. If a value is displayed as 0, it indicates that the operation has not yet
started processing.

Sb = [Sb,1, Sb,2, Sb,3, Sb,4] represents the state related to machine features. Sb,1 indicates the status of
each machine, where a value of 1 denotes that the machine has started processing, and 0 otherwise. Sb,2
represents the job operations assigned to each machine. Sb,3 denotes the total processing time each machine
has completed so far. Sb,4 represents the utilization rate of each machine up to the current time step t, as
shown in Eq. (18), where Tact is the actual processing time of each machine, and Tavl is the available time of
each machine up to the current time step t.

MUr =
Tac t

Tav l
(18)

Sc = [Sc,1, Sc,2, Sc,3] represents the global state. Sc,1 indicates the number of remaining operations for each
job at the current time step t. If the value is 0, it means the job has been fully processed. Sc,2 represents the
total utilization rate of all machines at the current time step t, as shown in Eq. (19). Sc,3 represents the total
delay time of all operations on the machines at the current time step, as shown in Eq. (20).

Mtotal Ur =

m
∑
l=1
(Tac t ×MUr)

∑Tav l
(19)

Ttotal l a =
m
∑
l=1
(Tav l − Tac t) (20)

3658 Comput Mater Contin. 2025;84(2)

2. Design of the Action Space

In the flexible job shop scheduling problem, the design of the action space is crucial as it directly
impacts the decision-making flexibility and scheduling efficiency of the agent. This paper adopts a
two-step action design at each time step t, as illustrated in Fig. 2. First, the processing machine is
selected for the current operation of each workpiece, determining the machine number and processing
time. Then, the workpiece to be processed is selected, and the workpiece number, operation count,
and machines to be allocated are identified. Through this design, the agent can effectively balance
exploration and exploitation in complex environments, optimizing scheduling objectives and adapting
to dynamic changes.

Figure 2: Flowchart of the action space

In the job selection action space, we have chosen four common rules for selecting jobs:
(1) MTT: Select the job minimizing total processing time.
(2) SPT: Select the job with the shortest current processing time.
(3) SSCO: Select the job with the smallest sum of current and next operation processing times.
(4) SNOPT: Select the job with the shortest processing time for the next operation.

In the machine selection action space, we use four rules:
(1) SPTCO: Select the machine with the shortest processing time for the current operation.
(2) LUR: Select the machine with the lowest utilization rate.
(3) STPTSP: Select the machine with the shortest total processing time so far.
(4) ECTCO: Select the machine that can complete the current operation as soon as possible.

Instead of directly outputting the corresponding workpiece operations and machine codes, the intel-
ligences in this study output heuristic scheduling rules, which are used to decode the corresponding
workpieces and machines based on the current state information, and the combination of the workpiece
selection rules and machine selections designed above are combined into a hybrid rule as the action space
of the intelligent body, as shown in Fig. 3 (Lines of one color in the figure connect a rule).

Action Space

Job
selection Rules

Machine
selection Rules

MTT SPT SSCO SNOPT

SPTCO LUR STPTSP ECTCO

Rule3 Rule4 Rule5 Rule6 Rule7 Rule8 Rule9 Rule10 Rule11 Rule12 Rule13 Rule14Rule2Rule1 Rule15 Rule16

Figure 3: Rules of the action space

Comput Mater Contin. 2025;84(2) 3659

3. Design of the Rewards
Since our model aims to minimize the makespan (maximum completion time) and ensure kit produc-
tion, the reward function is designed as a weighted sum of the makespan and kit production variance.
In this study, the makespan and the variance of completion times are normalized separately. Since
the normalized values are unbounded, the Tanh function is applied to constrain the normalized data.
Finally, the weights are automatically determined, and the objectives are combined into a composite
goal. First, the two objective values are normalized as follows:

For each objective f i, where f 1 represents the makespan (maximum completion time), and f 2 represents
the variance of job completion times, the makespan and the variance of completion times are normalized
separately at the t times observation as shown in Eq. (21).

fi
(t) = fi

(t) − μi
(t)

σi(t) + ω
(21)

here, μi
(t) is the online mean of objective f i at time step t, and σi

(t) is the online standard deviation of objective
f i at time step t. ω is a small positive constant used to prevent division by zero.

The exponentially weighted moving average is used to update the mean and standard deviation, where
χ ∈ (0, 1) is the smoothing parameter that controls the influence of new data on the statistics, as shown
in Eqs. (22) and (23).

μi
(t) = (1 − χ) μi

(t−1) + χ fi
(t) (22)

σi
(t)2 = (1 − χ) σi

(t−1)2 + χ (fi
(t) − μ(t)

i)
2

(23)

To prevent the normalized values from becoming excessively large, the Tanh function is applied to
constrain the normalized values, ensuring that the processed values fall within the range [−1, 1], as shown
in Eq. (24).

fi
(t) = tanh(γ ⋅ fi

(t)) (24)

Therefore, the reward function is defined as shown in Eq. (25).

r(t) = ψ ⋅ f1
(t) + κ ⋅ f2

(t) (25)

In this objective function, f 1
(t) represents the makespan (maximum completion time), and f 2

(t) rep-
resents the variance of the completion times of critical kit products. The weights ψ and κ balance the
trade-off between scheduling time and variance. To enhance the adaptability of the model, these weights are
dynamically adjusted based on gradients during training. During network updates, not only are the network
parameters updated, but the objective weights are also optimized.

