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ABSTRACT: The capacity to diagnose faults in rolling bearings is of significant practical importance to ensure
the normal operation of the equipment. Frequency-domain features can effectively enhance the identification of
fault modes. However, existing methods often suffer from insufficient frequency-domain representation in practical
applications, which greatly affects diagnostic performance. Therefore, this paper proposes a rolling bearing fault
diagnosis method based on a Multi-Scale Fusion Network (MSFN) using the Time-Division Fourier Transform (TDFT).
The method constructs multi-scale channels to extract time-domain and frequency-domain features of the signal
in parallel. A multi-level, multi-scale filter-based approach is designed to extract frequency-domain features in a
segmented manner. A cross-attention mechanism is introduced to facilitate the fusion of the extracted time-frequency
domain features. The performance of the proposed method is validated using the CWRU and Ottawa datasets. The
results show that the average accuracy of MSFN under complex noisy signals is 97.75% and 94.41%. The average
accuracy under variable load conditions is 98.68%. This demonstrates its significant application potential compared to
existing methods.

KEYWORDS: Rolling bearing fault diagnosis; time-division fourier transform; cross-attention; multi-scale feature
fusion

1 Introduction
In the context of Industry 4.0, intelligent monitoring and maintenance of rolling bearings have become

essential for ensuring the efficient and reliable operation of industrial systems. Rolling bearings are highly
susceptible to complex factors such as vibration, friction, and impact, which can result in wear, cracks,
and fatigue-related damage [1–3]. These failures contribute to approximately 45%–55% of total mechanical
failures [4]. Therefore, the health status of rolling bearings plays a critical role in determining the overall
safety and operational reliability of mechanical equipment [5,6].

The Rolling Bearing Fault Diagnosis (RBFD) process typically comprises the following stages: (1) Data
acquisition, capturing physical signals related to rolling bearing failures [7]. (2) Feature extraction, which
entails processing the acquired signals to extract salient features that reflect the health status of the rolling
bearings [8]. (3) Fault identification, which classifies rolling bearing fault types based on discriminative
features [9,10]. Currently, the RBFD method based on vibration analysis dominates the field [11].
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Traditional model-based approaches have been extensively employed to address fault estimation
problems from a system-theoretic standpoint. Reference [12] developed an iterative learning-based fault esti-
mator for spatiotemporal faults in switched nonlinear reaction–diffusion systems. The method incorporates
adaptive gain adjustment and provides a theoretical convergence analysis. While these methods are rigorous
and effective for structured systems with well-defined dynamics, their applicability is limited when dealing
with complex, high-dimensional, and noise-prone sensor data. Consequently, data-driven techniques have
attracted increasing attention in recent years.

Machine learning has been extensively employed to feature extraction and fault identification in RBFD
systems [13–15]. Reference [16] uses the Particle Swarm Optimization (PSO) to solve the deconvolution filter
problem in REB defect identification, achieving good performance even when fault cycles are inaccurate.
Reference [17] combines Empirical Mode Decomposition (EMD) with neural networks to complete fault
diagnosis. Reference [18] proposes a Backpropagation (BP) neural network optimized by cuckoo search to
determine optimal weights and thresholds prior to training. However, these methods heavily rely on expert
knowledge and experience, which makes them susceptible to subjective bias.

Deep learning can automatically extract features, thereby overcoming the limitations of traditional
machine learning methods that rely heavily on manual experience [19]. It integrates feature extraction and
classification within the same cohesive framework, eliminating the influence of external factors [20,21].
Reference [22] proposes a Global Wavelet-Integrated Residual Frequency Attention Regularized Network
(GWRFARN), which incorporates signal processing techniques into the network for fault diagnosis, includ-
ing discrete wavelet transform and discrete cosine transform. This method significantly improves diagnostic
performance, particularly under imbalanced data conditions. Reference [23] proposes an interpretable
Attention-Guided Hierarchical Wavelet Convolutional Network (AHWCN). The method combines hierar-
chical wavelet convolution for noise suppression and a time–frequency attention module for dynamic fault
feature extraction, accurately identifying fault patterns in both time and frequency domains.

