l(o%)| Computers, Materials & & Tech Science Press
, Continua ,

D0i:10.32604/cmc.2025.066190

ARTICLE Check for

updates

A Metamodeling Approach to Enforcing the No-Cloning Theorem in Quantum
Software Engineering

Dae-Kyoo Kim"

Department of Computer Science and Engineering, Oakland University, 115 Library Dr., Rochester, MI 48309, USA
*Corresponding Author: Dae-Kyoo Kim. Email: kim2@oakland.edu
Received: 01 April 2025; Accepted: 26 May 2025; Published: 03 July 2025

ABSTRACT: Quantum software development utilizes quantum phenomena such as superposition and entanglement
to address problems that are challenging for classical systems. However, it must also adhere to critical quantum
constraints, notably the no-cloning theorem, which prohibits the exact duplication of unknown quantum states and
has profound implications for cryptography, secure communication, and error correction. While existing quantum
circuit representations implicitly honor such constraints, they lack formal mechanisms for early-stage verification in
software design. Addressing this constraint at the design phase is essential to ensure the correctness and reliability of
quantum software. This paper presents a formal metamodeling framework using UML-style notation and and Object
Constraint Language (OCL) to systematically capture and enforce the no-cloning theorem within quantum software
models. The proposed metamodel formalizes key quantum concepts—such as entanglement and teleportation—and
encodes enforceable invariants that reflect core quantum mechanical laws. The framework’s effectiveness is validated
by analyzing two critical edge cases—conditional copying with CNOT gates and quantum teleportation—through
instance model evaluations. These cases demonstrate that the metamodel can capture nuanced scenarios that are often
mistaken as violations of the no-cloning theorem but are proven compliant under formal analysis. Thus, these serve as
constructive validations that demonstrate the metamodel’s expressiveness and correctness in representing operations
that may appear to challenge the no-cloning theorem but, upon rigorous analysis, are shown to comply with it. The
approach supports early detection of conceptual design errors, promoting correctness prior to implementation. The
frameworK’s extensibility is also demonstrated by modeling projective measurement, further reinforcing its applicability
to broader quantum software engineering tasks. By integrating the rigor of metamodeling with fundamental quantum
mechanical principles, this work provides a structured, model-driven approach that enables traditional software
engineers to address quantum computing challenges. It offers practical insights into embedding quantum correctness
at the modeling level and advances the development of reliable, error-resilient quantum software systems.

KEYWORDS: Metamodeling; no-cloning theorem; quantum software; software engineering

1 Introduction

Quantum computing introduces a new approach to computation by using quantum mechanical
phenomena to perform calculations that are difficult for classical computers. It relies on superposition,
where quantum bits (qubits) can exist in multiple states simultaneously, and entanglement, which con-
nects the states of multiple qubits such that no single qubit’s state can be determined independently.
These characteristics enable quantum computers to process information in parallel, enhancing the speed
of certain computations. However, quantum mechanics also brings specific limitations, notably the no-
cloning theorem [1], which prevents the exact duplication of an arbitrary unknown quantum state. This

® Copyright © 2025 The Author. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.066190
https://www.techscience.com/doi/10.32604/cmc.2025.066190
mailto:kim2@oakland.edu

2550 Comput Mater Contin. 2025;84(2)

principle is essential to quantum information theory and affects quantum cryptography, error correction,
and communication protocols.

While quantum software development is advancing, there remains a gap in software engineering
methods for modeling and representing quantum mechanical principles like the no-cloning theorem.
Metamodeling techniques, particularly those based on UML, have been effective in outlining domain
concepts and relationships in emerging areas. These frameworks offer detailed abstractions and formal
specifications that can adapt to include quantum mechanical principles. When extended, these methods
provide a foundation for designing, analyzing, and validating quantum software systems, helping to bridge
the gap between quantum mechanics and software engineering methodologies.

Several quantum software modeling approaches have been proposed (e.g., [2-6]). These include graph-
based modeling of unitary circuits, offering circuit-level abstractions for quantum computation using
model-driven engineering [2]; a UML profile for designing hybrid classical-quantum systems through stereo-
types and multiple diagram types [3]; the Talavera Manifesto, which outlines principles and commitments
for establishing quantum software engineering as a discipline [4]; a lifecycle model for developing hybrid
quantum applications that integrate quantum and classical components via workflow technology [5]; and a
quantum software testing framework that addresses post-implementation quality assurance challenges [6].
However, there remains a clear gap in the availability of rigorous theoretical frameworks for the formal design
and verification of quantum-specific constraints, particularly the no-cloning theorem. Such a framework is
crucial for supporting traditional software engineers, who are experienced in classical software development
but often lack expertise in quantum software principles.

This paper presents a metamodeling approach using UML-style notation to describe the no-cloning
theorem in quantum mechanics, demonstrating how traditional software engineering techniques can eftec-
tively represent and analyze quantum principles. The metamodel defines key quantum concepts related to the
no-cloning theorem and their relationships, incorporating formal invariants to reinforce quantum mechan-
ical constraints. Two edge cases—conditional copying with CNOT gates and quantum teleportation—are
examined through instance models to assess the metamodel’s effectiveness in analyzing quantum principles.
While these cases may seem to violate the no-cloning theorem, the analysis confirms their compliance
with its constraints. This metamodeling approach provides a structured framework that integrates quantum
mechanics with software engineering, helping traditional software engineers better engage with quantum
computing and apply established software engineering methodologies to quantum software development.

The remainder of this paper is structured as follows: Section 2 provides an overview of related
work. Section 4 discusses the no-cloning theorem and introduces the metamodel for the theorem. Section 5
describes two edge cases of cloning, captured by instance models of the metamodel and their implementa-
tions. Section 8 concludes the paper and outlines future research directions.

2 Related Work

Recent research in quantum software engineering has focused on applying modeling techniques to
quantum computing systems. Alonso et al. [2] developed a unified metamodel for quantum circuits using
model-driven engineering, showing how systematic modeling can standardize quantum software develop-
ment. Following this, Sanchez and Alonso [7] investigated modularity in quantum programming, addressing
challenges related to non-clonability and probabilistic operations. Bibbo et al. [8] conducted a comprehensive
review of software engineering resources in quantum computing, emphasizing the importance of modeling
across the software lifecycle.

Comput Mater Contin. 2025;84(2) 2551

The theoretical foundation for quantum software engineering has been developed through several
studies. Ahmad et al. [9] discussed the integration of quantum mechanics principles with software engineer-
ing practices, particularly focusing on quantum software architectures and their importance in development
and validation. Ali et al. [10] analyzed the need for new methodologies that can handle quantum charac-
teristics such as superposition and entanglement. Pérez-Castillo and Piattini [3] proposed a UML profiling
mechanism that extends standard UML to support the design of hybrid classical-quantum systems by
modeling quantum components, classical-quantum interactions, and system architectures. Piattini et al. [4]
present Talavera Manifesto which emphasizes the foundational vision for quantum software engineering
(QSE) as a discipline, proposing broad principles and commitments for systematically building, testing,
maintaining, and managing quantum software at an industrial scale. Their work advocates for adapting
classical software engineering processes to quantum contexts and highlights the importance of governance,
quality assurance, reuse, and security. In contrast, the our work provides a much more concrete and technical
contribution by introducing a formal metamodel with OCL constraints that captures fundamental quantum
mechanical laws, specifically the no-cloning theorem, aiming to prevent conceptual errors at the design
phase. Thus, while the Talavera Manifesto lays out a high-level roadmap for the future of QSE as a discipline,
our work operationalizes part of that vision by formally modeling quantum-specific constraints that can be
directly applied in early-stage quantum software modeling.

Implementation aspects of quantum software systems have been explored through various methods.
Sabzevari et al. [11] introduced quantum computing as a service to broaden access to quantum computing
resources. Gallardo et al. [12] developed Quirk+, a tool that enhances quantum circuit development
capabilities. The work by Weder et al. [5] presents a comprehensive lifecycle framework for developing hybrid
quantum applications that integrate quantum and classical components. They focus on orchestrating these
components through workflow technology and present three interwoven lifecycles: the quantum workflow
lifecycle, the classical software lifecycle, and the quantum circuit lifecycle. Their approach emphasizes practi-
cal implementation considerations such as deployment, observability, and DevOps practices. In contrast, our
work advances the conceptual formalization of quantum mechanical principles, specifically the no-cloning
theorem, by introducing a UML-based metamodel with OCL constraints. While both works bridge quantum
computing and software engineering, Weder et al. emphasize operational processes, covering the entire
application lifecycle, whereas our work concentrates on formalizing specific quantum mechanical principles,
enforcing fundamental quantum constraints at the modeling phase to demonstrate how traditional software
modeling techniques can be adapted to quantum software development.