4 Experiment and Analysis

4.1 Experimental Setup
This study utilizes three test sets of varying scales—Hurink [32], Dauzere [33], and Brandimarte

[34]—to validate the feasibility and generalizability of the algorithm. Initially, the algorithm is trained on the
Hurink dataset to evaluate its performance across different task scales. Subsequently, training is continued
on the Brandimarte dataset to assess its robustness in large-scale and complex scenarios, ensuring stable
training effectiveness. Furthermore, to verify the feasibility of the model’s design for completeness, data from

3660 Comput Mater Contin. 2025;84(2)

the Hurink and Dauzere datasets are extracted and combined for training, further testing the algorithm’s
applicability in completeness scenarios. Through comprehensive experiments across multiple datasets, the
adaptability and performance of the algorithm are thoroughly validated.

A comparative experiment, as shown in Fig. 4, was designed to investigate the impact of key hyper-
parameters in the SAC-AMBER algorithm, such as the learning rate, soft update parameter, discount
factor, entropy, Experience pool utilization threshold and Experience pool productivity threshold, all other
parameters are automatically adjustable according to the training process. Each group of experiments was
trained for 500 rounds and the average reward values obtained for different values of the parameters were
compared separately. The figure shows that when the learning rate is 0.02, soft update parameter is 0.1,
discount factor is 0.003, entropy is 0.003, Experience pool utilization threshold is 0.4 and Experience pool
productivity threshold is 0.4, the reward values obtained are relatively stable.

Figure 4: Comparison of parameters

The hyperparameter settings for the SAC-AMBER algorithm are shown in Table 2:

Table 2: Parameter settings

Parameters Values
Discounted factor 0.003

softupdate 0.1
Actor learning rate 0.02
Critic learning rate 0.02

Batch size of training 500
Entropy weight 0.003

Max completion time weight 0.4
Completion time variance weight 0.6

(Continued)

Comput Mater Contin. 2025;84(2) 3661

Table 2 (continued)

Parameters Values
Experience pool utilization threshold 0.4

Experience pool productivity threshold 0.4
AMBER adaptive parameter α 3.1
AMBER adaptive parameter β 2.5

To validate the proposed method, SAC-AMBER is compared with heuristic rules (Rule 1: SPT + STM,
Rule 2: EEW + LTM) and DRL algorithms. SPT denotes the shortest processing time, EEW is the earliest end
of processing, STM is the machine with the shortest total runtime, and LTM is the machine with the longest
total runtime. The Gap is calculated using a formula as shown in Eq. (26), where, Cmax denotes the maximum
completion time obtained by the algorithm, and Opt is the optimal solution or approximate optimal solution
obtained by the exact method.

Gap = Cmax − O pt
O pt

× 100% (26)

The program in this study was executed on a computer with a Windows 10 64-bit operating system.
The programming environment was based on Python 3.8, utilizing PyTorch 2.1, and the experiments were
conducted on an Intel(R) Core(TM) i5-10400 CPU @ 2.90 GHz.

4.2 Experimental Analysis
4.2.1 Validation of Action Space Rule Effectiveness

In order to verify the validity of the proposed rules in the action space, this study takes MK01 as an
example, and only one rule and 16 rules can be randomly selected during the training process are compared,
and the maximum completion time is recorded. As shown in Fig. 5 box plot, the random rule in the figure
indicates that all rules can be randomly selected in the training process, and Cmax indicates the maximum
completion time obtained in the training process.

Figure 5: Box plots of the distribution of completion times for different rules

3662 Comput Mater Contin. 2025;84(2)

From the figure it can be seen that all the rules have an effect on the training process, but a single
rule does not allow the intelligence to train to find the optimal solution, when all the rules can be chosen
randomly, the maximum value of the maximum completion time obtained is smaller, and the maximum
completion time values obtained are more concentrated, the median of all the results is smaller, which helps
the intelligence to be trained better. Also this study recorded the frequency of each rule being selected
under 100, 300, 500 and 700 rounds of training respectively as shown in Fig. 6, where percent indicates the
percentage of each rule being selected during the training process.

Figure 6: Different rules for selecting frequency

From the figure, it can be seen that when the number of training times is 100, rule 9 is selected for
the most tests, indicating that rule 9 is suitable to be more suitable for the intelligent body to complete the
scheduling process in the early stage, and with the increase of the number of training times, the frequency
of rule 11 being selected gradually increases until after the number of training times is 500, the intelligent
body mainly selects rule 11, indicating that rule 11 is more suitable for the intelligent body to complete the
scheduling process in the later stage.

