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ABSTRACT: Tungsten carbide-based (WC-based) cemented carbides are widely recognized as high-performance
tool materials. Traditionally, single metals such as cobalt (Co) or nickel (Ni) serve as the binder phase, providing
toughness and structural integrity. Replacing this phase with high-entropy alloys (HEAs) offers a promising approach to
enhancing mechanical properties and addressing sustainability challenges. However, the complex multi-element com-
position of HEAs complicates conventional experimental design, making it difficult to explore the vast compositional
space efficiently. Traditional trial-and-error methods are time-consuming, resource-intensive, and often ineffective in
identifying optimal compositions. In contrast, artificial intelligence (AI)-driven approaches enable rapid screening and
optimization of alloy compositions, significantly improving predictive accuracy and interpretability. Feature selection
techniques were employed to identify key alloying elements influencing hardness, toughness, and wear resistance. To
enhance model interpretability, explainable artificial intelligence (XAI) techniques—SHapley Additive exPlanations
(SHAP) and Local Interpretable Model-agnostic Explanations (LIME)—were applied to quantify the contributions of
individual elements and uncover complex elemental interactions. Furthermore, a high-throughput machine learning
(ML)-driven screening approach was implemented to optimize the binder phase composition, facilitating the discovery
of HEAs with superior mechanical properties. Experimental validation demonstrated strong agreement between model
predictions and measured performance, confirming the reliability of the ML framework. This study underscores the
potential of integrating ML and XAI for data-driven materials design, providing a novel strategy for optimizing
high-entropy cemented carbides.

KEYWORDS: Cemented carbide; high-entropy binder phase; machine learning; hardness; interpretable Al
composition-property modeling

1 Introduction

Tungsten carbide-based (WC-based) cemented carbides, renowned for their exceptional hardness,
toughness, and wear resistance, are widely used in cutting tools, mining equipment, and high-wear com-
ponents. The carbide precipitation strengthening mechanisms of cobalt (Co)-based binders at elevated
temperatures have been extensively investigated. However, Co, the conventional binder phase, has increas-
ingly become a bottleneck in the development of WC-based cemented carbides due to its scarcity, high cost,
and the significant environmental impact of its extraction [1,2].

High-entropy alloys (HEASs), a novel class of multi-principal-element alloys, have garnered significant
attention due to their outstanding mechanical properties, high-temperature resistance, and corrosion
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resistance. Through complex multi-element combinations, HEAs can form stable single-phase solid solutions
or intermetallic compounds, exhibiting distinctive features such as the “high-entropy effect” and “sluggish
diffusion effect”, which differentiate them from conventional alloys [3,4]. Cutting-edge research has demon-
strated that composition design strategies based on configurational entropy can significantly enhance phase
stability in HEAs. For instance, Wan et al. [5] highlighted the transformative potential of machine learning
(ML) in accelerating the discovery of high-entropy compounds, including the efficient screening of multi-
component systems through advanced data-driven approaches. Recent studies have explored the potential of
HEAs as binder phases in cemented carbides. For example, Ghasemi et al. [6] investigated the application of
chromium (Cr)-rich and iron (Fe)-rich HEAs binder phases in WC-based cemented carbides, demonstrating
significantly enhanced wear resistance and thermal stability compared to traditional Co-based alloys. Further
research has indicated that optimizing HEA compositions can effectively improve the overall mechanical
properties of WC-based cemented carbides [7].

Despite the promising potential of HEAs in cemented carbides, the complexity of their composition
design makes traditional experimental approaches costly and time-consuming when searching for optimal
formulations. In recent years, the rapid advancement of ML techniques in materials science has provided an
efficient solution for materials design. In particular, the emergence of adaptive ML frameworks has made it
possible to extract underlying physical correlations from high-dimensional and heterogeneous datasets. ML
can extract latent patterns from large-scale materials databases, establish composition-property prediction
models, and offer insights into optimizing material properties [8]. For example, Schmidt et al. [9] compre-
hensively reviewed the application of ML in solid-state materials science, demonstrating its effectiveness
in accelerating materials discovery, optimizing functional properties, and predicting structure-property
relationships. Their work highlighted how data-driven approaches can overcome traditional trial-and-error
methods, particularly in designing advanced materials such as perovskites, HEAs, and energy storage
systems. These studies suggest that data-driven approaches can significantly enhance the efficiency of
materials design while providing a scientific basis for optimizing complex material systems.