Convolutional Neural Networks (CNN) provide an end-to-end diagnostic framework for RBFD [24,25].
Based on the input type, CNN-based RBFD can be divided into two types: (1) One-dimensional CNN
(1D-CNN) [26,27]. Reference [28] inputs multi-sensor signals into the 1D-CNN to extract features, improv-
ing diagnostic performance. Reference [29] proposes a fault diagnosis method based on wide convolutional
kernels and stacked smaller convolutional kernels (WDCNN). High-precision classification can be achieved
without relying on complex preprocessing. (2) One-dimensional signals are converted into two-dimensional
images, and a two-dimensional CNN (2D-CNN) is used for fault diagnosis [30–34]. Reference [35] proposes
an improved 2D LeNet-5 network, significantly enhancing RBFD diagnostic performance. 1D-CNN is
directly obtained from the data acquisition system, making it more intuitive and natural than 2D-CNN [27].
In addition, 2D-CNN converts one-dimensional signals into two-dimensional representations, which could
lead to the loss of fault-related information. More critically, in practical scenarios, samples for certain fault
categories are often limited. To address this issue, researchers have proposed a range of effective methods.
Reference [36] proposes an autoregressive data generation method based on wavelet packet transform and
cascaded stochastic quantization, which is effectively applied to fault diagnosis under unbalanced sample
conditions. Reference [37] proposes a digital twin-assisted multiscale residual self-attention feature fusion
network (MRFFN), which leverages digital twin models to provide fault status data for network training
and effectively addresses the problem of insufficient fault data in hypersonic flight vehicles. Reference [38]
proposes DCADAN, a dynamic adversarial domain adaptation method that improves unsupervised fault
diagnosis performance across domains without using target labels.
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Multi-Scale CNN integrates convolutional layers with different kernel sizes to capture features at various
temporal or frequency scales. This architecture has been widely applied in time-series classification and
fault diagnosis tasks [39]. Reference [27] proposes a Multi-Scale One-Dimensional CNN with an attention
mechanism (MA1DCNN), which embeds attention modules at different network depths to adaptively
optimize feature mapping. Reference [40] proposes a Multi-Scale CNN (MSCNN), which enhances feature
representation by processing vibration signals at different scales. Reference [41] proposes a Multi-Scale
Cascade CNN (MC-CNN), which concatenates features extracted using convolutional kernels of various
lengths to form composite representations for fault diagnosis. Reference [42] proposes an Adaptive Weighted
Multi-Scale CNN (AWMSCNN), where convolutional layers with different kernel sizes are adaptively
weighted and fused to extract rich and complementary features. Reference [43] proposes a Multi-Scale CNN
with Channel Attention (CA-MCNN), which employs a 1D convolution-based parallel fusion mechanism
to effectively capture and integrate complementary multi-scale information. The deep learning-based RBFD
methods are shown in Table 1.

Table 1: Comparison of RBFD methods based on deep learning

Name Advantage Disadvantage
ILeNet5 [35] No complicated pre-processing

required
Lacks multi-scale feature extraction
Ignores frequency-domain features
Involves high computational cost

WDCNN [29] Extracts short-term features
Suppresses high-frequency noise

Lacks multi-scale feature extraction
Ignores frequency-domain features

MSCNN [40] Employs a multi-scale architecture
Strong generalization ability

Insufficient multi-scale feature fusion
Ignores frequency-domain features

MA1DCNN [27] Introduces an attention mechanism
Focuses on important features

Insufficient multi-scale feature fusion
Ignores frequency-domain features

AWMSCNN [42] Incorporates adaptive weight vectors
Highlights fault-sensitive features

Ignores frequency-domain features

CA-MCNN [43] Introduces an attention mechanism
Applies adaptive multi-scale fusion

Ignores frequency-domain features

The multi-scale convolutional network employs convolutional kernels of varying scales, allowing the
model to be trained simultaneously and thereby enhancing its adaptability. However, it has the following
limitations in RBFD:

(1) Most multi-scale architectures rely on feature concatenation for fusion, which neglects the interac-
tions between key features across different scales. This results in feature redundancy and inconsistency [44].

(2) Signal acquisition is often affected by factors like noise in real industrial environments, which
increases the complexity and uncertainty of the signals. It is difficult to effectively represent fault character-
istics by directly using time-domain signals.
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The vibration signal generated by rolling bearings is non-stationary and nonlinear. Its frequency
characteristics exhibit distinct peaks in the spectrum. Frequency-domain analysis can more efficiently extract
fault-related frequency features and help identify the fault type. Commonly used frequency-domain analysis
methods include wavelet transform (WT) and short-time Fourier transform (STFT). However, each of these
methods has its limitations. WT requires selecting an appropriate basis function. STFT requires choosing a
window function, and its time and frequency resolution cannot be optimized simultaneously. In contrast, the
fast Fourier transform (FFT) has the advantages of fast processing speed, no need for preset parameters, and
high frequency resolution [45]. However, the main drawback of FFT is that it computes over the entire period.
This makes it difficult to distinguish between the stationary and transient components of the signal [46].

To address the above issues, this paper proposes an RBFD method based on MSFN. Meanwhile,
to optimize frequency-domain feature extraction, a method is designed using multi-level and multi-size
filters. MSFN simultaneously extracts both time-domain and frequency-domain features from the signal.
By integrating the TDFT module with the convolution module, the model’s ability to represent non-
stationary fault signals is significantly enhanced. Through multi-scale convolution and TDFT processing,
the network selectively retains or suppresses frequency components, highlights key features, and strengthens
critical information in the signal. Additionally, a cross-attention mechanism is introduced to fuse features
across different scales, which effectively alleviates feature redundancy and improves the fault diagnosis
performance. The main contributions of this paper are as follows:

(1) To address the issue that time-domain signals alone may not effectively represent fault characteristics,
this paper proposes an RBFD method based on MSFN. It simultaneously extracts both time-domain and
frequency-domain features, thereby significantly improving fault classification accuracy.

(2) A frequency-domain feature extraction method using multi-level, multi-size filters is designed.
It effectively overcomes the limitations of FFT in distinguishing stationary and transient components by
adaptively capturing both global and local frequency characteristics.