4.2.2 Effectiveness of the AMBER Experience Pool
In order to verify the effectiveness of the proposed empirical pooling, this study designed experiments

to train 500 rounds during the training process using one buffer, two buffers, and three buffers, respectively,
and recorded the average reward values during the training process, as shown in Fig. 7. In the figure, one
buffer indicates that only the standard buffer is used, two buffers indicate that the standard buffer and the
high equipment utilization buffer are used, and three buffers indicate that the standard, high equipment
utilization, and high productivity buffers are used.

Comput Mater Contin. 2025;84(2) 3663

Figure 7: Comparison of different replay buffers

From the figure, it can be seen that when using one buffer, the reward value fluctuates more during
the training process and is not smooth enough, when using two buffers, although the reward fluctuation
of the training process becomes smaller, the overall reward value also becomes smaller, and the training
effect is not good, when using three buffers can ensure that there is a smooth training process under the
state of large reward value, and it has a greater improvement in the training of the intelligent body. A
higher reward value demonstrates that this method achieves better training performance. The experimental
results demonstrate that the three-buffer strategy achieves more stable scheduling performance and better
objective values. In terms of overall policy convergence speed, training stability, and generalization ability,
the three-buffer configuration clearly outperforms the two-buffer strategy. Therefore, we conclude that the
three-buffer mechanism provides more effective training and is better suited for enhancing the performance
of the reinforcement learning agent.

4.2.3 Experimental Analysis on the Hurink Dataset
In this study, the la-series datasets from the edata, rdata, and vdata subsets of the Hurink dataset are

selected as the training datasets. To provide a clear and concise analysis, eight representative datasets were
chosen from a total of 120, covering a wide range of task scales, machine counts, and constraint conditions to
reflect the algorithm’s performance across different scenarios comprehensively. The SAC-AMBER algorithm
is compared with heuristic rules (Rule 1 and Rule 2) and deep reinforcement learning algorithms (Song
et al. [35]; Lei et al. [36]; Yuan et al. [32]), as shown in Table 3. In Table 3, the Cmax column indicates the
maximum completion time obtained under the algorithm or rule, The Gap column indicates the percentage
difference between the Cmax obtained by the method used and the Opt, and the Opt column indicates the
optimal solution of the instance.

3664 Comput Mater Contin. 2025;84(2)

Table 3: Test results for the Hurink dataset

Name Size Rule 1 Rule 2 Song et al. [35] Lei et al. [36] Yuan et al. [32] SAC-AMBER Opt

Cmax Gap Cmax Gap Cmax Gap Cmax Gap Cmax Gap Cmax Gap
la05 10 ∗ 5 593 17.89% 737 46.52% 530 5.37% 621 23.46% 593 17.89% 563 11.93% 503
la10 15 ∗ 5 934 7.85% 1167 34.76% 883 1.96% 1016 17.32% 886 2.31% 893 3.12% 866
la14 20 ∗ 5 1306 16.30% 1447 28.85% 1191 6.06% 1177 4.81% 1234 9.88% 1134 2.05% 1123
la16 10 ∗ 10 1087 21.86% 1351 51.46% 1059 18.72% 1046 17.26% 1051 17.83% 1049 17.60% 892
la21 15 ∗ 10 1282 26.06% 1363 34.02% 1243 22.22% 1262 24.09% 1256 23.50% 1258 23.70% 1017
la30 20 ∗ 10 1550 28.74% 1846 53.32% 1459 21.18% 1471 22.18% 1410 17.11% 1493 24.00% 1204
la35 30 ∗ 10 1970 13.48% 2547 46.72% 1967 13.31% 1996 14.98% 2080 19.82% 1932 11.29% 1736
la40 15 ∗ 15 1447 25.83% 1877 63.22% 1353 17.65% 1422 23.65% 1311 14.00% 1320 14.78% 1150

As can be seen from Table 4, all algorithms in SAC-AMBER are capable of obtaining the optimal
solutions for the current set of instances. However, there are significant differences in how these algorithms
optimize the model and make decisions during the training process. To validate the performance of the
algorithm under different data sizes, we now categorize the selected datasets based on the size of a × b.
If a × b < 100, it is classified as a small dataset; if 100 < a × b < 200, it is classified as a medium dataset; and if
a × b > 200, it is classified as a large dataset. Based on this classification, the data is divided as shown in the
table below:

Table 4: Classification results of the Hurink dataset

Small size Medium size

la11, la19

Large size

la26, la34
la01, la06 la12, la20 la27, la35
la02, la07 la13, la21 la28, la36
la03, la08 la14, la22 la29, la37
la04, la09 la15, la23 la30, la38
la05, la10 la16, la24 la31, la39

la17, la25 la32, la40
la18 la33

In this experiment, one dataset from each of the large, medium, and small datasets is selected. To
comprehensively evaluate the performance of the proposed SAC-AMBER algorithm in the FJSP, three
representative types of comparative methods are selected for the experiments: heuristic scheduling rules
(Rule 1 and Rule 2), classical meta-heuristic algorithms (Genetic Algorithm GA and Particle Swarm
Optimization Algorithm PSO), and deep reinforcement learning methods (Deep Q-Network DQN). These
methods are widely adopted in FJSP research and serve as strong references due to their representativeness
and practical relevance. Heuristic rules are commonly used in real-world production systems for their
simplicity and computational efficiency, offering fast and feasible solutions. Meta-heuristic algorithms like
GA and PSO are well-known for their global search capability and ease of implementation, making them
suitable for solving complex scheduling problems. DQN, as a popular reinforcement learning approach in
recent years, has been applied to develop adaptive scheduling strategies with promising performance.