This study integrates HEAs design principles with ML techniques to explore the feasibility of replacing
Co with HEAs as the binder phase in WC-based cemented carbides. A composition-property prediction
model is developed to systematically analyze the effects of HEAs composition on cemented carbide
mechanical properties. Furthermore, explainable artificial intelligence (XAI) techniques, including SHapley
Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME), are employed
to elucidate the influence of key alloying elements [10]. As ML models grow increasingly complex, under-
standing their internal logic and decision-making processes has become crucial. The interpretability of ML
models ensures that predictions and insights can be effectively explained in a manner comprehensible to
human researchers.

The key contributions of this study include developing an ML-driven composition-property prediction
model for HEAs in cemented carbides and providing theoretical support for the rapid screening of high-
performance formulations. Additionally, by employing feature selection methods and XAI techniques,
this study reveals the mechanisms through which HEA elements influence the mechanical properties of
cemented carbides, thereby enhancing the interpretability of model predictions. Moreover, the experimen-
tally validated optimal HEAs formulation demonstrates superior mechanical properties, underscoring its
potential for practical application in cemented carbides. Finally, due to the long experimental cycle and low
efficiency of the traditional trial-and-error method for HEAs, our research team was unable to obtain alloy
compositions with ideal mechanical properties (such as Vickers Hardness, HV) through 120 experimental
groups. To address this issue, we introduced ML methods to optimize the composition design and property
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prediction of HEAs. This method significantly shortened the experimental cycle and successfully guided the
rapid screening and development of HEAs with excellent hardness.

This research not only introduces new perspectives on the application of HEAs in cemented carbides but
also contributes to the intelligent and efficient design of advanced materials. By combining ML with HEAs
design principles, this study aims to drive the innovation of high-performance tool materials, meeting the
growing industrial demands for enhanced tool properties.

2 Methods

To accurately model and optimize the “composition-property” relationship, this study employed a sys-
tematic data-driven approach. A high-quality composition-property database was first established, ensuring
comprehensive and reliable data for analysis. Appropriate ML algorithms were then carefully selected to
achieve an optimal balance between prediction accuracy and model interpretability. Furthermore, to validate
the reliability of the model’s predictions, a series of experiments were conducted to assess the mechanical
performance of the predicted optimal alloy compositions. This integrated approach enhances both the
predictive power and practical applicability of the proposed model.

2.1 Construction and Evaluation of the Prediction Model

The methodology for model construction and evaluation in this study is illustrated in Fig. 1.
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2.1.1 Establishment of the Database and Data Screening

This study systematically integrated a dataset comprising 672 sets of mechanical property data for
HEAs. Among them, 120 sets were original experimental data obtained by our research group over the past
two years, based on classical compositional design principles for high-entropy binder phases in cemented
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carbides, prioritizing transition metal systems with solid solution strengthening potential (e.g., Co-nickel
(Ni)-Fe-Cr-aluminum (Al)). Fig. 2 presents the correlation between five alloying elements (Co, Fe, Ni, Cr,
Al) and the hardness of HEAs based on our team’s 120 original experimental data points. However, such
simple correlation analysis cannot precisely reveal the individual contribution of each element to hardness—a
limitation that will be addressed by our proposed interpretable ML model. Furthermore, Fig. 3 compares the
average hardness values of HEAs with those of conventional Ni-based and Co-based alloys from our exper-
imental dataset. The results demonstrate that the HEAs exhibit superior hardness performance compared to
their traditional counterparts. The remaining 552 sets were curated from literature published between 2004
and 2022, selected based on the completeness of composition—property correspondence in HEAs studies.
The resulting dataset encompasses 15 key compositional and performance-related features across 14 alloy
systems, with a particular emphasis on composition design and hardness-related mechanical properties.
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Figure 2: The correlation between the composition (a) and hardness (b) of the Co-Ni-Fe-Cr-Al quinary system
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Figure 3: Comparison chart of the hardness of co-based alloys, Ni-based alloys, and HEAs

During the data preprocessing phase, we applied rigorous quality control procedures. First, samples
lacking major constituent elements (defined as elements with atomic fractions >5%) or with incomplete
mechanical property records were removed, reducing the dataset from 672 to 532 entries. Next, outlier
detection was performed using the Grubbs’ test, followed by thermodynamic consistency screening based on
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mixing enthalpy (AHpix € [-15, 5] k]J/mol) and atomic size difference (8 < 6.5%). This yielded a refined dataset
of 410 high-quality samples. The resulting composition-property database provides a reliable foundation for
subsequent ML modeling efforts.