(3) A cross-attention mechanism is incorporated to enhance multi-scale feature fusion. It dynami-
cally computes correlations between multi-scale features, adaptively selects key information, and reduces
redundancy and conflicts in the fusion process.

(4) The proposed method is validated on the Ottawa [11] and CWRU [25] datasets. Experimental results
show that MSFN achieves high diagnostic accuracy and strong generalization under variable noise and
load conditions.

The rest of this paper is organized as follows. Section 2 provides an overview of MSFN. Section 3 explains
the mathematical theory of TDFT and the frequency-domain feature extraction process. Section 4 presents
the experimental process, results, and analysis. Finally, Section 5 concludes the paper.

2 Proposed Method
MSFN consists of four modules: (1) Feature screening: Preliminary screening is performed on the input

fault signals. (2) Feature extraction: Multi-scale channels are constructed, and the time-frequency domain
features of the signal are simultaneously extracted. (3) Feature fusion: A cross-attention mechanism is applied
to fuse multi-scale feature information. (4) Fault classification: The integrated features are input into a
classifier to determine the bearing fault category. The overall structure of the model is illustrated in Fig. 1.
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Figure 1: MSFN model

2.1 Feature Screening and Extraction
The feature screening module employs a 1 × 65 convolutional kernel to preliminarily process the input

signal. Batch normalization and max-pooling are applied to reduce computational complexity. Finally, the
ReLU activation function is used to accelerate the training.

In the feature extraction module, the preprocessed signal is divided into two parallel channels to extract
features from both the time and frequency domains. A small convolutional kernel is employed in the time-
domain channel to further extract time-domain features. Each convolutional operation is followed by batch
normalization and the ReLU activation function. The ReLU activation is defined as:

ReLU(x) =max(0, x) (1)

where x is the network input. In the frequency-domain channel, the TDFT module extracts the signal
envelope and performs frequency-domain filtering. The filtered signal is transformed back into the time
domain via the Inverse Fast Fourier Transform (IFFT). This ensures consistency with the shape of the
input signal.

2.2 Feature Fusion and Fault Classification
In the feature fusion module, feature information from the two channels is fused using a cross-attention

mechanism. This mechanism enables interaction between different input sequences. It allows the model to
focus on the most relevant content in the other sequence that is closely related to the current task. One input
sequence generates the key K and value V, and another input sequence generates the Q in the cross-attention
mechanism. The Q and K are used to calculate the similarity matrix through the dot product:

Score(Q , K) = QKT
√

dk
(2)

where dk is the dimension of the key vector, used to scale the dot product result to prevent the value
from becoming excessively large. The SoftMax function is applied to convert the similarity matrix into a
normalized attention weight matrix. This matrix represents the importance distribution across positions in
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the key-value sequence. Finally, the attention weight matrix is multiplied by the value matrix V to obtain the
weighted feature representation:

Attention(Q , K , V) = Softmax(QKT
√

dk
)V (3)

The output of the cross-attention mechanism is a weighted sum of the value vectors. It is the information
dynamically aggregated from the key-value sequence based on the query sequence. The principle of the cross-
attention mechanism is illustrated in Fig. 2.

Figure 2: Cross-attention mechanism

In the fault classification module, the fused features are processed using global average pooling.
This operation reduces the number of parameters, retains global contextual information, and enhances
the model’s generalization capability. Finally, a SoftMax classifier is employed to produce the final fault
diagnosis results.

3 Time-Division Fourier Transform
In the TDFT module, filters of different sizes are generated according to the length of the input

signal. The time-domain signal is segmented into fixed-size windows corresponding to the filter sizes. Batch
normalization is applied to each window to reduce batch-to-batch variability. The normalized signal is then
subjected to the Hilbert transform to extract envelope features. Subsequently, the FFT is applied to convert
the signal from the time-domain to the frequency-domain. Frequency-domain filtering is performed using
complex-valued weights to extract features from multiple frequency bands. The filtered frequency-domain
signal is transformed back to the time-domain using IFFT, ensuring that the output shape matches the input.
The extracted features are temporarily stored in a feature list for subsequent processing. The overall process
is illustrated in Fig. 3.

In the multi-level feature extraction process, the signal is re-divided into larger windows, and the
aforementioned steps are repeated. The features extracted at each level correspond to frequency-domain
characteristics captured by filters of varying sizes. These features collectively form a set of multi-scale
representations. After extracting features at all levels, a set of learnable weights is applied to perform weighted
fusion across different scales. The overall framework is illustrated in Fig. 4. The multi-scale feature fusion
can dynamically balance the contributions of features from different frequency bands.
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Figure 3: Single-layer frequency-domain feature extraction

Figure 4: Multi-layer frequency-domain feature extraction

3.1 Signal Segmentation
The input signal is denoted as t ∈ RB×C×N , where B, C, and N are the batch size, number of channels,

and signal length. Filters are generated based on the input signal length N and a set of filter ratios rk . The
length Lk of each filter is computed as follows:

Lk =max (8, ⌈N ⋅ rk⌉) (4)

where k is the index of the filter. A learnable weight wk is assigned to each filter.
The input signal is divided into fixed-size windows based on the filter length, where each window has a

length of Lk , and the signal is segmented into P = ⌈N/Lk⌉ segments. Each segment of the signal is processed
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through batch normalization to reduce batch-to-batch variation:

xp(t) =
xp(t) − μ
√

σ 2 + ε
⋅ γ + β, p = 1, 2, . . . , P (5)

where p is the index of each fragment. μ and σ 2 are the mean and variance of the input data. ε is a small
constant used to prevent division by zero errors. γ and β are learnable scaling and translation parameters.