Testing and validation in quantum systems present unique challenges. Garcia de la Barrera et al. [13]
analyzed existing strategies in quantum software testing, focusing on the inadequacies of classical testing
methods for quantum systems. Ali [6] presents an introductory overview of quantum software testing (QST),
focusing on the challenges of testing quantum programs due to the unique characteristics of quantum
computing (e.g., superposition, entanglement). The work outlines three main topics: quantum computing
fundamentals, QST challenges compared to classical software testing, and current QST techniques along with
their limitations. Ali specifically highlights specialized testing approaches such as input/output coverage cri-
teria, metamorphic testing, and noise-aware testing for quantum programs. In contrast, our work addresses
pre-implementation correctness by formally modeling quantum mechanical constraints—specifically the
no-cloning theorem—through a UML-based metamodel with OCL constraints. Rather than testing quantum
software after it is built, our work aims to embed quantum correctness directly into the design phase,
preventing conceptual errors at the modeling level. Thus, whereas Ali emphasizes improving the quality
assurance process for quantum software, our work emphasizes design-time correctness enforcement rooted
in fundamental quantum principles.

2552 Comput Mater Contin. 2025;84(2)

Process management in quantum software development has been explored in various studies.
Khan et al. [14] examined the integration of agile practices into quantum software development, using
interviews with practitioners from multiple countries. Separately, Thompson et al. [15] investigated the use of
machine learning with quantum computing, suggesting non-algorithmic approaches to programming that
are suited for Noisy Intermediate-Scale Quantum (NISQ) devices.

This diverse body of research highlights the advancing maturity of quantum software engineering.
This work builds on these foundations by focusing on the formal representation of the no-cloning theorem
through metamodeling, aiming to connect traditional software engineering practices with the development
of quantum software systems.

3 Comparing with Existing Quantum Computing Modeling Approaches

In this section, we compare the metamodeling approach with quantum circuit diagrams [1], and other
quantum software modeling approaches [2,3].

3.1 Comparing with Quantum Circuit Diagrams

Quantum circuit diagrams are the de facto standard for representing quantum algorithms and opera-
tions, offering a visual syntax that is intuitive for physicists and quantum developers.

Table 1 presents the differences between the metamodeling approach and quantum circuit diagrams.
The metamodeling approach operates at a higher level of abstraction, focusing on the conceptual relation-
ships between quantum constructs such as states, gates, and operations. This abstraction enables software
engineers to represent complex theoretical principles, like the no-cloning theorem, in a structured manner.
In contrast, quantum circuit diagrams provide a lower-level, implementation-focused view that captures
the sequential application of quantum gates on qubits. While effective for illustrating algorithms, they
do not represent the underlying theoretical constraints (e.g., no-cloning theorem, unitarity of quantum
operations) explicitly.

Table 1: Comparing metamodeling with quantum circuit diagrams

Feature

Metamodeling approach

Quantum circuit diagrams

Abstraction level

Support for constraints

Formal semantics

Target audience

Relationship expression

Integration with SE tools

High-level abstraction that
captures relationships between
quantum concepts
Explicit (e.g., inner product
preservation, unitarity)
Can explicitly encode
theoretical constraints (e.g.,
OCL invariants for no-cloning
theorem)

Software engineers and system
architects familiar with UML
Explicitly shows associations,
multiplicity, and inheritance
between quantum concepts
High (supports model-driven
engineering)

Lower-level representation
focused on operation sequence
and gate implementation
Implicit or manual

Constraints are implicit in the
circuit structure rather than
formally stated

Quantum physicists and
algorithm developers
Primarily shows temporal and
operational dependencies

Low

(Continued)

Comput Mater Contin. 2025;84(2)

2553

Table 1 (continued)

Feature

Metamodeling approach

Quantum circuit diagrams

Domain coverage

Notation
Implementation gap
Extensibility

Expressiveness for theorems

Can represent the entire
conceptual domain including
theoretical principles
UML-style class diagrams with
constraints
Requires translation to
executable code
Easily extended to incorporate
new quantum concepts
Can express abstract rules (e.g.,
no-cloning limits)

Focused on computational
aspects and executable
operations
Time-sequential gate operations
on qubits
Directly represents executable
operations
Extension requires adding new
gate types or circuit components
Shows circuit-level behavior
only

A key strength of the metamodeling approach is its support for explicitly specifying constraints, such
as inner product preservation and unitarity, through Object Constraint Language (OCL) invariants. These
formal semantics enable rigorous validation against quantum mechanical rules. Circuit diagrams, however,
rely on implicit correctness, with constraint adherence being verified through simulation or domain expertise
rather than formal specification.

The intended audiences for these approaches also differ. Metamodeling is primarily suited for software
engineers, particularly those working within model-driven engineering environments, whereas quantum
circuit diagrams are tailored for physicists and quantum algorithm developers. In terms of expressiveness,
metamodels make use of associations, multiplicity, and inheritance to define complex relationships between
quantum entities. Circuit diagrams, on the other hand, emphasize operational dependencies and time-
ordered execution. Furthermore, the metamodeling approach integrates well with software engineering
modeling tools, while circuit diagrams often exist in isolation from such tools.

In terms of domain coverage, metamodels can capture both operational procedures and foundational
principles, providing a comprehensive view of quantum systems. Circuit diagrams are generally limited
to computational aspects and do not encode theoretical abstractions. The notations also reflect this dis-
tinction: metamodels use UML-style diagrams with formal constraints, whereas circuit diagrams depict
time-sequential gate operations.

A limitation of metamodeling is the implementation gap—it requires translation from model to
executable code. In contrast, circuit diagrams represent executable operations directly and can be compiled
to run on quantum hardware. However, the extensibility of metamodels is a notable advantage; they can be
adapted to include new quantum concepts through standard modeling techniques, while extending circuit
diagrams requires the introduction of new gate symbols or custom logic.

Together, the metamodeling approach and quantum circuit diagrams serve complementary roles in
quantum software engineering. Metamodels offer a rigorous theoretical framework for design and veri-
fication, particularly suited for traditional software engineers working with formal models. In contrast,
quantum circuit diagrams provide practical, implementation-oriented representations tailored to the needs
of quantum physicists and algorithm developers.

2554

Comput Mater Contin. 2025;84(2)

3.2 Comparing with Other Quantum Software Modeling Approaches
We compare the proposed approach with two existing quantum software modeling approaches: the
work of Alonso et al. [2] and that of Pérez-Castillo and Piattini [3]. Table 2 presents a detailed comparison.

Table 2: Comparing with other quantum software modeling approaches

Aspect

Proposed metamodeling

approach

Pérez-Castillo and

Alonso et al’s work [2]
Piattini’s work [3]

Primary focus

Modeling notation

Model
extensibility

Quantum
elements

represented

Constraint
language

Integration with
classical systems

Abstraction level

Formalism level
Validation focus
Supported

diagrams

Modeling
strategies

Used tools

Formalizing quantum
mechanics principles
(specifically the
no-cloning theorem)
UML + OCL

Extends through
inheritance from base
metaclasses
Quantum states, gates,
entanglement,
teleportation, cloning,
unitarity, orthogonality

OCL (Object Constraint

Language)

Not explicitly addressed

High (conceptual
metamodel)
High (mathematical
concepts with OCL
invariants)
Formal validation of

cloning constraints and
metamodel constraints

Class diagrams

Single approach

StarUML for creating
UML models, Qiskit

Unitary circuit model Classical-quantum

representation hybrid systems design
Graph-based metamodel UML Profile
(UML-inspired) + OCL
Supports five different Extends UML through
modeling strategies standard profiling
mechanism

Quantum components,

Qubits, quantum gates,
algorithms, gates, qubits

circuits, control
structures

OCL (constraints for UML constraints and

validity and model stereotypes
transformations)
Primarily focused on Strong focus on hybrid
quantum circuits classical-quantum
systems
Medium (circuit-level Medium (structural and
abstractions) behavioral UML models)
Medium (graph-based Medium-Low (standard
UML extension)

with OCL constraints)