Subsequent screening and analysis following database construction revealed that common binder
phases in high-entropy cemented carbides predominantly consist of Co, Ni, and Fe. This finding aligns with
conclusions from previous studies on compositional design strategies in HEAs [11,12].

By combining literature review with systematic data analysis, this study not only validates existing
research but also establishes a representative and optimized database. This work provides a scientific
foundation for data-driven composition design and performance prediction of high-entropy binder phases
in cemented carbides.

2.1.2 Construction of the Prediction Model

The HEAs dataset used in this study exhibits two key characteristics: a relatively small sample size and
a high-dimensional feature space. These characteristics pose challenges for constructing an accurate predic-
tion model, particularly when dealing with complex feature interactions. Therefore, supervised regression
algorithms well-suited for small-sample, high-dimensional data were selected for model construction.

According to existing literature, Extreme Gradient Boosting (XGBoost), Random Forest (RF), and
K-Nearest Neighbors (KNN) are among the most commonly used regression algorithms for such datasets.
These methods have demonstrated strong adaptability and high predictive accuracy in scenarios involving
multiple features and limited data availability [13-15]. To demonstrate the innovation of the experiment, we
have also applied the Multilayer Perceptron (MLP) and Kolmogorov-Arnold Network (KAN) algorithms for
the ML-based selection and optimization of HEAs.

To assess the suitability of different algorithms for this dataset, the coefficient of determination (R?)
was chosen as the primary evaluation metric. This metric quantifies the proportion of variance in the target
variable explained by the model. An R? value closer to 1 indicates a better model fit, signifying that the
algorithm effectively captures the relationship between input features and the target variable.

XGBoost

XGBoost is an efficient gradient-boosting algorithm that employs Classification and Regression Trees
(CART) as base learners. It has been widely applied in regression and classification tasks involving large-scale
datasets due to its high computational efficiency and strong generalization ability.

XGBoost utilizes an additive modeling approach, in which trees are sequentially added to optimize the
objective function. At each iteration, the algorithm computes the negative gradient (pseudo-residual) of the
current loss function and treats it as the new target value. By iteratively fitting new trees and refining model
parameters, XGBoost minimizes the loss function and ultimately produces optimal predictive results [16,17].

Random Forest

RF is an ensemble learning algorithm that improves prediction accuracy by constructing multiple
decision trees using the Bagging (Bootstrap Aggregating) method. Unlike traditional decision trees, RF
introduces both random sampling and random feature selection during the construction of each tree. These
mechanisms help reduce overfitting and enhance the model’s generalization capability.

During the prediction phase, RF aggregates the outputs of individual decision trees—using majority
voting for classification tasks and averaging for regression tasks—to generate the final prediction [18,19].
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One of the key advantages of RF is its ability to efficiently handle high-dimensional datasets, while
also demonstrating strong robustness to noise and missing values. In the context of HEAs analysis, RF can
manage numerous compositional and mechanical features while evaluating the importance of each feature.
This capability provides valuable insights for further optimizing alloy design.

K-Nearest Neighbors

KNN algorithm is a simple yet effective supervised learning method applicable to both classification
and regression tasks. The core principle of KNN involves computing the distance between a new data point
and existing points in the training dataset, typically using Euclidean distance. The algorithm then selects the
k nearest neighbors and determines the output based on majority voting for classification tasks or weighted
averaging for regression tasks. KNN offers advantages such as ease of implementation and the absence of a
training phase. However, as the dimensionality of the dataset increases, its computational complexity rises
significantly, a phenomenon known as the “curse of dimensionality”, which can degrade performance in
high-dimensional spaces. Despite these challenges, KNN remains valuable in HEAs prediction tasks, as it
enables localized feature learning and helps uncover nonlinear relationships between alloy composition and
mechanical properties [20].

Multilayer Perceptron

As a typical representative of the Feedforward Neural Network, the MLP achieves parameter opti-
mization through the following mechanism: First, the input data undergoes nonlinear transformations in
the hidden layers and is propagated forward to the output layer. Subsequently, based on the prediction
error, the Backpropagation algorithm is used to calculate the gradient layer by layer, and the error signal
is transmitted backward from the output layer to the input layer to update the connection weights and
bias terms. This iterative process of “forward calculation-backward propagation” continuously optimizes the
network parameters, causing the loss function (e.g., mean squared error) to gradually converge. Finally,
a high-dimensional nonlinear mapping relationship is established between the input features (e.g., alloy
composition) and the output targets (e.g., mechanical properties). Fig. 4a shows a schematic diagram of the
network architecture of the MLP. Compared with traditional ML methods, the advantage of the MLP lies in
the distributed representation ability of its hidden layers, which can effectively capture the complex structure-
performance relationships in material systems. With the help of advanced analysis techniques, the MLP can
further improve the accuracy and computational efficiency of material property prediction [21].
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Kolmogorov-Arnold Network