3.2 Hilbert Transform and Envelope Analysis
The Hilbert transform provide the envelope and instantaneous frequency of a signal. This helps reveal

more latent features, which aids in fault identification and classification during the diagnostic process. For a
signal xp(t), its Hilbert transform is defined as x̂p(t):

x̂p(t) = H[xp(t)] =
1
π ∫

∞

−∞

xp(τ)
t − τ

dτ (6)

where H[xp(t)] is the Hilbert transform. τ is the integral variable, representing the value of the signal at
different time points. The Hilbert transform yields the imaginary part of the signal x̂p(t), which is orthogonal
to the original signal xp(t).

The original signal xp(t) and its Hilbert transform x̂p(t) are combined into a complex-valued signal to
obtain the analytic signal zp(t):

zp(t) = xp(t) + jx̂p(t) (7)

where j is the imaginary unit. The real part of the analytical signal is still the original signal xp(t), and the
imaginary part provides the instantaneous phase information of the signal.

Envelope analysis is a technique used to extract the low-frequency components of a signal by filtering
out its high-frequency components. The envelope ap(t) of the signal is obtained by analyzing the amplitude
of the signal zp(t):

ap(t) = ∣zp(t)∣ =
√

xp(t)2 + x̂p(t)2 (8)

3.3 Frequency-Domain Filtering
FFT is an algorithm for efficiently computing the discrete Fourier transform (DFT) and its inverse

transform. By exploiting the periodicity and symmetry of the rotation factors to reduce the computational
complexity of DFT from O(N2) to O(N logN). The envelope signal ap(t) is transformed into the frequency-
domain using FFT, resulting in the frequency-domain signal x̂p(t):

x̂p( f ) = FFT [ap(t)] (9)

where complex weights wk are used to implement frequency-domain filtering. The filtered frequency-domain
signal is then restored to the time domain using the IFFT, reconstructing its original shape, as follows:

y(t) =
P
∑
p=1

IFFT [x̂p( f ) ⋅wk] (10)
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3.4 Multi-Level Feature Fusion
To further capture frequency-domain features at different time scales, the signal is re-divided into larger

windows, and the signal at each scale undergoes a single-layer feature extraction step:

ym(t) =
P
∑
p=1

IFFT [x̂p( f ) ⋅wk] , m = 1, 2, . . . , M (11)

where m is the index of different scales, and M is the total number of scales. The features from all scales are
dynamically balanced through weighted fusion:

y(t) =
M
∑
m=1

λm ⋅ ym(t) (12)

where λk is the learnable fusion weight for different scales, which adaptively adjusts the contribution of
features from different scales according to task requirements.

The final feature integrates multi-scale and multi-frequency band information. In TDFT, the sig-
nal’s frequency components are selectively retained or suppressed to highlight key features and reduce
noise interference.

4 Experimental Validations

4.1 Experimental Settings
To evaluate the fault diagnosis performance of the proposed method, experiments are conducted on the

Case Western Reserve University (CWRU) and University of Ottawa (Ottawa) rolling bearing datasets. The
one-dimensional vibration signal is divided into training, validation, and test datasets through overlapping
sampling. The experimental settings are batch size 64, epoch is 50, and learning rate is 0.001. PyTorch 2.3.1 is
used as the deep learning framework. The hardware environment is configured with an Intel(R) Core(TM)
i7-13700KF @ 2.50 GHz CPU, an RTX 3090 (24 GB) GPU, and 64 GB of memory. The software environment
consists of Windows 11, Python 3.12.4, and PyTorch 2.3.1 with CUDA 12.6.

The experiment selected accuracy, precision, F1 score, specificity, AUC, and model average inference
time as evaluation indicators for the model’s fault diagnosis performance, along with an analysis of model
complexity. These indicators are crucial for a comprehensive evaluation of diagnostic models, particularly
under industrial constraints.

• Accuracy: The overall proportion of correctly classified samples.
• Precision: The proportion of correctly predicted positive cases among all predicted positives.
• Recall: The proportion of actual positive cases that are correctly predicted by the model.
• F1-score: The harmonic mean of precision and recall, reflecting the balance between them.
• Specificity: The ability of the model to correctly identify negative cases.
• AUC (Area Under the Curve): The area under the ROC curve, representing the trade-off between

true positive and false positive rates. A higher AUC indicates stronger discriminative capability
across thresholds.