Although the problem addressed in this paper is bi-objective in nature, to align with the training
mechanism of reinforcement learning methods, we adopt a weighted summation approach to convert
the bi-objective problem into a single-objective optimization model. This approach is commonly used in
existing reinforcement learning-based scheduling studies and contributes to training stability and model
feasibility [37]. Based on this transformation, to ensure a fair comparison of scheduling performance

Comput Mater Contin. 2025;84(2) 3665

across different types of algorithms, two classical single-objective meta-heuristic algorithms GA and PSO
are selected. These algorithms are widely used in FJSP, have strong search capabilities and engineering
practicability, and serve as important baselines for evaluating the effectiveness of new approaches.

The SAC-AMBER algorithm, along with Rule 1, Rule 2, GA, PSO, and DQN, is trained for 500 epochs on
each dataset. The scheduling times of the algorithms are then visualized using box plots, as shown in Fig. 8.
From the figure, it can be observed that, across all three dataset sizes (large, medium, and small), the SAC-
AMBER algorithm achieves a smaller distribution of makespan compared to the other algorithms. The
median makespan of SAC-AMBER is lower than that of the other algorithms, demonstrating better stability
and training performance.

Figure 8: Box plot comparison of algorithms

As shown in Fig. 9, this paper compares the performance of SAC and SAC_AMBER on three datasets:
Vdata01, Vdata26, and Vdata39. The average reward curves of the two algorithms over 500 training epochs
show significant differences: SAC_AMBER demonstrates superior convergence characteristics and stability
across all three datasets, with its final average reward value improving by approximately 15–25% compared
to SAC. Notably, in Vdata26, SAC_AMBER achieves stable convergence after 300 episodes. Experimental
results validate the effectiveness of SAC_AMBER in improving exploration strategies through the integration
of the AMBER method.

Figure 9: The performance of SAC and SAC_AMBER

3666 Comput Mater Contin. 2025;84(2)

Fig. 10 compares the training performance of DQN, SAC_AMBER, and DDPG on three datasets:
Vdata01, Vdata21, and Vdata39. SAC_AMBER shows the best convergence speed and stability across all
datasets, particularly outperforming DQN and DDPG in the later stages of the large dataset Vdata39.
Using Vdata as an example, SAC-AMBER achieves higher and more stable average reward values across
large, medium, and small datasets in the Rdata, Edata, and Vdata categories. This demonstrates that SAC-
AMBER exhibits higher training stability and superior performance compared to other reinforcement
learning algorithms.

Figure 10: Algorithm comparison line plot

4.2.4 Experimental Analysis on the Brandimarte Dataset
In this study, we employ transfer learning to train the model further, which was initially trained on

the Hurink dataset, using the entire Brandimarte dataset. The SAC-AMBER algorithm is compared with
heuristic rules, and deep reinforcement learning algorithms, as shown in Table 5.

Table 5: Test results for the Brandimarte dataset

Name Size Rule 1 Rule 2 Song et al. [35] Lei et al. [36] Yuan et al. [32] SAC-AMBER Opt

Cmax Gap Cmax Gap Cmax Gap Cmax Gap Cmax Gap Cmax Gap
MK01 10 ∗ 6 49 22.50% 51 27.50% 49 22.50% 47 17.50% 44 10.00% 46 15.00% 40
MK02 10 ∗ 6 43 65.38% 41 57.69% 43 65.38% 30 15.38% 31 19.23% 30 15.38% 26
MK03 15 ∗ 8 210 2.94% 234 14.71% 216 5.88% 209 2.45% 211 3.43% 223 9.31% 204
MK04 15 ∗ 8 99 65.00% 90 50.00% 75 25.00% 76 26.67% 78 30.00% 80 33.33% 60
MK05 15 ∗ 4 202 16.76% 211 21.97% 190 9.83% 178 2.89% 183 5.78% 180 4.05% 173
MK06 10 ∗ 15 112 93.10% 114 96.55% 103 77.59% 79 36.21% 74 27.59% 72 24.14% 58
MK07 20 ∗ 5 214 48.61% 215 49.31% 212 47.22% 152 5.56% 156 8.33% 163 13.19% 144
MK08 20 ∗ 10 579 10.71% 631 20.65% 523 0.00% 541 3.44% 524 0.19% 526 0.57% 523
MK09 20 ∗ 10 384 25.08% 397 29.32% 349 13.68% 335 9.12% 326 6.19% 339 10.42% 307
MK10 20 ∗ 15 278 40.40% 291 46.97% 264 33.33% 236 19.19% 241 21.72% 253 27.78% 198

From Table 6, it can be observed that SAC-AMBER, after further training using transfer learning, still
achieves the optimal solutions for the given benchmark instances. To validate the algorithm’s performance
under different data sizes during continued training, we classify the datasets into small, medium, and large
scales, following the same criteria as above. The resulting data classification is presented below.