KAN, as an emerging neural network architecture, has its theoretical foundation rooted in the
Kolmogorov-Arnold representation theorem (KART). This theorem holds an important position in the
theory of function approximation. It rigorously proves that any multivariate continuous function can be
decomposed into a superposition of a finite number of univariate functions and addition operations.
KAN has no linear weights—each weight parameter is parameterized into a spline curve by a univariate
function [22].

Unlike traditional neural networks, KAN uses B-spline basis functions to parametrically model the
Kolmogorov-Arnold representation. As shown in Fig. 4b, the KAN constructs a spline space formed by
the linear combination of local functions and transforms the model parameters into learnable basis-
function coefficients. This parametric strategy not only ensures the function approximation ability but also
endows the model with stronger interpretability. Its strengths in interpretability and computational efficiency
enable effective mining of complex composition-property relationships, providing precise composition
optimization and performance prediction guidance for multi-principal element alloy design.

In this study, we adopted two different network architectures for analysis: the MLP employed a six-
layer linear structure (including one input layer, four hidden layers, and one output layer), while the KAN
adopted a more concise three-layer KAN linear structure. Both models used the ReLU activation function
and optimized the hyperparameter selection through the grid search method. The detailed training processes
and parameter settings are respectively shown in Fig. 4a,b.

2.2 XAI Interpretability Analysis

Although ML methods have shown strong performance in predicting the mechanical properties of
HEAs, their inherent “black-box” nature significantly limits the interpretability of the models. While feature
importance evaluation methods can provide the relative contributions of each feature to the model’s predic-
tions, these methods only reveal the importance ranking of features without quantifying their specific roles
in individual predictions [10]. This becomes especially problematic when dealing with a single prediction
sample, where it is difficult to clarify the exact contribution of each feature to the final predicted value, thus
restricting the transparency of the model and understanding of its decision-making process.

Moreover, ML models can automatically capture complex nonlinear and high-order interactions
between features. These interactions make the model’s behavior more intricate, increasing the difficulty
of interpreting the model’s predictions [23]. To address these challenges, this study employs two XAI
techniques: SHAP and LIME. SHAP, based on game theory, provides both global and local interpretability by
calculating the marginal contribution of each feature to the model output, helping to reveal the underlying
decision-making mechanisms of the model. LIME, in contrast, approximates the behavior of a complex
model locally by fitting a simple, interpretable model in the vicinity of a prediction instance, offering an
interpretable basis for the decision-making process of a single prediction [24,25]. The combination of these
methods enhances the interpretability of the model, allows for a clearer understanding of the specific impact
of HEAs composition on mechanical properties, and ultimately improves the transparency and reliability of
the prediction results.

2.2.1 Global Shapley Additive Explanations

The SHAP method, derived from cooperative game theory, views the ML model as a “black box” and
each input feature as a “player.” As illustrated in Fig. 5, the SHAP explanation process mirrors the structure of
a game where players collaborate to achieve the maximum benefit. SHAP aims to quantify the contribution of
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each feature to the model’s predictions. By calculating the Shapley value for each feature, it is possible to assess
the marginal contribution of that feature under different feature combinations, providing a comprehensive
understanding of the model’s decision-making process [10,26].

f(x)=base value + sum (SHAP values)
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Figure 5: SHAP explanation process

Shapley values not only help to evaluate the importance of features but also reveal their specific impact
on the final prediction. A large absolute Shapley value indicates that the feature has a significant contribution
to the prediction, whereas a value close to zero suggests minimal impact [27]. Compared to other feature
importance evaluation methods, SHAP offers more accurate and stable explanations by considering feature
interactions, particularly in complex, nonlinear models [28].

One of the main advantages of SHAP is its model-agnostic property, meaning it can be applied to various
ML models, including tree-based models (e.g., XGBoost and RF) and neural networks. This versatility makes
SHAP a valuable tool not only for providing interpretability in HEAs predictions but also for optimizing
ML models and feature selection. Through SHAP analysis, researchers can better understand the specific
contributions of each feature to model outputs, ultimately improving model performance, enabling data
preprocessing, and informing feature engineering.