• Average Inference Time: The average time taken by the model to predict a single input sample.
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4.2 Data Description
4.2.1 CWRU Dataset

The dataset is configured with four load conditions: 0, 1, 2, and 3 HP. The sampling frequencies include
12 and 48 kHz, and this paper uses the data from the drive-end bearing with a sampling frequency of
12 kHz. The dataset consists of four states: normal, inner race fault, outer race fault, and ball fault. For
each fault type, there are three fault diameters: 0.1778, 0.3556, and 0.5334 mm. The data collected under
the four load conditions (0, 1, 2, and 3 HP) are organized into four datasets: Datasets 1©, 2©, 3©, and 4©.
Each dataset contains 10 states (Normal, B007, B014, B021, IR007, IR014, IR021, OR007, OR014, OR021). Each
dataset corresponding to a load condition includes 10,000 samples, totaling 40,000 samples across all four
datasets. To prevent overfitting due to insufficient sample size, overlapping sampling is employed to increase
the number of samples. The formula for the overlapping sampling operation is as follows:

G = N − N1

D
+ 1 (13)

where G is the number of samples in a single class. N is the length of the one-dimensional signal. N1 is the
length of the signal segment, and D is the step size. The signal segment length is 1024, and each dataset is
divided into training, validation, and test sets in a 7:2:1 ratio.

4.2.2 Ottawa Dataset
The dataset was collected using the SpectraQuest Mechanical Fault Simulator (MFS-PK5M). It contains

vibration and rotational speed data of rolling bearings with various fault types and simulates multiple operat-
ing conditions, including acceleration, deceleration, acceleration followed by deceleration, and deceleration
followed by acceleration. Each operating condition includes five health states: healthy, inner race fault, outer
race fault, ball fault, and compound fault. Based on different operating conditions, Datasets 1©, 2©, 3©, and
4© are created, with each dataset containing 5000 samples. Each signal segment has a length of 1024, and the

datasets are split into training, validation, and test sets in a ratio of 7:2:1.

4.3 Optimization Analysis
In addition to the model architecture, the performance of fault diagnosis is also affected by the training

process. In this experiment, the Adam optimizer is adopted. The Adam optimizer has adaptive learning rates
and momentum update characteristics. It employs exponentially weighted moving averages to estimate the
momentum and second moment of the gradients. The basic form of parameter update given the objective
function L(θ) is formulated as follows:

θt = θt−1 − η∇θ L(θt−1) (14)

where η is the learning rate.∇θ L(θt−1) is the gradient at the t iteration.
To further optimize the training process, the CWRU dataset under a single load condition was utilized,

with Datasets 1©, 2©, and 3© selected as experimental samples. The proposed model was evaluated by
comparing optimization algorithms, including Adam, SGD with momentum, RMSProp, AdaGrad, and
AdaDelta. The experimental results are shown in Fig. 5.

As shown in the figure, when using the Adam optimizer on Datasets 1© and 3©, the model converges
significantly faster than with other optimization algorithms.



Comput Mater Contin. 2025;84(2) 3529

Figure 5: Comparison of convergence speed of optimization algorithms

4.4 Noise Interference Scenario Simulation Experiment
Rolling bearing signal data is often obscured by complex noise in real industrial environments,

increasing the complexity of the signal data. To verify the noise robustness of the proposed model, Gaussian
white noise with varying intensities is added to the experimental data, simulating noisy interference scenarios
that better represent real-world operating conditions. In this experiment, the Signal-to-Noise Ratio (SNR) is
used to measure noise intensity, expressed in decibels (dB):

SNRd B = 10log10 (
Psi gnal

Pnoise
) (15)

where SNRd B , Psi gnal , and Pnoise are the SNR, signal amplitude, and noise amplitude. After adding noise,
the original features are obscured by the noise. As the SNR decreases, the extent to which the features are
masked by the noise becomes more severe.

This experiment uses the CWRU dataset and selects dataset 4© as the experimental sample. Gaussian
white noise with SNRs ranging from 0 to 10 dB is added to simulate noise interference. The performance of
the proposed model is compared with three baseline models: ILeNet5 [35], WDCNN [29], and MSCNN [40].
Additionally, to assess the effectiveness of the TDFT module and the advantage of using cross-attention for
feature fusion, two ablation models are included for comparison. The first, MSFN_FFT, employs a standard
FFT to extract frequency-domain features. The second, MSFN_NCA, uses simple feature concatenation
to integrate multi-scale features. The fault diagnosis results of each model under different SNR levels are
presented in Fig. 6 and Table 2.

As shown in the figure, most models exhibit higher diagnostic accuracy under low noise conditions.
However, under high noise levels, the performance of models such as ILeNet5, WDCNN, and MSCNN
degrades significantly. For instance, ILeNet5 achieves only 57.4% accuracy at 0 dB and 68.7% at 2 dB,
indicating that shallow or purely time-domain convolutional architectures struggle to preserve fault-related
features in the presence of strong noise interference signals. In contrast, deeper models such as WDCNN and
MSCNN benefit from their hierarchical feature extraction capabilities and demonstrate stronger robustness,
especially at SNRs above 4 dB. For instance, WDCNN achieves an average accuracy of 97.1%, maintaining
over 95% accuracy even at 2 dB.
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Figure 6: Comparison of diagnostic effects under different SNR (CWRU)

Table 2: Comprehensive diagnostic performance comparison under different SNRs (CWRU)

Accuracy (%) ⋅ Precision (%) ⋅ Recall (%) ⋅ F1-score (%)