Integration of classical
and quantum
components
Use case, class, sequence,
activity, deployment

Correct circuit structure
and gate sequencing

Graph-based

representations
diagrams
Multiple (swim-lane, Multiple diagram types
linear, slice, mixed with consistent
swim-lane, mixed linear) stereotypes
Eclipse, Qiskit, Py4], Papyrus for creating
UML models

Jython, Epsilon
Transformation Language

(Continued)

Comput Mater Contin. 2025;84(2) 2555

Table 2 (continued)

Aspect Proposed metamodeling Alonso et al’s work [2] Pérez-Castillo and
approach Piattini’s work [3]
Primary Formal representation of ~ Unified metamodel for Design methodology for
contribution quantum principles quantum circuits hybrid systems
Target users Software engineers Quantum circuit System architects and
interested in quantum designers and MDE hybrid software designers
software practitioners
Implementation Quantum state cloning Quantum circuit Hybrid application
examples examples modeling examples (finance) prototype
Applicability to Limited (focused on Primarily unitary circuit Applicable to various
other quantum no-cloning theorem) model quantum computing
models paradigms

A notable strength of the proposed approach is its high level of abstraction, employing OCL for formal
constraint validation. This enables the explicit formalization of quantum rules such as entanglement and
teleportation. It offers a more rigorous formalism than the medium-level circuit abstractions (e.g., quantum
gates as graph nodes) in Alonso et al’s method or the medium-low structural focus (e.g., quantum concepts
as UML stereotypes) in Pérez-Castillo and Piattini’s profile.

From a tooling perspective, all approaches leverage UML-based tools (e.g., StarUML, Papyrus, Eclipse),
but their target users differ: the proposed approach is aimed at software engineers interested in quantum
software design, while Alonso et al’s and Pérez-Castillo and Piattini’s frameworks are intended for quantum
circuit developers and hybrid system architects, respectively.

In terms of modeling strategy, the proposed metamodel employs a single, inheritance-based class
structure, in contrast to Alonso et al’s multi-strategy graph-based representation (e.g., swim-lane and slice-
based graphs) and Pérez-Castillo and Piattini’s multi-diagram UML profiling (e.g., class, sequence, and
deployment diagrams). However, its scope is narrower, being tailored to the no-cloning theorem, whereas
the other two frameworks offer broader applicability to unitary models or hybrid paradigms.

Validation strategies also differ: the proposed approach focuses on formal validation of cloning
constraints, Alonso emphasizes correct circuit structure, and Pérez-Castillo prioritizes classical-quantum
component integration.

In summary, the novelty of this work lies in developing a formal metamodel that goes beyond
representing quantum concepts to explicitly encode the mathematical constraints of quantum mechanics—
specifically the no-cloning theorem—using verifiable OCL invariants. This enables early-stage validation
of quantum software models within established software engineering practices, effectively bridging foun-
dational quantum principles with model-driven software engineering methodologies in a formal and
verifiable manner.

4 Metamodeling “No-Cloning Theorem”

In this section, we discuss the no-cloning theorem and introduce a metamodel that represents it.
Theorem 1 [1] details the no-cloning theorem.

2556 Comput Mater Contin. 2025;84(2)

Theorem 1 (No-Cloning Theorem): The no-cloning theorem states that creating an exact copy of an arbitrary
unknown quantum state is impossible. This theorem is crucial as it sets fundamental limits on quantum
computing and information processing, in contrast to classical mechanics where state duplication is feasible.

Consider a quantum machine designed to clone quantum states, which includes two slots: slot A (data slot)
and slot B (target slot). Slot A contains an unknown pure quantum state |y), and slot B starts in a standard pure
state |s). The initial combined state of the system can be represented by Eq. (1):

v) @ s)- ey

where ® denotes the tensor product of the states in slots A and B.

Suppose there is a unitary operation U purported to clone quantum states. Specifically, U is applied to the
combined system with the state defined by Eq. (1). The intended outcome of this operation is to duplicate the
state |y), as shown in Eq. (2):

U(ly) ®ls)) = ly) ®ly).)

Assuming the cloning process works for states |y) and |§), the effects of the unitary operation can be
examined by considering inner products, as shown in Eq. (3):

U(ly) ®1s)) = lv) ® [y), 3)
U(lg) ®1s)) = ¢) ® |¢)

For any two states |y) and |§), a unitary operation U must comply with Eq. (4):
(vlg) = (Uy|Ug) (4)

This stipulates that the inner product between the states before applying U must equal the inner product
between the states after applying U.

In the hypothetical cloning scenario, before applying the unitary operation U, the states |y) and |s) (the
standard state) are combined using tensor products, as are |¢) and |s). The objective of U is to replicate |y)and
|§). If successful, after applying U, the states would transform into |y) ® |y) and |$) ® |p), respectively. This
transformation is represented in Eq. (5):

(Uyoes)|U(ges))=(veyldpe¢) (5)
Given the unitarity of U, the following equation holds:

(U(y®s)|U(p®s))=(y@slp®s) (6)
If we assume cloning is feasible, then Eq. (5) is simplified by Eq. (6) to:

(voslpgos)=(veylped) 7)

Unitary operations must preserve the inner products of states, meaning if U could theoretically clone both
|v) and |§), their post-cloning inner products must reflect their original inner products. The inner product
between tensor product states (y ® s|¢ ® s) can be decomposed into the product of the inner products of their
components due to the separable nature of tensor products in Hilbert spaces, as shown in Eq. (8).

{vlg)(sls) (8)

Comput Mater Contin. 2025;84(2) 2557

where (y|¢)is the overlap between |y) and |¢), and (s|s) is the self-inner product of |s). Assuming |s)is
normalized, (s|s) = 1, leading to Eq. (9).

(veslg®s)=(y|¢) 9)

This result shows that the similarity or overlap between the tensor product states |y ® s) and |¢p ® s) is
determined solely by the overlap between |y) and |¢), with the normalized state |s) having no impact on the
comparison.

After applying U, Eq. (10) is established since the tensor product of inner products is the product of the inner
products.

(v @ ylp® ¢) = (yl¢)(vlg) = (v]9)* (10)
Then, Eq. (9) simplifies to Eq. (11).
(vlg) = (vig)* (11)

This equation holds true only if (y|¢) = 0 or (y|¢) = 1, indicating that |y) and |¢) must be either the same
state or orthogonal states. This result demonstrates that a unitary cloner can effectively operate for two states
only if those states are either identical or orthogonal. For orthogonal states, the inner product is zero, which
means there is no overlap between the states and they are perfectly distinguishable with a probability of 1 upon
measurement. This ensures a 100% probability of correctly identifying the state as either |y) or |§) without
confusion. Orthogonality before applying a unitary operation implies they must remain orthogonal afterward.

However, for general quantum states that are neither orthogonal nor identical, no such unitary cloner U
can exist, as no unitary operation can satisfy this equation for all possible pairs of states, thereby negating the
possibility of a universal cloner. When states are non-orthogonal, they have a non-zero probability amplitude
overlap, indicating they cannot be perfectly distinguished by any measurement. Non-orthogonal states, due to
their inherent overlap, cannot be perfectly cloned as this would necessitate altering the inner product, which is
invariant under unitary evolution. This fundamental limitation applies to both pure and mixed states.