2.2.2 Local Interpretable Model-Agnostic Explanations

LIME is a local interpretability method that explains the predictions of a “black-box” model by
approximating it within a localized region [24]. The core principle of LIME is to generate perturbed samples
around the data point of interest and fit a simple, interpretable model (e.g., a linear model) to these perturbed
samples [25]. This allows LIME to explain the behavior of complex models in a local context, making the
results more intuitive.

Specifically, starting from the data point to be explained (shown as the red dot in Fig. 6), LIME generates
multiple perturbed samples (blue dots) and assigns weights to them based on the distance to the original
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sample. It then fits a simple interpretable model using these weighted perturbed samples, with the decision
boundary shown by the black line representing the result of the local fitting. This method is highly flexible and
can be applied to any ML model, including linear regression, decision trees, and neural networks, without
relying on the model’s internal structure or parameters [25].

Weight based on distance from
Build black-box model Generate random points the chosen point

w-

Train the model and use Predict the new points
for explanation with black-box

Al

Figure 6: LIME explanation process

In the context of HEAs property prediction, LIME not only helps identify the key factors driving
the model’s predictions but also assists in diagnosing performance bottlenecks. By analyzing the local
interpretations for different samples, researchers can identify areas or features where the model performs
poorly and implement targeted improvements [24]. Additionally, LIME can visualize the interpretability
results, providing an intuitive analysis tool that enhances model transparency and helps clarify the model’s
decision-making process.

2.3 Experimental Procedure

To verify the reliability of the performance prediction model, eight predicted data points were randomly
selected for experimental validation.

WC-based cemented carbides are an ultra-hard material fabricated using the powder metallurgy
method, a process that consists of three primary stages: powder preparation, compaction, and sintering,
as illustrated in Fig. 7. The raw material powders were weighed and mixed according to the selected
compositions. A planetary ball mill was used for mixing, with anhydrous ethanol as the grinding medium.
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Figure 7: Flow chart of HEAs experiment

After ball milling, the powders were retrieved and separated from the grinding balls using a sieve.
Anhydrous ethanol was used to rinse the grinding jar and balls to ensure cleanliness. The powder mixture
was then left to settle, allowing for the separation of the powder and ethanol. Once settled, the upper ethanol
layer was removed via siphoning, leaving behind the precipitated powder. The remaining powder was dried
in an oven at 80°C for 3 h. After drying, the agglomerated powder was finely ground using a mortar and
pestle and then sieved to obtain a fine powder.

A 20 g sample of the prepared powder was subjected to spark plasma sintering (SPS) at a sintering
temperature of 1200°C and a pressure of 30 MPa. Upon completion of the sintering process, cylindrical
specimens were obtained, surface-ground, and polished before hardness measurements.

The mechanical properties of the HEAs were evaluated using the Vickers hardness (HV3g) test-
ing method.

3 Results and Discussion
3.1 Algorithm Selection

During the development of the ML model, the pre-processed dataset was randomly split into a training
set and a test set using an 8:2 ratio. The training set was used for model training and hyperparameter
optimization (it involves the step size for controlling the update of model parameters; to prevent overfitting,
adjust the regularization weight, etc.), while the test set was employed to assess the model’s generalization
performance, ensuring its applicability to unseen data.
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Among the evaluated models, the optimized XGBoost algorithm achieved a coeflicient of determination
(R?) of 0.88 on the test set, indicating high prediction accuracy and stability in forecasting mechanical
properties (HV). In contrast, the R* values of the test sets for both the RF and KNN models were 0.83 (as
shown in Fig. 8). Additionally, we investigated more advanced algorithms to perform regression tasks. As
shown in Fig. 9, these are the fitting results of MLP and KAN, and the R? values of the test set were 0.77
and 0.75, respectively. These results highlight the superior fitting ability and generalization performance of
XGBoost, making it the most effective model for this task.
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As shown in Fig. 8a, the blue dots and round dots represent the data point distributions of the training
and test sets, respectively, while the red solid line denotes the ideal case where the predicted values perfectly
match the true values. From the figure, it is evident that the training set data points are densely clustered
around the red solid line, indicating that the model achieves a strong fit to the training data. Although the
test set data points exhibit slightly greater dispersion, the majority remain close to the red solid line, further
confirming the model’s robustness and predictive capability.