0 dB 2 dB 4 dB 6 dB 8 dB 10 dB

ILeNet5 57.4/72.2/56.7/56.1 68.7/71.7/67.9/63.1 87.3/91.9/87.0/87.1 87.1/91.6/86.8/86.2 98.1/98.1/98.0/97.9 99.9/99.9/99.9/99.9
WDCNN 88.9/89.9/88.6/88.5 95.9/96.2/95.8/95.5 98.2/98.3/98.1/98.1 99.6/99.6/99.6/99.6 100.0/100.0/100.0/100.0 100.0/100.0/100.0/100.0
MSCNN 83.9/90.2/83.5/81.3 92.2/93.4/92.0/91.6 96.8/97.3/96.7/96.7 98.7/98.7/98.6/98.6 99.8/99.7/99.7/99.7 99.9/99.9/99.9/99.9

MSFN_FFT 87.1/88.9/86.8/85.9 93.9/94.6/93.8/93.7 98.5/98.7/98.5/98.5 99.0/99.1/99.0/99.0 100.0/100.0/100.0/100.0 100.0/100.0/100.0/100.0
MSFN_NCA 88.4/91.2/88.1/86.6 96.0/96.1/95.9/95.9 98.2/98.3/98.1/98.1 99.3/99.3/99.2/99.2 100.0/100.0/100.0/100.0 100.0/100.0/100.0/100.0

MSFN 91.4/91.8/90.6/90.5 96.8/96.8/96.7/97.7 99.0/99.0/99.0/98.9 99.3/99.3/99.3/99.3 100.0/100.0/100.0/100.0 100.0/100.0/100.0/100.0

Although the MSFN_FFT model extracts frequency-domain features from the signal, its performance
remains suboptimal under strong noise conditions. This suggests that simple FFT-based approaches are
limited in their ability to capture fault-relevant frequency features in complex, noisy signals. The MSFN_NCA
uses simple feature concatenation to integrate multi-scale features and achieves an average accuracy of
96.98%. The MSFN model further improves upon this, attaining an average accuracy of 97.75%. Compared
to ILeNet5, WDCNN, MSCNN, MSFN_FFT, and MSFN_NCA, the improvements are 14.67%, 0.65%,
2.53%, 1.33%, and 0.77%. This comparison with the MSFN_NCA model highlights that the cross-attention
mechanism enhances the network’s ability to emphasize informative features while effectively suppressing
noise interference.

Overall, although all models exhibit good performance at higher SNRs, the MSFN model maintains
consistently high accuracy across all noise levels, demonstrating superior stability and adaptability in noisy
environments. To further assess the model’s feature extraction and fault classification capabilities under high
noise conditions, confusion matrices are constructed. These matrices represent the model’s classification
performance at SNR levels of 0 and 2 dB. The visualized results are shown in Fig. 7.
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Figure 7: Confusion matrix at 0 and 2 dB SNR

As shown in the figure, the proposed method can maintain a high accuracy even at SNRs of 0 and 2
dB, indicating that the method exhibits notable resistance to noise. To further assess its feature extraction
capability, t-SNE was employed for dimensionality reduction and visualization of features extracted at
different layers under an SNR of 4 dB. The visualization results are shown in Fig. 8.

Figure 8: t-SNE dimensionality reduction visualization



3532 Comput Mater Contin. 2025;84(2)

Fig. 8a shows the results of dimensionality reduction and visualization applied directly to the raw data.
Data from different categories overlap and blend. Fig. 8b shows the results after initial feature selection
using large convolution kernels. Although different types of data still exhibit significant overlap, there are
signs of clustering. Fig. 8c and d shows the results after the data passes through the time-domain feature
channel and the frequency-domain feature channel. It can be observed that some fault types have already
been clustered. Fig. 8e shows the result after the time-frequencydomain feature information is fused using
the cross-attention mechanism. The data is almost entirely divided into 10 categories, with a clear clustering
effect for each sample. Fig. 8f shows the result after passing through the fully connected layer, where the
clustering effect is more pronounced. By comparing Fig. 8b and e, it can be seen that the proposed method
has significant feature extraction ability.

The specificity of each model under different SNR conditions is illustrated in Fig. 9. The six axes
represent SNR levels ranging from 0 to 10 dB, while the plotted curves correspond to different models. It
can be observed that specificity generally increases with higher SNR levels, indicating that noise significantly
impairs the models’ ability to correctly identify negative samples. Notably, the MSFN and WDCNN models
maintain consistently high specificity even at lower SNRs. In contrast, ILeNet5 exhibits a more compressed
curve, reflecting a weaker capability to suppress false positives under noisy conditions. These results further
demonstrate the robustness of MSFN against noise interference.