Fig. 1 illustrates a metamodel for the no-cloning theorem in quantum mechanics using UML-style
notation to outline quantum concepts, their relationships, and multiplicity constraints. The model was
developed using StarUML', a UML modeling tool. The C1one metaclass represents hypothetical cloning
operations, adhering to the no-cloning principle as specified in Invariant (14), which allows only identical
or orthogonal states to be cloned. The Matrix metaclass depicts the matrix representation of quantum
operations, with Invariant (13) ensuring that these operations are unitary by requiring that the product of
a matrix and its conjugate transpose yields the identity matrix. The model includes quantum gates such
as the Hadamard, CNOT, X, and Z gates, and the Teleportation metaclass, which represents an
operation that uses entanglement and classical communication to transfer a quantum state from a source
qubit to a target qubit without direct cloning. These teleportation interactions are linked through associ-
ations to Qubit, Entanglement, and ClassicalCommunicationLine, capturing the structural
dependencies necessary for modeling the protocol. Orthogonality between states is represented through
a self-association on the State metaclass, indicating that two states involved in a cloning operation
must satisfy the orthogonality condition when not identical. Table 3 provides descriptions of the individual
metaclasses represented in the metamodel.

lhllp.\‘:""slaruml.in (accessed on 25 May 2025).

https://staruml.io

2558 Comput Mater Contin. 2025;84(2)

| orthogonal

Matrix State Measurement
Z X idnentity() innerProduct()
adjoint() tensor(s: State)

multiply(m: Matrix) 1
1
1

Gate l: Operation i -
qLw i g
A applyTensor(sl: State, s2: State) Z
74
Superposition ZF source target
Clone

necessary 1

Teleportation

Enterigiamca gl| Hademan i ClassicalCommunicationLine

1Ly
Figure 1: Metamodel for no-cloning theorem
Table 3: Elements of the no-cloning theorem metamodel in Fig. 1
Metaclass Description
Matrix Represents the mathematical matrix form of quantum
operations with linear algebraic transformations (e.g., identity,
adjoint) used in operations.
Operation Abstract class representing quantum operations that transform
quantum states (e.g., gates, teleportation).
Qubit Represents quantum bits, the basic unit of quantum information.
It can be in superposition or entangled with other qubits.
State Represents the quantum state of a qubit with inner product
functionality.
Gate Abstract class for quantum gates (e.g., X, Z, Hadamard, CNOT)
that manipulate qubit states.
z Z-gate, a specific single-qubit quantum gate that applies a phase
flip.
X X-gate, a specific single-qubit quantum gate that applies a bit flip.
Hadamard Quantum gate that creates superposition by transforming basis
states.
CNOT Controlled-NOT gate that entangles two qubits
Measurement Represents the process of measuring quantum states, causing

state collapse.

(Continued)

Comput Mater Contin. 2025;84(2) 2559

Table 3 (continued)

Metaclass Description

Superposition Represents the quantum property that a qubit exists in a linear
combination of basis states; marked as necessary for certain
operations through associations with explicit multiplicity

constraints.
Entanglement Represents quantum correlation between multiple qubits;
required in operations like teleportation.
Clone Represents hypothetical cloning operations, constrained by the
no-cloning theorem.
Teleportation Represents a composite operation that transfers quantum states

using entanglement and classical communication.
ClassicalCommunicationLine Represents the classical channel required in teleportation

We employ the Object Constraint Language (OCL) [16], a companion language to UML, to specify the
principles of the no-cloning theorem on relevant metaclasses. Invariant (12) maintains that the inner product
of orthogonal states must be zero, emphasizing the uniqueness and independence of orthogonal quantum
states in cloning operations.

Context : Clone
Inv : InnerProductPreservation
self.Qubit — (forAll g1, q2 |

if ql.State.orthogonal — includes(q2.State)then (12)
ql.State.innerProduct(q2.State) = 0

else
true)

Invariant (13) ensures the unitarity of matrices within the system, a fundamental property in quantum
mechanics that governs state evolution. Notably, unitarity is a sufficient condition for general inner product
preservation across quantum operations. In contrast, Invariant (12), defined specifically in the context of
cloning, explicitly enforces that inner products between orthogonal states must be preserved in hypothetical
cloning operations, reflecting a core constraint of the no-cloning theorem.

Context : Matrix

Inv : Unitarity
(self. multiply(self.adjoint()) = Matrix::identity() and
self.adjoint().multiply(self)) = Matrix::identity()))

(13)

Invariant (14) enforces the no-cloning theorem by ensuring that no universal cloning operation can
replicate all quantum states. It specifies that for any cloning operation, if two qubits have distinct states,
they must remain distinct unless they are orthogonal. If orthogonal, the operation may result in the states
becoming identical, reflecting the ability to clone states only when their orthogonal relationship is predefined,
and prior knowledge of the states is available.

2560 Comput Mater Contin. 2025;84(2)

Context : Clone
Inv : Clonelnvariant
self.qubit — forAll(ql, q2|
let sl:State= ql.State,
s2:State =q2.State
in
if s1 # s2then
(not self.applyTensor(sl, s2) = sl.tensor(sl) and
not self.applyTensor(sl, s2) = s2.tensor(s2)) or
(sl.orthogonal — includes (s2) implies
self.applyTensor(sl, s2) = sl.tensor(sl) or

(14)

self.applyTensor(sl, s2) = s2.tensor(s2))
else
true

Invariant (15) ensures that any Entanglement associated with a Teleportation operation
involves only those Qubit instances that participate in the Teleportation. This constraint enforces
consistency between the qubits engaged in the teleportation protocol and those entangled as part of its
implementation.

Context : Teleportation
Inv : TeleportationEntanglement (15)
self.Entanglement.Qubit — forAll(q | self.Qubit — includes(q))

In teleportation, the receiving (target) qubit is adjusted to replicate the original state through classical
communication. Invariant (16) ensures that the target qubit of a teleportation operation is included among
the qubits associated with its corresponding classical communication line.

Context : Teleportation
Inv : TeleportationCommunication (16)
self.Classical CommunicationLine.Qubit — includes(self.target)

Invariant (17) ensures that the original quantum state is destroyed during the Bell-state measurement
phase of teleportation. It prohibits the coexistence of the original and teleported quantum states, thereby
preventing any implicit or residual duplication of state information.

Context : Teleportation

Inv:TeleportationDestruction
self.source.Measurement — notEmpty() implies
self.source.State.oclIsUndefined()

17)

While the proposed metamodel provides a structural foundation for representing key quantum comput-
ing concepts, it is important to acknowledge its limitations in directly modeling dynamic phenomena such
as quantum state evolution. Quantum state evolution, governed by continuous unitary transformations and
probabilistic measurement collapses, involves temporal and process-oriented behaviors that static structural
metamodels, such as those based on UML, are not inherently designed to capture. However, relevant
constraints associated with quantum state evolution (e.g., unitarity, inner product preservation) can be

Comput Mater Contin. 2025;84(2) 2561

formally expressed through OCL, as demonstrated. Similarly, while the no-cloning impossibility is captured
in the proposed metamodel through a dedicated Clone metaclass and associated OCL invariants, the
enforcement of no-cloning across dynamic sequences of operations exceeds the expressiveness of static
class diagrams.

The no-cloning theorem forms a fundamental basis for quantum computing and is explicitly integrated
into the design of the proposed metamodel; therefore, it does not adversely affect model interoperability. Any
models developed based on the metamodel remain inherently interoperable by design. In current quantum
computing practice, modularity is typically defined at the level of operations and algorithms, both of which
are explicitly represented within the metamodel, thereby ensuring strong modularity support. We anticipate
that the metamodel will continue to evolve and expand to encompass a broader range of quantum computing
aspects, enhancing its flexibility and applicability for developing diverse quantum software systems.

The no-cloning theorem is a fundamental law of quantum mechanics and does not directly impact
model qualities such as reusability. Model qualities are typically determined at the instance-level (design-
level) of the metamodel by applying software engineering principles such as coupling, cohesion, and
separation of concerns, as established in traditional software engineering. The applicability of these tra-
ditional principles to quantum software systems remains an open area for further investigation. Once
reusability is intentionally designed at the model-level, it is inherently reflected in the construction of
programming components at the implementation-level.

In quantum communication systems (e.g., quantum teleportation, entanglement swapping [1]), which
transmit information between two or more parties using quantum phenomena such as superposition
and entanglement, the constraints imposed by the no-cloning theorem can be used to reason about the
impossibility of duplicating qubit states during information transfer. The metamodel helps structurally
represent these systems while formally enforcing no-cloning constraints through OCL invariants, thereby
enabling systematic validation of quantum communication protocols to ensure they adhere to fundamental
quantum mechanical principles.

The metamodel can be extended to support approximate or probabilistic cloning techniques (e.g.,
universal quantum cloning machines (UQCM) [17]), which allow the creation of imperfect copies of
quantum states by relaxing the strict limitations of the no-cloning theorem at the cost of reduced fidelity. This
can be achieved by extending the C1one metaclass into a hierarchy representing different types of cloning:
perfect cloning (strictly prohibited by the no-cloning theorem for arbitrary unknown states), approximate
cloning (allowing imperfect copies with reduced fidelity), and probabilistic cloning (allowing perfect copies
but only with a certain probability). Depending on how these extended elements are incorporated into
the model, the fidelity of quantum simulations may vary, with approximate cloning introducing fidelity
degradation and probabilistic cloning introducing conditional success rates. Such extensions would enhance
the metamodel’s practical applicability to real-world quantum systems where noise and imperfections exist.