Compared with RE, KNN, MLP, and KAN models, XGBoost demonstrates significant advantages in
modeling the nonlinear characteristics of HEAs, owing to its implicit interaction learning mechanism based
on the gradient-boosted tree framework. In this study, no explicit interaction terms were predefined; the
input features consisted solely of elemental compositions selected through feature screening. The superior
performance of XGBoost stems from its gradient-based optimization mechanism, which effectively captures
both feature importance and complex inter-element interactions [29]. XGBoost continuously splits the nodes
of the decision tree. Based on the distribution of the data and the importance of features, it automatically
discovers and learns the potential relationships between features from the input data without the need
for humans to define these interaction terms in advance. It can automatically identify which features have
potential interaction relationships that affect the target variable. To a certain extent, this reduces the workload
of manual feature engineering, and it can also discover some new and unexpected feature interactions, thus
improving the performance of the model.
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To further validate the model’s applicability, we employed cross-validation to assess its stability.
The cross-validation results were consistent with the R?* value obtained from the test set, reinforcing the
reliability of the XGBoost model in handling small-sample, high-dimensional datasets. The following are the
calculation formulas and comparisons of the performance indicators of R?, mean absolute error (MAE), and
root mean square error (RMSE) for the five algorithms.

A \2
Rzzl_E(yi—y_i)z 6
X (yi-7)

] )
MAE = — 3 [yi - 3 (2)
i=1

MSE = \l %Z(}ll —}A/,‘)z (3)
i=1

yi: True value
9;: Predicted value
n: The number of samples

As shown in Table 1, the XGBoost model exhibits the best error consistency index, and its MAE/RMSE
ratio (0.45) is significantly lower than that of RF (0.57), KNN (0.57), MLP (0.66), and KAN (0.61). This
result indicates that the distribution of prediction errors of XGBoost is more concentrated, and it has better
numerical stability. Further, by combining the comparative analysis of Figs. 8 and 9, it can be seen that
the prediction results of the XGBoost model for the hardness values of HEAs have the highest degree
of agreement with the experimental data (R* = 0.88). Based on the above comprehensive performance
evaluation, this study determines that XGBoost is the optimal algorithm for predicting the properties
of HEAs.

Table 1: Performance metrics (R*, MAE, RMSE) of different algorithms

Algorithm R’ MAE RMSE MAE/RMSE
XGBoost 0.88 81.34 179.94 0.45
RF 0.83 107.96 190.76 0.57
KNN 0.83 113.31 200.19 0.57
MLP 0.77 99.30 149.69 0.66
KAN 0.75 108.20 176.52 0.61

Notes: High R*+Low MAE/RMSE: superior model; High R*+High
MAE/RMSE: the observed variations could potentially be attributed to
intrinsic data fluctuations; Low R?: the model failed to capture the patterns in
the data.

XGBoost demonstrates a strong capability in handling complex nonlinear relationships and accurately
capturing the intricate interactions among multiple principal elements in high-entropy binder phases, as
well as variations in carbide content. Although the primary focus of the dataset in this study is on WC-
based cemented carbide systems, the model was trained on data encompassing 14 distinct alloy systems.
This enables the quantification of the differential effects of carbide content and high-entropy principal
elements on hardness. As a result, the model can be effectively extrapolated to novel compositions featuring
similar principal element combinations. Moreover, it accurately identifies the formation patterns across
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various carbide systems and elucidates their influence on mechanical performance, thereby enabling efficient
screening and optimization of HEA materials across different systems.

The single model training cycle of our research team mainly consists of three key stages: (1) Data
preparation stage: Through two years of data accumulation, we have carried out strict cleaning, annotation,
and feature engineering on the original data to ensure that the dataset is of high quality and has good
applicability. (2) Model selection and training stage, which takes about a week: In this stage, first, according to
the specific task requirements, the most suitable model structure is screened out from a variety of candidate
model architectures. Subsequently, through meticulous hyperparameter tuning, the model parameters are
continuously adjusted through multiple rounds of training until the optimal algorithm performance is
achieved. (3) The final verification and evaluation stage also take about a week. In this stage, an independent
test set is used to comprehensively evaluate the trained model, and the possible overfitting or underfitting
problems of the model are diagnosed by continuously monitoring various performance indicators. In addi-
tion, we have also designed systematic comparative experiments to verify the reliability and generalization
ability of the ML algorithm through empirical research, ensuring that the research results have practical
application value.