Figure 9: Radar chart of specificity for different models under varying noise levels (SNR)

Fig. 10 shows the ROC curves of the MSFN, ILeNet5, MSCNN, and WDCNN models at 0 dB SNR along
with their corresponding AUC values. It can be seen that the ROC curves of MSFN and WDCNN are close
to the top-left corner, with AUC values of 0.9993 and 0.9972, indicating excellent discriminative capability.
MSCNN also performs well, achieving an AUC of 0.9838. In contrast, ILeNet5 shows a relatively lower AUC
of 0.8359, reflecting its limited generalization ability in noisy environments.
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Figure 10: Comparison of ROC curves and AUC values under noise interference (SNR = 0 dB)

4.5 Variable Load Scenario Simulation Experiment
The load conditions of rolling bearings often change in actual industrial environments. This requires

diagnostic methods to have a strong generalization ability. To evaluate the generalization capability of
the proposed method, fault diagnosis experiments were conducted under varying load conditions. This
experiment uses the CWRU dataset and employs datasets 1©, 2©, and 3© as training samples, with fault
diagnosis performed on the remaining datasets. For example, ‘ 1©→ 2©’ means using dataset 1© as the training
set to train the model and dataset 2© as the test set to perform fault diagnosis. The training parameters are set
the same as those in the noise interference experiment. The diagnostic results of each method under variable
load conditions are shown in the Fig. 11 and Table 3.

Figure 11: (Continued)
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Figure 11: Comparison of diagnostic effects under variable load

Table 3: Comparison of diagnostic effects under variable load

Accuracy (%)/Precision (%)/Recall (%)/F1 (%)

1©→ 2© 1©→ 3© 2©→ 1© 2©→ 3© 3©→ 1© 3©→ 2©
ILenet5 92.4/95.0/92.2/90.8 94.5/96.1/94.4/93.9 96.0/96.8/95.9/95.8 99.8/99.8/99.8/99.8 96.6/96.8/96.5/96.5 96.6/96.2/96.5/96.4

WDCNN 88.5/91.0/88.3/84.2 90.1/93.4/89.9/85.9 98.5/98.5/98.5/98.5 100.0/100.0/100.0/100.0 96.8/96.8/96.8/96.8 98.7/98.7/98.6/98.6
MSCNN 97.8/97.8/97.8/97.8 98.2/98.2/98.2/98.2 98.2/98.2/98.1/98.1 100.0/100.0/100.0/100.0 98.4/98.4/98.4/98.4 98.2/98.2/98.1/98.1

MSFN_FFT 95.7/96.9/95.6/95.4 93.7/94.7/93.5/93.3 99.3/99.3/99.3/99.3 100.0/100.0/100.0/100.0 98.9/98.9/98.9/98.9 96.3/96.6/96.2/96.1
MSFN_NCA 96.8/96.9/96.8/97.7 96.5/96.6/96.4/96.4 98.4/98.4/98.4/98.4 100.0/100.0/100.0/100.0 98.5/98.6/98.5/98.5 97.8/97.9/97.7/97.7

MSFN 97.1/97.1/97.0/97.0 98.0/98.2/98.0/97.9 99.5/99.5/99.5/99.5 100.0/100.0/100.0/100.0 98.7/98.7/98.6/98.6 98.8/98.8/98.7/98.7

As shown in the figure, ILeNet5 and WDCNN exhibit low fault diagnosis accuracy under variable load
conditions, indicating that these models have certain limitations in generalization under such conditions.
Specifically, under variable load tasks, the performance of these models fluctuates significantly, which may
be influenced by substantial changes in the input data. In contrast, MSCNN and the proposed model can
still maintain high accuracy under variable load conditions, achieving 98.47% and 98.68%. This result
demonstrates that the multi-scale model improves adaptability to varying inputs while enhancing expressive
ability, thereby showing better generalization performance, particularly in complex load change scenarios.
Moreover, the proposed method shows an improvement in accuracy compared to other models, with
increases of 2.70%, 3.25%, 0.21%, 1.36%, and 0.68%. These results suggest that the proposed method retains
a certain level of generalization capability under variable load conditions, indicating its adaptability to
load variations.

4.6 Model Universality Experiment
To verify the universality of the proposed method on different datasets, experiments are conducted

using the Ottawa dataset. Dataset 2© is selected as the experimental sample. Gaussian white noise with an
SNR ranging from 0 to 10 dB is added to simulate various noises during the signal acquisition process. The
experimental results are compared with the ILeNet5, WDCNN, MSCNN, MSFN_FFT, and MSFN_NCA
models, as shown in Table 4.



Comput Mater Contin. 2025;84(2) 3535

Table 4: Comparison of diagnostic effects under different SNR (Ottawa)

Accuracy (%)/Precision (%)/Recall (%)/F1 (%)

0 dB 2 dB 4 dB 6 dB 8 dB 10 dB

ILenet5 54.52/54.88/53.12/51.45 60.36/69.71/58.60/59.54 61.90/66.90/60.90/61.88 64.88/65.38/64.72/62.33 70.95/75.14/70.63/68.76 71.90/76.36/72.18/68.93
WDCNN 86.43/88.75/85.80/85.09 90.83/91.18/91.05/90.68 92.86/93.83/92.50/92.29 95.00/95.19/94.75/94.92 96.90/97.03/96.75/96.71 97.86/97.91/97.75/97.75
MSCNN 84.76/86.55/84.73/84.47 88.81/88.66/88.67/88.58 91.79/91.61/91.43/91.39 92.50/92.35/92.30/92.24 92.14/91.85/91.95/91.84 93.21/93.02/92.93/92.90