5 Presenting Cloning-Like Operations as Instance Models of Metamodel

This section examines two edge cases — conditional copying using CNOT gates and quantum teleporta-
tion - through instance models to evaluate the metamodel’s effectiveness in analyzing quantum principles.
All instance models were created using StarUML. These two scenarios were selected based on the following
criteria: (1) both are canonical operations in quantum computing that are commonly misinterpreted as
potential violations of the no-cloning theorem, and (2) each exercises distinct aspects of the metamodel
and its associated OCL invariants. The CNOT case specifically tests constraints related to orthogonality
and conditional behavior (e.g., Invariants (12) and (14)), while the teleportation case engages constraints

2562 Comput Mater Contin. 2025;84(2)

involving state destruction, entanglement, and classical communication consistency (e.g., Invariants (15)-
(17)). Together, these cases probe the boundary conditions of cloning behavior and validate the internal
consistency of the metamodel’s formal constraints.

5.1 Conditional Cloning Using CNOT Gate

Unitary operations preserve inner products, allowing only orthogonal states known prior to cloning
to be perfectly cloned without violating the no-cloning theorem. Orthogonality is essential for main-
taining consistency with quantum laws, particularly in preserving probability amplitudes and ensuring
state distinguishability. A specific example is the CNOT gate, which acts as a cloning operation under
certain conditions.

Applying a CNOT gate to two qubits where the control qubit is |1) and the target qubit is |0),
orthogonal to [1), results in the target flipping to |1), simulating conditional copying of the control bit.
While CNOT([1) ® |0)) = [1) ® |1) might suggest cloning, the non-replication in scenarios where the control
is |0) and the target is 1), CNOT(]0) ® |1)) results in [1) ® |0), demonstrates the conditional and non-
universal nature of this operation, aligning with the no-cloning theorem. Moreover, when the control qubit is
initialized in a superposition «|0) + 3|1) and the target qubit is initialized in |0), the CNOT gate produces an
entangled state («|0) + 8|1)) ® |0) = «|0)|0) + f3|1)|0) rather than two independent copies. Thus, the CNOT
gate operation preserves the no-cloning theorem by preventing universal replication of arbitrary quantum
states. Accordingly, the metamodel distinguishes the CNOT gate from the Clone metaclass to capture
these nuances.

Fig. 2 presents an instance model of the metamodel illustrating this conditional simulation of cloning,
highlighting that CNOT’s copying is situationally dependent and not a form of true cloning. The instance
model for conditional cloning using the CNOT gate concretely demonstrates how a control-target configura-
tion enables replication of basis states. In this model, qubit g1 is initialized to the orthogonal basis state |1)—a
critical condition for the operation’s validity within the no-cloning theorem—while g2 is initialized to |0).
The CNOT gate, with g1 as control and g2 as target, conditionally flips the target qubit based on the control
qubit’s state. As a result, when the control qubit is in |1), the target qubit transitions from |0) to [1), effectively
mirroring the control state. This structural arrangement demonstrates how the CNOT operation facilitates
controlled state transfer when specific preconditions are met, namely, when predetermined orthogonal states
are involved. This validates that conditional cloning of orthogonal basis states can be achieved exactly. The
model effectively captures that the CNOT gate does not perform universal cloning (which would violate
quantum principles) but instead carries out a conditional copying operation that depends entirely on the
initial states of the qubits being known in advance. This implies that if the control qubit is initialized in the
|0) state or in a superposition state, perfect cloning would not occur, consistent with the no-cloning theorem.
Thus, the instance model provides concrete evidence of how conditional operations achieve exact cloning for
basis states while respecting the fundamental quantum mechanical constraints imposed by the no-cloning
theorem for general states.

The instance of the metamodel that demonstrates conditional cloning using the CNOT gate is detailed
in Listing 1. The program initializes two qubits, [0] and [1], in state |0) (line 8). An X gate is applied to qubit
[0] to transition it to [1) (line 13), making it orthogonal to qubit [1]. A cx (CNOT) gate then correlates qubit
[0] (control) with qubit [1] (target) (line 16), flipping qubit [1] to |1) if qubit [0] is |1), thereby simulating
cloning in this controlled setup. The qubits are measured (line 19), and the circuit is run 1000 times using
Aer’s qasm simulator (lines 22-27) to gather the outcomes (lines 30-31).

Comput Mater Contin. 2025;84(2) 2563

control target

grthogonal orthogonaf_
||1>: State |0>: State

Figure 2: Conditional cloning of states using the CNOT gate

import qiskit

from qiskit import QuantumCircuit

from qiskit_aer import Aer

from qiskit_ibm_provider.job import job_monitor
from qiskit.visualization import plot_histogram

Create a quantum circuit with 2 qubits
qc = QuantumCircuit (2)

Initialize qubit O to [|1> and qubit 1 to [0>

Qubit 1 is already |0> by default, so we don’t need to do anything to it.
We’ll set qubit O to |1> by applying X gate.

qc.x(0)

To copy the state of qubit O to qubit 1, CNOT is used
qc.cx (0, 1)

Measure the qubits to see the result
qc.measure_all ()

Execute the circuit on the gasm simulator

simulator = Aer.get_backend ()
transpiled_circuit = qiskit.transpile(qc, simulator)
job = simulator.run(transpiled_circuit, shots=1000)

job_monitor (job)
result = job.result ()

counts = result.get_counts(qc)

Display the result

print (, counts)

plot_histogram(counts)

Listing 1: Simulating cloning of orthogonal states using the CNOT gate

The program leads to the measurement outcome ‘11" with a consistent count of 1000. This indicates
that both qubits were measured in state |1) in all trials, demonstrating conditional cloning under known
configurations, consistent with the no-cloning theorem.

5.2 State Transfer via Teleportation

Quantum teleportation presents another nuanced case with respect to the no-cloning theorem. It
involves transferring a quantum state from one particle to another without physically moving the particles
themselves. The process utilizes entanglement between particles to transmit an arbitrary quantum state
across different locations, a Bell-state measurement to identify the necessary correction operations, and
classical communication to adjust the receiving qubit’s state to reproduce the original state. Although tele-
portation might appear similar to cloning, it adheres to the no-cloning theorem by preventing duplication:
the original quantum state is destroyed during the measurement process, ensuring that only a single copy of
the state exists at any time.

Fig. 3 displays a metamodel instance illustrating teleportation. The diagram outlines the interactions
among three qubits (ql, q2, and q3) involving superposition, entanglement, and measurements to replicate
the state of ql in q3. Each qubit’s operation is sequentially marked (e.g., 1, 2, 3, etc.) to show the order

2564 Comput Mater Contin. 2025;84(2)

and dependencies within the teleportation protocol. Initially, q1 is set to the superposition state |+) using a
Hadamard gate, while q2, also brought to superposition by a Hadamard gate, is entangled with g3, initially
in |0), using another Hadamard and a CNOT gate. This setup prepares the quantum states for subsequent
entanglement and teleportation, depicted through connections that illustrate the correlation between the
qubits. A Bell-state measurement on ql and q2 then collapses the system into one of the four Bell states, each
representing a maximally entangled state. Below are descriptions of the four Bell states:

o Outcome ‘00 |®*) = %(|OO) + [11)) This outcome indicates no flips or phase changes are necessary.
When the measurement results in ‘00 it suggests that qubits ql and q2 were measured in a state
maintaining their original correlation, without any phase or bit flips. Thus, qubit q3 will not require any
corrections to match the original state of ql.