Comput Mater Contin. 2025;84(2) 3667

Table 6: Classification results of the Brandimarte dataset

Small size Medium size

MK03

Large sizeMK01 MK04 MK08
MK02 MK06 MK09
MK05 MK07 MK10

In this experiment, one dataset from each of the large, medium, and small categories was selected. SAC-
AMBER, Rule1, Rule2, GA, PSO, and DQN were trained for 500 iterations on each dataset. The maximum
completion times were analyzed and visualized using box plots, as shown in Fig. 11. In MK01, MK03,
and MK10 scenarios, SAC-AMBER achieved the lowest median values and narrowest distribution ranges,
demonstrating its superiority in minimizing completion time and maintaining stability. Compared to other
algorithms, SAC-AMBER consistently delivers optimal and stable results across scenarios.

Figure 11: Box plot comparison of algorithms

This experiment compares the reinforcement learning performance of SAC_AMBER and SAC using
three datasets of different scales: MK01, MK03, and MK10, as shown in Fig. 12.

Figure 12: The performance of SAC and SAC_AMBER

The results show that SAC-AMBER consistently outperforms SAC across all environments. In MK01,
SAC-AMBER achieves a 23% higher average reward and faster convergence. In MK03, it maintains a steady-
state reward above 0.8, while SAC declines after 300 episodes. In MK10, SAC-AMBER remains stable,
whereas SAC oscillates, highlighting its adaptability to non-stationary state spaces. These findings confirm
SAC-AMBER’s robustness and superior performance.

3668 Comput Mater Contin. 2025;84(2)

To validate the improvements of SAC-AMBER, this study compares it with DQN and DDPG using
reward comparison plots. As shown in Fig. 13, SAC-AMBER demonstrates faster convergence and greater
stability, exhibiting a more rapid rise in reward curves during the early training phase and maintaining higher
stability in high-complexity environments compared to the other two algorithms. By leveraging entropy
adaptive adjustment, SAC-AMBER achieves an effective exploration-exploitation balance.

Figure 13: Algorithm comparison line plot

4.2.5 Experimental Analysis on Combined Datasets
In the previous experiments, the effectiveness of the proposed approach in maximizing the minimum

completion time was validated. Next, to assess the effectiveness of the model in ensuring job-set com-
pleteness, we conducted experiments on combined datasets. Specifically, we selected sub-datasets from the
Hurink and Dauzere datasets, ensuring a fixed number of machines while combining different sub-datasets.
From each sub-dataset, four rows of data were selected to form a complete dataset, where the four jobs
from each sub-dataset exhibited a certain level of completeness. Table 7 presents the variance results of job-
set completeness for different algorithms. The GA, PSO, DQN, and DDPG algorithms used in Table 7 for
performance comparison all employed the weighted sum method to transform multi-objective optimization
into a single-objective problem.

Table 7: The variance results of job-set completeness

Size of datasets Name GA PSO DQN DDPG Song et al. [35] Lei et al. [36] Yuan et al. [32] SAC-AMBER

Machine number is 5

la01 (vdata) 1.1 1.0 0.8 0.8 1.1 0.8 1.1 0.9
la02 (vdata) 1.0 1.0 1.0 1.0 1.2 0.9 1.0 0.6
la07 (vdata) 1.0 1.1 1.0 0.7 1.1 0.7 1.1 0.5
la12 (vdata) 1.3 0.9 0.8 1.1 1 0.8 0.9 0.5

01a 1.0 1.1 0.9 1.0 0.9 1.1 1.1 0.5
02a 1.1 1.1 1.0 1.1 0.9 0.9 1.1 0.5

Machine number is 10

la16 (vdata) 1.2 1.2 0.9 0.9 1.3 0.7 1.0 0.8
la21 (vdata) 0.9 0.9 0.9 0.9 1.5 1.1 0.8 0.6
la26 (vdata) 0.9 1.2 0.8 0.8 0.9 1.1 0.9 0.6
la31 (vdata) 0.9 1.0 1.0 0.8 0.8 1.2 1.1 0.9

13a 0.9 1.1 0.9 0.9 1 1.1 0.8 0.8

From the results presented in Table 7, SAC-AMBER consistently outperforms GA, PSO, DQN, DDPG,
Song et al., Lei et al. and Yuan et al. across datasets like la01, la02, and 01a, showing the lowest variance
in job completion times. GA and PSO exhibit higher variance, especially with more machines, while DQN
and DDPG perform moderately but still lag behind SAC-AMBER. Song et al., Lei et al. and Yuan et al.’s
algorithms are also not as good as SAC-AMBER algorithm in solving the maximum completion time

Comput Mater Contin. 2025;84(2) 3669

variance. Overall, SAC-AMBER demonstrates superior consistency and stability, particularly in large-scale
and complex scheduling tasks, making it the preferred choice for consistency optimization.