MSFN_FFT 85.24/85.75/84.98/85.20 90.36/90.36/89.98/89.93 92.14/93.42/91.87/91.68 94.40/95.06/94.15/94.05 96.55/96.39/96.40/96.37 97.74/97.63/97.65/97.64
MSFN_NCA 88.93/88.80/88.80/88.78 91.90/91.73/91.68/91.66 93.21/93.01/93.02/92.91 93.57/93.27/93.32/93.24 96.55/96.55/96.37/96.32 97.98/97.88/97.88/97.86

MSFN 89.17/89.11/89.15/89.03 92.50/92.11/92.25/92.10 93.57/93.92/93.28/93.23 95.83/95.69/95.63/95.64 96.79/96.75/96.62/96.66 98.57/98.52/98.50/98.51

The accuracy of all models generally decreases in this experiment. This may be attributed to the precision
of the data acquisition device and the environment in which the data is collected. As shown in the figure,
the accuracy of the proposed model remains high on this dataset, with an average accuracy of 94.41%. Even
under 0dB noisy signals, it can maintain an accuracy of nearly 90%, indicating that the proposed method
exhibits a certain degree of universality.

4.7 Model Complexity Analysis
Although the proposed model achieves high diagnostic performance by integrating multi-scale time-

frequency domain feature extraction and cross-attention fusion, it introduces certain computational
burdens, mainly attributed to two components:

(1) TDFT module, which involves repeated envelope extraction using Hilbert transforms and frequency-
domain filtering via FFT and IFFT. The complexity is approximately:

O(M ⋅ B ⋅ C ⋅ N log N) (16)

where M is the number of filter scales, B is Batchsize, C is channels, and N is the input signal length.
(2) The CrossAttention module, operating on time-domain and frequency-domain features, performs

full attention with complexity:

O(B ⋅ 2 ⋅ S2 ⋅ dk) (17)

where 2 refers to processing features from two branches (time domain/frequency domain), S is the sequence
length, and dk is the key dimension. It should be noted that the attention mechanism introduces a
computational bottleneck due to its quadratic growth with respect to sequence length.

Although the total parameter count remains moderate, the model is computationally expensive,
especially in real-time scenarios with long signals. Future work will focus on exploring lightweight
approximations to reduce computational costs.

Table 5 shows the average inference time of each model under different noise conditions. Overall,
traditional models such as ILeNet5, WDCNN, and MSCNN exhibit high inference speeds, with an average
time of under 1 millisecond. This makes them suitable for deployment on edge devices with stringent real-
time requirements. While the MSFN models have outstanding performance in accuracy and robustness,
their inference overhead is slightly higher, with an average inference time ranging from 1 to 4 milliseconds.

It is worth noting that the inference time of the MSFN models is relatively high, primarily due
to the inclusion of attention mechanisms and feature reconstruction modules. These components add
computational complexity. Therefore, in practical applications, a trade-off must be made between accuracy
and efficiency, depending on device performance and real-time requirements.
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Table 5: Average inference time (seconds) of each model under different SNR levels

Model 0 dB 2 dB 4 dB 6 dB 8 dB 10 dB Avg
ILeNet5 0.0011 0.0009 0.0006 0.0007 0.0008 0.0006 0.0008

WDCNN 0.0009 0.0009 0.0009 0.0010 0.0010 0.0010 0.00095
MSCNN 0.0008 0.0005 0.0009 0.0007 0.0009 0.0008 0.00077

MSFN_FFT 0.0016 0.0015 0.0013 0.0014 0.0013 0.0010 0.00135
MSFN_NCA 0.0037 0.0037 0.0038 0.0037 0.0037 0.0010 0.0033

MSFN 0.0044 0.0026 0.0043 0.0049 0.0046 0.0041 0.00415

5 Conclusion
This paper proposes an RBFD method based on a multi-scale time-frequency domain fusion network.

The approach extracts time-domain and frequency-domain features from vibration signals and employs
a cross-attention mechanism to enhance multi-scale feature fusion. Under complex noise and variable
load conditions, the method improves both diagnostic accuracy and robustness. Additionally, a frequency-
domain feature extraction method with multi-level, multi-size filters is designed, overcoming the FFT’s
limitation in distinguishing between stationary and transient signal components.

Despite the promising performance, the proposed model still exhibits certain limitations. The incor-
poration of the TDFT and cross-attention mechanisms introduces considerable computational overhead,
which may hinder real-time deployment. Moreover, the model’s performance is sensitive to the selection of
hyperparameters in the TDFT module, such as window length and filter ratios. This may affect its stability
and generalizability across different operating scenarios. Future work will focus on the following directions.

(1) Model compression and pruning can reduce computational complexity and memory consumption.
This makes the model more suitable for deployment in real-time or embedded industrial environments.

(2) Adaptive TDFT mechanisms, such as learning-based windowing strategies or dynamic filter
generation, to improve robustness and reduce reliance on manual parameter tuning.

(3) Hardware acceleration strategies, including deployment on edge devices with GPU/FPGA support
or integration with efficient inference engines like TensorRT or ONNX Runtime.

(4) Exploring domain adaptation or transfer learning frameworks to enhance cross-domain generaliza-
tion, especially when the model is applied to other types of rotating machinery or operating environments
not seen during training.
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