+ Outcome ‘O1: |®~) = -1-(|00) — [11)) The negative sign indicates a phase difference. Specifically, the ‘01’
outcome tells us that qubits ql and g2 were measured in states that lead to a phase flip relative to their

V2

original superposition states. The Z gate is a phase flip gate, which introduces a phase shift of 7 (or
changes the sign of the amplitude) in the |1) component of a qubit’s state. When we measure ‘01 it means
the phase information has been altered, and to correct it back to the original state, we need to apply the
Z gate (relative phase of 7).

o Outcome 10: |¥*) = %(|01) +[10)). This outcome signifies a bit flip has occurred. The ‘10’ mea-
surement indicates that qubits ql and g2 had their bits flipped relative to their entangled partners,
necessitating a bit flip (X gate) correction on qubit g3 to align with the original state of ql. The X gate
inverts the state from |0) to |1) or vice versa.

o Outcome 1: |¥7) = %(|01) —[10)) This outcome implies both a bit and phase flip. The 1’ result
indicates that qubits q1 and q2 were measured in a state that not only swapped their original bits but also
introduced a phase shift. To correct this, a combination of the X and Z gates must be applied to qubit q3.
The X gate will address the bit flip, and the Z gate will correct the phase inversion.

| : ClassicalCommunicationLine !

| : Teleportation i—

3 : Measurement o : Measurement

4
: Entanglement
control target # control 2 g gt

—| q1: Qubit | q2: Qubit |

source

!

o

Target

Target
0>: State

5

+>: State +>: State
|+>: State

oy

| : Hadamard |
perposition 2 : Superposition : Entanglement

Figure 3: Teleportation cloning

Comput Mater Contin. 2025;84(2) 2565

This instance model demonstrates the rigorous enforcement of the constraints of the no-
cloning theorem and teleportation specified in the metamodel. The entanglement of qubits enforces
Invariant (15), ensuring consistency between the entangled qubits. The structural representation of
ClassicalCommunicationLine directly aligns with Invariant (16), which requires classical commu-
nication for proper state reconstruction. The measurement performed on qubit g1 enforces Invariant (17),
ensuring the destruction of the original quantum information. More importantly, the destruction of the orig-
inal state guarantees adherence to the no-cloning theorem by preventing the duplication of quantum states.

Note that the instance model incorporates stepwise labels to represent the order and dependencies of
operations, enabling a limited form of sequential behavior modeling. While this auxiliary feature is specific
to the instance level and cannot be captured directly at the metamodel level, it supports simulation-oriented
reasoning within the model and highlights the potential for future integration with model execution tools,
such as Papyrus Moka’, an f{UML (the Foundational UML subset’) execution engine.

The teleportation process is implemented in the instance model outlined in Listing 2. The program sets
up a circuit gc with three qubits and three classical bits (lines 11). Qubit [0] is placed in superposition |+) =
%(|O) +[1)) using a Hadamard gate (line 14). Qubit [1], also in superposition, is prepared alongside qubit
[2] for entanglement via a CNOT gate, where qubit [1] acts as control and qubit [2] as target (lines 17-18).
A subsequent CNOT gate entangles qubits [1] and [2] (line 21). A Hadamard gate on qubit [0] prepares it
for a Bell-state measurement with qubit [1] (line 22), converting its basis to align with the Bell states for
measurement (line 23). Depending on the measurement outcome, corrections are applied to qubit [2]: no
correction for ‘00; an X gate for ‘10’ a Z gate for ‘01, and both gates for ‘11’ (lines 27-32). These operations
utilize the c_1if method, which implements classical communication by conditionally applying quantum
operations based on classical register values. This models the classical communication channel required in
quantum teleportation protocols, where measurement results must be transmitted via classical means to
complete the quantum state transfer process. This adjusts qubit [2]’s state to match the originally altered
state of qubit [0]. Qubit [2] is measured last (line 35). This setup uses classical values to guide quantum
corrections, simulating quantum teleportation by transferring the original state to the target. It does not
constitute cloning since the original state of qubit [0] is destroyed during Bell state measurement, adhering
to the no-cloning theorem.

Fig. 4 shows the output of the teleportation program. The histogram represents counts for eight possible
measurement outcomes across three qubits, formatted as “qubit [2] qubit [1] qubit [0]” (000, 001, 010, etc.),
with each outcome occurring roughly 108 to 135 times over 1024 shots. This uniform distribution (about
120-130 counts per outcome) reflects the initial equal superposition state, equal probability of Bell-state
measurement outcomes, and preservation of the state by corrective operations. Variations in counts, such
as 108 vs 135, arise from the probabilistic nature of quantum measurements and are typical of quantum
shot noise in experiments. The consistent distribution across outcomes confirms the teleportation protocol’s
effectiveness, as deviations significantly outside expected ranges would indicate operational failures.

2|1llps:' /marketplace.eclipse.org/content/papyrus-moka (accessed on 25 May 2025).
3hltpszr'r'\\ ww.omg.org/spec/ FUML/1.4/About-FUML (accessed on 25 May 2025).

https://marketplace.eclipse.org/content/papyrus-moka
https://www.omg.org/spec/FUML/1.4/About-FUML

Comput Mater Contin. 2025;84(2)

2566
1 import qiskit
2 from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
3 from qiskit_aer import Aer
4 from qiskit.quantum_info import Statevector, state_fidelity
D from qiskit.visualization import plot_bloch_multivector
6 from qiskit_ibm_provider.job import job_monitor
7 from qiskit.visualization import plot_histogram
) import numpy as np
9
10 # Create a quantum circuit with 3 qubits and 3 classical bits
11 qc = QuantumCircuit (3, 3)
12
13 # Initialize qubit [0] in the [+> state
14 qc.h(0)
15
16 # Entangle qubits [1] and [2]
7 qc.h (1)
18 qc.cx (1, 2)
19
20 # Perform Bell-state measurement on qubits [0] and [1]
21 qc.cx (0, 1)
2 qc.h(0)
23 qc.measure ([0, 11, [0, 11)
24
25 # Based on measurement results, apply corrections to qubit [2]
26 # If outcome is ¢10’, apply X gate to qubit [2]
27 qc.x(2) .c_if (qc.cregs[0], 2)
28 # If outcome is ‘01°, apply Z gate to qubit [2]
29 qc.z(2) .c_if (qc.cregs[0], 1)
30 # If outcome is ‘11°, apply both X and Z gates to qubit [2]
31 qc.x(2) .c_if (qc.cregs[0], 3)
32 qc.z(2) .c_if (qc.cregs[0], 3)
&%)
34 # Measure qubit [2]
35 qc.measure (2, 2)
36
37 # Execute the circuit on the gasm simulator
38 simulator = Aer.get_backend(’qasm_simulator’)
39 transpiled_circuit = qiskit.transpile(qc, simulator)
40 job = simulator.run(transpiled_circuit, shots=1024)
41 job_monitor (job)
2 result = job.result ()
43
44 # Get the measurement results
45 counts = result.get_counts ()
46
47 # Plot the results
48 plot_histogram(counts)

Listing 2: Simulating state transfer via teleportation

133
128 Bl g 124
121
119 S
120 -
%_
e
=
o
S
60 -
30 4
D-
(=] ~ =] i~ ~ =] ~
s § & § § § 37 37

Figure 4: Histogram of teleportation simulating state transfer

Comput Mater Contin. 2025;84(2) 2567

6 Discussion

In this section, we discuss the implicit validation embedded in the approach itself, as well as the practical
application of the proposed approach in real-world quantum software engineering contexts.

6.1 Validation

The two concrete instance models—conditional cloning via CNOT and quantum teleportation—serve
as empirical validation, demonstrating the practical application of the metamodel in capturing specific
scenarios governed by the no-cloning constraint. These examples are grounded in well-established quantum
operations and validate the correctness and utility of the metamodel. Their implementation in Qiskit, along
with measurable outcomes, provides empirical evidence that software derived from the metamodel conforms
to the quantum mechanical principles it is designed to represent.

A more comprehensive validation strategy may involve developing a suite of test cases that explore the
boundary conditions of the no-cloning theorem, thereby demonstrating the metamodel’s ability to prevent
invalid model instantiations—such as attempts to clone non-orthogonal, unknown quantum states or to
construct teleportation operations that preserve the original state. In addition, user studies with quantum
software developers could be conducted to assess the metamodel’s practical utility and correctness in real-
world quantum software design contexts.

6.2 Practical Applications of the Proposed Metamodel in Quantum Software Engineering

By formalizing foundational quantum principles—such as the no-cloning theorem and teleportation
constraints—as enforceable OCL invariants, the framework enables early detection of conceptual modeling
errors before code implementation. This early-stage validation helps prevent violations of core quantum
mechanics that could otherwise lead to failures or inefficiencies in later development phases, supporting
reliable design and reduce development time. For example, during quantum circuit modeling, the metamodel
ensures the unitary nature of operations, preserving quantum information. In the case of potential cloning
operations, the model enforces relevant constraints (e.g., orthogonal states must have zero inner product),
thereby ensuring compliance with the no-cloning theorem.