3.2 Results of Shapley Additive Explanations

During the prediction process of the XGBoost model, understanding the relationship between features
and prediction outcomes is crucial for interpreting the model’s decision-making process. By analyzing SHAP
values (as shown in Fig. 10), it is evident that the contents of WC, Fe, Co, and Ni are the key factors influencing
the mechanical properties (HV) of HEAs. Specifically, WC exhibits the highest absolute SHAP value,
indicating its dominant role in enhancing mechanical properties. This finding aligns with previous studies
highlighting its extensive application in the strengthening design of cemented carbides and HEAs [6,7].
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Figure 10: SHAP values of each feature for HV of HEAs
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Furthermore, the contents of Fe, Co, and Ni also have a significant impact on HV, underscoring their
critical role in mechanical strengthening through solid-solution hardening and lattice stabilization. SHAP
analysis not only quantifies feature importance but also reveals the specific contribution directions of each
feature to the prediction results. While existing research has suggested that the synergistic effect of Fe, Co,
and Ni enhances the overall performance of alloys, a precise quantitative assessment of their respective
contributions remains lacking. This study addresses this gap by leveraging SHAP values, providing a crucial
foundation for further optimizing the compositional design of HEAs.

The model predictions demonstrate strong consistency with both SHAP for global interpretation and
LIME for local analysis, thereby providing dual interpretability support that combines global reliability
with local explainability for understanding the decision-making mechanisms of complex models in HEAs
performance prediction and similar applications. The interpretation results of LIME will also be discussed
in Section 3.4.

3.3 High-Throughput Prediction

The results of the SHAP analysis indicate that the hard phase WC and the primary binder phase
elements—Co, Fe, and Ni—exert the most significant influence on the model’s predictive outcomes. In
contrast, the effects of the secondary binder phase elements—Al, Cr, manganese (Mn), and molybdenum
(Mo)—are comparatively less pronounced. Based on this insight, we applied the XGBoost model to conduct
high-throughput predictions of the impact of binder phase composition on hardness (HV) in HEAs.

Specifically, the prediction process was carried out in two stages. First, based on the established database,
we performed high-throughput calculations within the compositional constraints of 70% WC, with the
primary binder phase elements (Co, Fe, Ni) varying within the ranges of 0%-30%, 0%-30%, and 0%-20%,
respectively, to assess their influence on HV. Next, after determining the optimal content ranges of these pri-
mary elements, we adjusted the composition ranges of the secondary elements (Al, Cr, Mn, Mo) to 0%-20%,
0%-30%, 0%-20%, and 0%-20%, respectively, to further evaluate their contribution to HV. The XGBoost
model was used to facilitate these high-throughput calculations. By adopting this stepwise prediction
strategy, we aimed to efficiently identify alloy compositions with promising mechanical properties.

Based on the defined compositional ranges of the primary elements, we utilized the XGBoost model
for high-throughput calculations, generating 86,927 data points. The relationships between the key elements
(Co, Fe, and Ni) and mechanical properties were visualized through a 3D color surface mapping, as
shown in Fig. 11. Analysis of Fig. 11 reveals that within the compositional ranges of Co (0-11 wt%), Fe
(10-27.5 wt%), and Ni (0-4 wt%), the hardness (HV) of the HEAs exhibits a significant increase, indicating
that alloys within this compositional region possess superior mechanical properties. This phenomenon can
be attributed to the synergistic interactions among these elements: the combined effects of Co, Fe, and Ni may
facilitate the formation of short-range ordered structures, stabilizing the face-centered cubic (FCC) phase
structure. Additionally, the multi-element solid-solution strengthening mechanism enhances the hardness
and strength of the alloy [30]. Furthermore, lattice distortion and the high-entropy effect likely contribute
to the overall improvement of the alloy’s mechanical performance [31,32]. These findings align with recent
studies that have explored the influence of elemental interactions on the microstructure and mechanical
properties of HEAs [33]. The optimal compositional ranges for Co, Fe, and Ni obtained in this study provide
valuable guidance for further optimizing the microstructure and mechanical performance of high-entropy
cemented carbides.
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Figure 11: Relationship between the principal components, Co-Fe-Ni and mechanical properties

Following the determination of the optimal Co, Fe, and Ni content ranges, we extended our high-
throughput predictions by incorporating the secondary elements (Al, Cr, Mn, and Mo) and generating a total
of 97,966 additional data points. The composition data of these four elements were systematically permuted
and analyzed in pairs, and 3D color surface maps illustrating the relationships between HV and different
compositional combinations (Al-Cr, Al-Mn, Al-Mo, Cr-Mn, Cr-Mo, Mn-Mo) were constructed, as shown
in Fig. 12. The results indicate that in Fig. 12a,d,e, the combinations of Al-Cr, Cr-Mn, and Cr-Mo significantly
enhance mechanical properties, with clear peak regions in the HV distribution. This suggests that Al, Cr, and
Mn exhibit strong synergistic strengthening effects at specific ratios. Conversely, the combinations of Al-Mn,
Al-Mo, and Mn-Mo in Fig. 12b,c,{ exhibits relatively minor improvements in HV, with a more uniform data
distribution. This may be attributed to the weaker effects of these elements on solid-solution strengthening,
precipitate formation, and grain boundary interactions.
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Figure 12: (Continued)
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Figure 12: Relationship between Al, Cr, Mn, Mo, and mechanical properties

These findings are consistent with recent research conclusions regarding the influence of element
interactions on the mechanical properties of HEAs, further validating the reliability of the XGBoost model
in predicting alloy properties.