To evaluate the generalization capability of the model, we applied the trained SAC-AMBER model
directly to the Dauzere dataset, specifically on subsets 07a and 08a, selecting four jobs from each dataset. The
corresponding Gantt charts are shown in Fig. 14.

Figure 14: Overall Gantt chart

To better illustrate job-set completeness, Fig. 10 is further divided into Figs. 15 and 16. The results reveal
that job assignments on machines are relatively compact, effectively reducing idle times and minimizing the
maximum completion time. Additionally, jobs from the same batch are completed at similar times across
different machines, indicating strong job-set completeness.

Figure 15: Part 1 Gantt chart

3670 Comput Mater Contin. 2025;84(2)

Figure 16: Part 2 Gantt chart

5 Conclusion
This study proposes SAC-AMBER for the Flexible Job Shop Scheduling Problem (FJSP) with job-

set completeness constraints. We design a novel scheduling model that optimizes maximum completion
time while incorporating job-set completeness constraints to enhance production coordination. To address
low experience utilization and slow convergence in reinforcement learning, we introduce the Adaptive
Multi-Buffer Experience Replay (AMBER) mechanism, which uses a multi-tiered buffer (standard, high-
machine-utilization, and high-productivity) to improve experience utilization, accelerate convergence, and
enhance generalization.

Experiments show that SAC-AMBER reduces maximum completion time and optimizes job-set
completeness across datasets (Hurink, Brandimarte, Dauzere), outperforming traditional heuristic, meta-
heuristic, and other DRL methods in efficiency and solution quality, especially in large-scale problems.

This study validates reinforcement learning’s feasibility in FJSP and provides a new perspective for intel-
ligent scheduling research. In the future, we can explore extending SAC-AMBER’s adaptive buffer mechanism
to other complex scheduling scenarios with dynamic constraints, such as energy-aware flexible job shops or
rescheduling under machine breakdowns, while preserving its advantages in experience utilization.

Acknowledgement: Not applicable.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm contribution to the paper as follows: study conception and design: Bo Li;
data analysis and interpretation: Bo Li; experimental data collection: Xin Yang; draft manuscript preparation: Zhijie
Pei; manuscript revision and proofreading: Xiaoying Yang; literature collection and preparation: Yaqi Wu. All authors
reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The datasets used in the paper are benchmark and public datasets, which can be
easily downloaded from the Internet.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

Comput Mater Contin. 2025;84(2) 3671

References
1. Zhang W, Zheng Y, Ahmad R. An energy-efficient multi-objective scheduling for flexible job-shop-type remanu-

facturing system. J Manuf Syst. 2023;66:211–32. doi:10.1016/j.jmsy.2022.12.008.
2. Wang X, Zhang L, Liu Y, Li F, Chen Z, Zhao C, et al. Dynamic scheduling of tasks in cloud manufacturing with

multi-agent reinforcement learning. J Manuf Syst. 2022;65:130–45. doi:10.1016/j.jmsy.2022.08.004.
3. Yang D, Wu M, Li D, Xu Y, Zhou X, Yang Z. Dynamic opposite learning enhanced dragonfly algorithm for solving

large-scale flexible job shop scheduling problem. Knowl-Based Syst. 2022;238:107815. doi:10.1016/j.knosys.2021.
107815.

4. Zeng L, Shi J, Li Y, Wang S, Li W. A strengthened dominance relation NSGA-III algorithm based on differential
evolution to solve job shop scheduling problem. Comput Mater Contin. 2024;78(1):375–92. doi:10.32604/cmc.2023.
045803.

5. Wan L, Fu L, Li C, Li K. Flexible job shop scheduling via deep reinforcement learning with meta-path-based
heterogeneous graph neural network. Knowl-Based Syst. 2024;296:111940. doi:10.1016/j.knosys.2024.111940.

6. Lv Z, Zhao Y, Kang H, Gao Z, Qin Y. An improved Harris Hawk optimization algorithm for flexible job shop
scheduling problem. Comput Mater Contin. 2024;78(2):2337–60. doi:10.32604/cmc.2023.045826.

7. Zhu X, Xu J, Ge J, Wang Y, Xie Z. Multi-objective parallel machine scheduling with eligibility constraints for the
kitting of metal structural parts. Machines. 2022;10(10):836. doi:10.3390/machines10100836.

8. Ding L, Guan Z, Luo D, Rauf M, Fang W. An adaptive search algorithm for multiplicity dynamic flexible job shop
scheduling with new order arrivals. Symmetry. 2024;16(6):641. doi:10.3390/sym16060641.

9. Lim CH, Moon SK. A two-phase iterative mathematical programming-based heuristic for a flexible job shop
scheduling problem with transportation. Appl Sci. 2023;13(8):5215. doi:10.3390/app13085215.

10. Boudjemline A, Chaudhry IA, Rafique AF, Elbadawi IAQ, Aichouni M, Boujelbene M. Multi-objective flexible job
shop scheduling using genetic algorithms. Teh Vjesn. 2022;29(5):1706–13. doi:10.17559/TV-20211022164333.