The instance models presented in Figs. 2 and 3 were manually constructed with careful adherence
to the structural and semantic constraints defined in the metamodel, including associations, multiplicity
rules, and OCL invariants. Their correctness reflects intentional conformance to the metamodel’s design
principles. Currently, the metamodel has not been fully implemented or integrated into a modeling tool
that actively enforces these constraints. The integration of the metamodel and OCL constraints with
existing software engineering tools enables automated enforcement of quantum principles throughout the
development lifecycle. UML tools such as Eclipse MetaModel Agent” support domain-specific modeling and
OCL constraint checking, making the approach directly applicable within established environments. These
tools can automatically validate instance models against defined constraints and provide immediate feedback
when quantum principles are violated. For instance, during the modeling of quantum error correction
codes, OCL constraints can validate that error syndrome measurements [1] do not inadvertently violate the
no-cloning theorem while detecting errors through qubit correlations.

Additionally, many UML-based tools (e.g., StarUML) support code generation from models defined
over standard UML metamodels. In a similar manner, the proposed metamodel can act as a bridge between
quantum design models and implementation code via a translation framework that maps metamodel

4]1[[}\\:",’\\ ww.metamodelagent.com (accessed on 25 May 2025).

https://www.metamodelagent.com

2568 Comput Mater Contin. 2025;84(2)

elements to constructs in quantum programming languages such as Qiskit’ and Cirq". This enables
bidirectional transformations between design and implementation. The implementations in Listings | and 2
illustrate how metamodel elements correspond to Qiskit constructs—for example, translating a Qubit
element into a qubit initialization, or converting a Teleportation instance into a full Qiskit script
with entangled state preparation, Bell measurements, and conditional operations. This integration supports
model-driven development of quantum applications, facilitating both forward engineering (from models to
code) and reverse engineering (from code to conceptual models), thereby enhancing maintainability and
scalability of quantum software systems.

6.3 Extensibility

A major benefit of the approach is the extensibility of the metamodel to accommodate other concepts.
In this section, we demonstrate the extensibility of the metamodel by extending the metamodel in Fig. 1 for
projective measurement, which is a specific type of quantum measurement that projects the state vector of a
qubit onto orthogonal subspaces of a Hilbert space. Fig. 5 shows the extension.

Outcome
value: Real
| correspondence
re I
«core» Projec‘tor P «core» <83be.;)
Measurement State
post
apply() 1.+
* l
base
ProjectiveMeasurement HermitianObservable HilbertSpace
«core» «core» «core»
4 Y X

Figure 5: Metamodel defining projective measurement

The extension shown in the figure models projective measurement as a specialization of the
Measurement metaclass (stereotyped as «<core») from the base metamodel in Fig. 1. Projective measure-
ment operates through orthogonal projectors, represented by the Projector metaclass. Each projector
acts on a quantum State, producing a transition from a pre to a post state, along with a corresponding
measurement Outcome. The Outcome is recorded as a real eigenvalue (via the value attribute) and
corresponds to an eigenspace in the HilbertSpace of the observable. The multiplicity of 1..* on
the State class indicate that the eigenspace (defined by a given eigenvalue) contains one or more valid
quantum states that the system may collapse into upon measurement. The observable itself is captured by
the HermitianObservable metaclass, which generalizes concrete Pauli operators such as X, Y, and Z,
each defined over a 2-dimensional Hilbert space. AHermitianObservable includes multiple projectors
via spectral decomposition, as indicated by the multiplicity * on the association with Projector. Upon
measurement, the qubit’s state collapses to a normalized post-measurement state aligned with the eigenspace

ShllpS://\\ ww.ibm.com/quantum/qiskit (accessed on 25 May 2025).
6]11lps://k]uanlumai.g(mgle/cirq (accessed on 25 May 2025).

https://www.ibm.com/quantum/qiskit
https://quantumai.google/cirq

Comput Mater Contin. 2025;84(2) 2569

corresponding to the observed eigenvalue. This collapse behavior reflects the physical semantics of projective
measurement, governed by the projective postulate, formally defined as follows:

« Upon measurement, the system collapses to an eigenvalue in the eigenspace corresponding to the
observed eigenvalue. This behavior is formally defined by the invariant (18) in OCL.

Context:ProjectiveMeasurement

Inv:Collapse
self.HermitianObservable.Projector — forAll (p | (18)
p.pre = self.HermitianObservable.Qubit.State and
p.Outcome.correspondence.HilbertSpace = self.Hermitian.HilbertSpace)

o The probability of obtaining outcome i is (y|P;|y), where P; is the projector associated with eigenvalue
A;. This rule is formally specified by invariant (19) in OCL.

Context: ProjectiveMeasurement
Inv:Probability
self.HermitianObservable.Projector - forAll (p | (19)
p.Outcome.value=
self .HermitianObservable.Qubit.State.innerProduct (p.apply(p.pre)))
o The post-measurement state is %, provided P;|y) # 0. This normalization rule is formally specified
by invariant (20) in OCL.

Context: ProjectiveMeasurement
Inv:Normalization
self .HermitianObservable.Projector - forAll (p | (20)
p.apply(p.pre) .norm() <> 0 implies
p.post = p.apply(p.pre) .normalize())

where the norm () function returns the norm (or length) of the projected state P;|y), given by
\/ (v|Pi|ly). The normalize () function then returns the corresponding post-measurement state as a
Pily)

unit vector in the same direction as P;|y), defined as Thiy)[> ssuming P; ly) # 0.

These postulates are fundamental axioms of quantum mechanics and must be satisfied by any cor-
rect implementation of projective measurement. In practical quantum computing platforms, such as the
gasm_simulator in Qiskit, these behaviors are implemented natively within the simulation backend.

We acknowledge that modeling other quantum mechanical principles—such as the Heisenberg uncer-
tainty principle [1]—may pose certain challenges, particularly those that involve operator algebra (e.g.,
non-commutative observables) and probabilistic semantics (e.g., continuous-valued inequalities). Unlike the
no-cloning theorem or projective measurement, the Heisenberg uncertainty principle requires expressing
commutation relations and real-valued uncertainty bounds, which are more complex to represent using
standard UML/OCL constructs. Capturing such principles may necessitate the introduction of richer math-
ematical abstractions, such as operator algebras, commutation relations, or even probabilistic logic layers.

7 Threats to Validity

This section discusses potential threats to the validity of the proposed metamodeling approach,
organized according to common validity dimensions: internal validity, external validity, construct validity,
and conclusion validity.

2570 Comput Mater Contin. 2025;84(2)

Internal Validity. Internal validity is concerned with the correctness of the metamodel, which relies on
the formal representation of quantum mechanical principles using OCL constraints. Any misinterpretation
or incomplete formalization of these principles could lead to inaccurate modeling. We mitigated this threat
by grounding the constraints in established quantum mechanical formulations [1]. The translation from
mathematical notation to OCL introduces another potential source of error. Different interpretations of
quantum mechanical equations could result in varying constraint definitions. To address this concern,
we provided detailed explanations of the mapping between quantum mathematical formulations and
corresponding OCL expressions.

External Validity. External validity pertains to the generalizability of the metamodel beyond the
specific cases analyzed. Although the presented edge cases are representative and grounded in canonical
quantum behavior, the applicability of the metamodel to other quantum phenomena—such as mixed states,
approximate cloning, entanglement distillation, or quantum error correction—has not yet been explored.
To address this limitation, we demonstrate the extensibility of the metamodel through the incorporation of
projective measurement, as discussed in Section 6. Additionally, the validation focused on relatively simple
quantum systems with few qubits. While the metamodel and its associated OCL invariants are not directly
impacted by system scale—since the metamodel abstracts quantum concepts independently of the number of
qubits—scalability concerns arise primarily at the instance level. As the system grows, an increasing number
of metaclass instances (e.g., Qubit, State,Measurement) mustbe created and managed. This expansion
may introduce computational overhead, particularly in evaluating OCL constraints over large collections of
instances. Additionally, state explosion may become a practical concern at the instance-level. As quantum
systems evolve—particularly those involving entangled or superposed states—the complexity of instance
models increases, making it more difficult to maintain, validate, and reason about their correctness without
dedicated tool support.