11. Fan J, Shen W, Gao L, Zhang C, Zhang Z. A hybrid Jaya algorithm for solving flexible job shop scheduling problem
considering multiple critical paths. J Manuf Syst. 2021;60:298–311. doi:10.1016/j.jmsy.2021.05.018.

12. Liao X, Zhang R, Chen Y, Song S. A new artificial bee colony algorithm for the flexible job shop scheduling problem
with extra resource constraints in numeric control centers. Expert Syst Appl. 2024;249:123556. doi:10.1016/j.eswa.
2024.123556.

13. Hu Y, Zhang L, Zhang Z, Li Z, Tang Q. Matheuristic and learning-oriented multi-objective artificial bee colony
algorithm for energy-aware flexible assembly job shop scheduling problem. Eng Appl Artif Intell. 2024;133:108634.
doi:10.1016/j.engappai.2024.108634.

14. Han K, Gong W. Memetic algorithm based on non-dominated levels for flexible job shop scheduling problem with
learn-forgetting effect and worker cooperation. Comput Ind Eng. 2025;200:110845. doi:10.1016/j.cie.2024.110845.

15. Wang Z, He M, Wu J, Chen H, Cao Y. An improved MOEA/D for low-carbon many-objective flexible job shop
scheduling problem. Comput Ind Eng. 2024;188:109926. doi:10.1016/j.cie.2024.109926.

16. Feng Y, Lin Y, Yang Z, Xu Y, Li D, Li X, et al. A two-stage individual feedback NSGA-III for dynamic many-
objective flexible job shop scheduling problem. IEEE Trans Autom Sci Eng. 2025;22:1673–83. doi:10.1109/TASE.
2024.3369019.

17. Grumbach F, Badr NEA, Reusch P, Trojahn S. A memetic algorithm with reinforcement learning for sociotechnical
production scheduling. IEEE Access. 2023;11:68760–75. doi:10.1109/ACCESS.2023.3292548.

18. Song W, Mi N, Li Q, Zhuang J, Cao Z. Stochastic economic lot scheduling via self-attention based deep
reinforcement learning. IEEE Trans Autom Sci Eng. 2024;21(2):1457–68. doi:10.1109/TASE.2023.3248229.

19. Lei K, Guo P, Wang Y, Zhang J, Meng X, Qian L. Large-scale dynamic scheduling for flexible job-shop with random
arrivals of new jobs by hierarchical reinforcement learning. IEEE Trans Ind Inform. 2024;20(1):1007–18. doi:10.
1109/TII.2023.3272661.

20. Wu Z, Fan H, Sun Y, Peng M. Efficient multi-objective optimization on dynamic flexible job shop scheduling using
deep reinforcement learning approach. Processes. 2023;11(7):2018. doi:10.3390/pr11072018.

21. Xu H, Zheng J, Huang L, Tao J, Zhang C. Solving dynamic multi-objective flexible job shop scheduling problems
using a dual-level integrated deep Q-network approach. Processes. 2025;13(2):386. doi:10.3390/pr13020386.

https://doi.org/10.1016/j.jmsy.2022.12.008
https://doi.org/10.1016/j.jmsy.2022.08.004
https://doi.org/10.1016/j.knosys.2021.107815
https://doi.org/10.1016/j.knosys.2021.107815
https://doi.org/10.32604/cmc.2023.045803
https://doi.org/10.32604/cmc.2023.045803
https://doi.org/10.1016/j.knosys.2024.111940
https://doi.org/10.32604/cmc.2023.045826
https://doi.org/10.3390/machines10100836
https://doi.org/10.3390/sym16060641
https://doi.org/10.3390/app13085215
https://doi.org/10.17559/TV-20211022164333
https://doi.org/10.1016/j.jmsy.2021.05.018
https://doi.org/10.1016/j.eswa.2024.123556
https://doi.org/10.1016/j.eswa.2024.123556
https://doi.org/10.1016/j.engappai.2024.108634
https://doi.org/10.1016/j.cie.2024.110845
https://doi.org/10.1016/j.cie.2024.109926
https://doi.org/10.1109/TASE.2024.3369019
https://doi.org/10.1109/TASE.2024.3369019
https://doi.org/10.1109/ACCESS.2023.3292548
https://doi.org/10.1109/TASE.2023.3248229
https://doi.org/10.1109/TII.2023.3272661
https://doi.org/10.1109/TII.2023.3272661
https://doi.org/10.3390/pr11072018
https://doi.org/10.3390/pr13020386

3672 Comput Mater Contin. 2025;84(2)

22. Xu GY, Guan ZL, Peng K, Yue L. Collaborative scheduling of machining-assembly in complex multiple parallel
production lines environment considering kitting constraints. Int J Ind Eng Comput. 2023;14:749–66.

23. Qiu J, Liu J, Li Z, Lai X. A multi-level action coupling reinforcement learning approach for online two-stage flexible
assembly flow shop scheduling. J Manuf Syst. 2024;76:351–70. doi:10.1016/j.jmsy.2024.08.006.

24. Huang Y, Zhao L, Zhou B. An adaptive melody search algorithm based on low-level heuristics for material feeding
scheduling optimization in a hybrid kitting system. Adv Eng Inform. 2024;62:102855. doi:10.1016/j.aei.2024.102855.