Construct Validity. Construct validity concerns whether the metamodel accurately represents the
theoretical concepts it is intended to capture—in this case, the principles underlying the no-cloning theorem.
While the metamodel is grounded in quantum mechanical formalism and includes formal constraints (e.g.,
unitarity, inner product preservation) via OCL invariants, it may still omit subtle physical nuances (e.g.,
imperfect gates, noise) not easily formalized in UML-based notation. Additionally, the mapping of inherently
mathematical quantum operations to software modeling constructs may lead to oversimplification or loss of
semantic nuance.

8 Conclusion

This paper employs metamodeling techniques to analyze the no-cloning theorem in quantum mechan-
ics through a UML-style metamodel. This metamodel incorporates essential quantum concepts and
relationships relevant to the no-cloning theorem, emphasizing the inability to replicate arbitrary unknown
quantum states. It validates its utility with instance models that explore edge cases like conditional copying
with CNOT gates and quantum teleportation, ensuring they adhere to the theorem’s constraints in line
with conventional software engineering practices. This research provides the quantum software engineering
community with a structured framework for integrating quantum mechanics into software design, promot-
ing advancements in quantum software development. There is also a potential learning curve for software
engineers who may lack quantum mechanics background. This interdisciplinary knowledge gap could limit
the approachs adoption. However, by leveraging UML—a widely practiced and standardized graphical
modeling language in software engineering—as the foundation of the approach, the barrier to entry is sig-
nificantly reduced. UML provides a familiar and intuitive framework for software engineers, allowing them
to engage with quantum concepts without requiring deep mathematical expertise. By embedding quantum

Comput Mater Contin. 2025;84(2) 2571

principles within this modeling paradigm, the approach translates complex mathematical formalisms into
structured visual representations and declarative rules. These abstractions serve as conceptual scaffolding,
helping learners incrementally develop intuition for quantum behavior without being overwhelmed by the
underlying formalism.

Future work will focus on broadening the scope of the metamodel beyond the no-cloning theorem.
Specifically, we plan to explore its applicability to other areas of quantum computing such as mixed states,
approximate cloning, entanglement distillation, and quantum error correction. These topics introduce
additional complexity, including probabilistic behaviors, partial fidelity constraints, and hybrid quantum-
classical interactions. Extending the metamodel to represent such phenomena will require incorporating
new modeling constructs, constraints, and validation mechanisms, and will serve to assess the scalability,
flexibility, and robustness of the approach across a wider range of quantum scenarios. The practical utility of
the metamodel for quantum software developers depends on integration with existing quantum development
tools and workflows. Currently, most quantum programming relies on circuit-based representations rather
than UML-style models. Further work is needed to bridge the gap between the metamodeling approach
and practical quantum software development environments. By doing so, we aim to further integrate
metamodeling with the evolving needs of quantum software engineering.

Acknowledgement: The author expresses gratitude to all editors and anonymous reviewers for their insightful
comments and suggestions, which have significantly enhanced the quality of this manuscript.

Funding Statement: The author received no specific funding for this study.

Availability of Data and Materials: The data and materials supporting the findings of this study are openly available
at https://github.com/hanbyull/No-Cloning-Theorem (accessed on 25 May 2025).

Ethics Approval: Not applicable.

Conflicts of Interest: The author declares no conflicts of interest to report regarding the present study.

References

1. Nielsen MA, Chuang IL. Quantum computation and quantum information. 10th ed. Cambridge, UK: Cambridge
University Press; 2010.

2. Alonso D, Sanchez P, Alvarez B. A graph-based approach for modelling quantum circuits. Appl Sci.
2023;13(21):11794. d0i:10.3390/app132111794.

3. Pérez-Castillo R, Piattini M. Design of classical-quantum systems with UML. Computing. 2022;104(11):2375-403.
doi:10.1007/s00607-022-01091-4.

4. Piattini M, Peterssen G, Pérez-Castillo R, Hevia JL, Serrano MA, Herndndez G, et al. The Talavera Manifesto for
quantum software engineering and programming. In: Ist QANSWER 2020; 2020 Feb 11-12; Talavera de la Reina,
Spain. p. 1-5. d0i:10.1145/3402127.3402131.

5. Weder B, Barzen J, Leymann F Vietz D. Quantum software development lifecycle. In: Quantum software
engineering. 1st ed. Cham, Switzerland: Springer; 2022. p. 61-83. doi:10.1007/978-3-031-05324-5_4.

6. Ali S. Quantum software testing 101. In: Proceedings of the 2024 IEEE/ACM 46th International Conference on
Software Engineering: Companion Proceedings; 2024 Apr 14-20; Lisbon, Portugal. p. 426-7.

7. Sénchez P, Alonso D. On the definition of quantum programming modules. Appl Sci. 2021;11(13):5843. d0i:10.3390/
appll135843.

8. Bibbo LM, Fernandez A, Suarez JM, Pastor O. Modelling quantum software: an annotated bibliography. Memoria
Investigaciones En Ingenieria. 2024;27(27):285-301. doi:10.36561/ing.27.19.

https://github.com/hanbyul1/No-Cloning-Theorem
https://doi.org/10.3390/app132111794
https://doi.org/10.1007/s00607-022-01091-4
https://doi.org/10.1145/3402127.3402131
https://doi.org/10.1007/978-3-031-05324-5_4
https://doi.org/10.3390/app11135843
https://doi.org/10.3390/app11135843
https://doi.org/10.36561/ing.27.19

2572

10.
11.

12.

13.

14.

15.

16.

17.

Comput Mater Contin. 2025;84(2)

Ahmad A, Khan AA, Waseem M, Fahmideh M, Mikkonen T. Towards process centered architecting for quantum
software systems. In: 2022 IEEE International Conference on Quantum Software (QSW); 2022 Jul 10-16; Barcelona,
Spain. p. 26-31.

Ali S, Yue T, Abreu R. When software engineering meets quantum computing. Commun ACM. 2022;65(4):84-8.
Sabzevari MT, Esposito M, Taibi D, Khan AA. QCSHQD: quantum computing as a service for hybrid classical-
quantum software development: a vision. In: QSE-NE 2024-Proceedings of the 1st ACM International Workshop
on Quantum Software Engineering: The Next Evolution; 2024 Jul 16; Porto de Galinhas, Brazil. p. 7-10.

Gallardo JZ, Moguel E, Canal C, Garcia-Alonso J. Quirk+: a tool for quantum software development based on
quirk. In: 2024 IEEE International Conference on Software Analysis, Evolution and Reengineering-Companion
(SANER-C); 2024 Mar 12; Rovaniemi, Finland. p. 151-8.

Garcia de la Barrera A, Garcia-Rodriguez de Guzman I, Polo M, Piattini M. Quantum software testing: state of the
art.] Softw Evol Process. 2023;35(4):e2419. d0i:10.1002/smr.2419.

Khan AA, Akbar MA, Ahmad A, Fahmideh M, Shameem M, Lahtinen V et al. Agile practices for quantum software
development: practitioners’ perspectives. In: 2023 IEEE International Conference on Quantum Software (QSW);
2023 Jul 2-8; Chicago, IL, USA. p. 9-20.

Thompson N, Steck J, Behrman E. A non-algorithmic approach to “programming” quantum computers via
machine learning. In: 2020 IEEE International Conference on Quantum Computing and Engineering (QCE); 2020
Oct 12-16; Denver, CO, USA. p. 63-71.

Group OM. Object constraint language (OCL) version 2.4; 2014 [Internet]. [cited 2025 Jan 27]. Available from:
http://www.omg.org/spec/OCL/2.4.

Buzek V, Hillery M. Quantum copying: beyond the no-cloning theorem. arXiv:quant-ph/9607018. 1996.

https://doi.org/10.1002/smr.2419
http://www.omg.org/spec/OCL/2.4

	A Metamodeling Approach to Enforcing the No-Cloning Theorem in Quantum Software Engineering
	1 Introduction
	2 Related Work
	3 Comparing with Existing Quantum Computing Modeling Approaches
	4 Metamodeling ``No-Cloning Theorem''
	5 Presenting Cloning-Like Operations as Instance Models of Metamodel
	6 Discussion
	7 Threats to Validity
	8 Conclusion
	References