25. Liu X, Han L, Kang L, Liu J, Miao H. Preference learning based deep reinforcement learning for flexible job shop
scheduling problem. Complex Intell Syst. 2025;11(2):144. doi:10.1007/s40747-024-01772-x.

26. Lv S, Zhuang J, Li Z, Zhang H, Jin H, Lü S. An enhanced walrus optimization algorithm for flexible job shop
scheduling with parallel batch processing operation. Sci Rep. 2025;15(1):5699. doi:10.1038/s41598-025-89527-7.

27. Xu W, Xu S, Liang J, Qin T, Liu D, Wang L. A discrete water source cycle algorithm design for solving production
scheduling problem in flexible manufacturing systems. Swarm Evol Comput. 2025;94:101897. doi:10.1016/j.swevo.
2025.101897.

28. Liu Q, Guo Y, Deng L, Liu H, Li D, Sun H, et al. Two-critic deep reinforcement learning for inverter-based volt-
var control in active distribution networks. IEEE Trans Sustain Energy. 2024;15(3):1768–81. doi:10.1109/TSTE.2024.
3376369.

29. Alagha A, Otrok H, Singh S, Mizouni R, Bentahar J. Blockchain-based crowdsourced deep reinforcement learning
as a service. Inf Sci. 2024;679:121107. doi:10.1016/j.ins.2024.121107.

30. Lee MH, Moon J. Deep reinforcement learning-based model-free path planning and collision avoidance for UAVs:
a soft actor-critic with hindsight experience replay approach. ICT Express. 2023;9(3):403–8. doi:10.1016/j.icte.2022.
06.004.

31. Liang W, Liu Y, Wang J, Yang ZX. Trajectory progress-based prioritizing and intrinsic reward mechanism for robust
training of robotic manipulations. IEEE Trans Autom Sci Eng. 2024;22:1–14. doi:10.1109/TASE.2024.3513354.

32. Yuan E, Wang L, Cheng S, Song S, Fan W, Li Y. Solving flexible job shop scheduling problems via deep
reinforcement learning. Expert Syst Appl. 2024;245:123019. doi:10.1016/j.eswa.2023.123019.

33. Kasapidis GA, Dauzère-Pérès S, Paraskevopoulos DC, Repoussis PP, Tarantilis CD. On the multiresource flexible
job-shop scheduling problem with arbitrary precedence graphs. Prod Oper Manage. 2023;32(7):2322–30. doi:10.
1111/poms.13977.

34. Xu S, Li Y, Li Q. A deep reinforcement learning method based on a transformer model for the flexible job shop
scheduling problem. Electronics. 2024;13(18):3696. doi:10.3390/electronics13183696.

35. Song W, Chen X, Li Q, Cao Z. Flexible job-shop scheduling via graph neural network and deep reinforcement
learning. IEEE Trans Ind Inform. 2023;19(2):1600–10. doi:10.1109/TII.2022.3189725.

36. Lei K, Guo P, Zhao W, Wang Y, Qian L, Meng X, et al. A multi-action deep reinforcement learning framework for
flexible Job-shop scheduling problem. Expert Syst Appl. 2022;205:117796. doi:10.1016/j.eswa.2022.117796.

37. Jiang T, Liu L, Zhu H. A Q-learning-based biology migration algorithm for energy-saving flexible job shop
scheduling with speed adjustable machines and transporters. Swarm Evol Comput. 2024;90:101655. doi:10.1016/j.
swevo.2024.101655.

https://doi.org/10.1016/j.jmsy.2024.08.006
https://doi.org/10.1016/j.aei.2024.102855
https://doi.org/10.1007/s40747-024-01772-x
https://doi.org/10.1038/s41598-025-89527-7
https://doi.org/10.1016/j.swevo.2025.101897
https://doi.org/10.1016/j.swevo.2025.101897
https://doi.org/10.1109/TSTE.2024.3376369
https://doi.org/10.1109/TSTE.2024.3376369
https://doi.org/10.1016/j.ins.2024.121107
https://doi.org/10.1016/j.icte.2022.06.004
https://doi.org/10.1016/j.icte.2022.06.004
https://doi.org/10.1109/TASE.2024.3513354
https://doi.org/10.1016/j.eswa.2023.123019
https://doi.org/10.1111/poms.13977
https://doi.org/10.1111/poms.13977
https://doi.org/10.3390/electronics13183696
https://doi.org/10.1109/TII.2022.3189725
https://doi.org/10.1016/j.eswa.2022.117796
https://doi.org/10.1016/j.swevo.2024.101655
https://doi.org/10.1016/j.swevo.2024.101655

	An SAC-AMBER Algorithm for Flexible Job Shop Scheduling with Material Kit
	1 Introduction
	2 Kit Production-Oriented Flexible Job Shop Scheduling Model
	3 Deep Reinforcement Learning with SAC-AMBER for Flexible Job Shop Scheduling
	4 Experiment and Analysis
	5 Conclusion
	References