Building on the above compositional modeling and analysis, this study further explored the potential
mechanisms by which Co, Fe, and Ni, along with the secondary combinations of Al-Cr, Cr-Mn, and Cr-
Mo, enhance mechanical performance. The high-entropy effect of Co, Ni, and Fe contributes to improved
phase stability and resistance to deformation [34]. The addition of Al influences phase evolution, stabilizing
the FCC phase and potentially promoting precipitation strengthening under specific conditions [35]. Cr,
known for its excellent oxidation resistance, plays a crucial role in stabilizing the solid-solution structure
and refining the microstructure of HEAs [36]. Mo promotes the precipitation of hard phases (e.g., Mo,C),
thereby enhancing wear resistance and hardness [37]. The synergistic interactions among these elements are
likely the primary drivers of the exceptional mechanical properties observed in this five-element system.

To further validate the reliability and robustness of our findings, we systematically evaluated the
predictive performance of different compositional regions using the XGBoost model. By computing R
and RMSE, we found that the Co-Fe-Ni composition exhibited high fitting accuracy, with the correlation
between model-predicted and experimentally measured values exceeding R* > 0.9. This indicates strong
generalization ability and high predictive accuracy within this compositional space. Additionally, the Al-Cr,
Cr-Mn, and Cr-Mo combinations demonstrated high consistency in high-throughput predictions, further
supporting their contributions to the mechanical properties of HEAs.
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In conclusion, for the binder phase of high-entropy cemented carbides, a five-element system consisting
of Co, Fe, and Ni, combined with Al-Cr, Cr-Mn, and Cr-Mo at optimal ratios, can significantly enhance
mechanical properties. This research not only provides theoretical insights for optimizing the compositional
design of HEAs but also highlights the potential of ML in materials science, facilitating the advancement of
data-driven materials design methodologies. Meanwhile, combining the former conclusions with Fig. 3, we
can also see that the HEA system designed based on the combination of ML algorithms and high-throughput
calculations exhibits excellent mechanical properties, and its hardness value is indeed higher than that of
traditional Co-Ni-based alloys.

3.4 Analysis of LIME Local Explanation Results

In this study, we employed LIME to further investigate the specific contributions of binder phase compo-
sition to the mechanical properties of HEAs at a localized level. The results of the LIME analysis are presented
in Fig. 13. As shown in the figure, elements such as Co and Ni exhibit a significant positive contribution
to the hardness of HEAs. This finding underscores their crucial roles in solid-solution strengthening and
high-temperature stability, which help achieve an optimal balance between hardness and toughness.

A closer examination of Fig. 13e—h reveals a critical threshold in the influence of Fe content on mechan-
ical properties. When Fe content is extremely low (Fe < 0.0), its overall effect on mechanical properties
remains positive, suggesting that a small amount of Fe enhances alloy performance. This improvement
can be attributed to Fe’s ability to regulate the alloy’s phase structure, optimizing the balance between
plasticity and hardness [38]. However, excessive Fe content may induce phase separation or reduce the alloy’s
high-temperature stability. Therefore, precise control of Fe concentration is essential to achieve optimal
mechanical properties.

Beyond the binder phase, the influence of the hard phase WC exhibits a distinct non-linear trend.
When WC content is relatively low (<65%), its contribution to mechanical properties is predominantly
negative. This suggests that, at insufficient concentrations, WC may not form a continuous reinforcing phase,
resulting in a negligible strengthening effect. However, when WC content exceeds 75%, a significant increase
in hardness is observed, indicating a strong positive effect. This phenomenon suggests that in high-entropy
cemented carbides, a continuous WC reinforcing phase effectively enhances grain-boundary strengthening
and dispersion strengthening, aligning with findings from previous studies. Nonetheless, an excessively
high WC content may lead to the formation of brittle phases, compromising the alloy’s fracture toughness.
Therefore, optimizing WC content remains a critical aspect of high-entropy cemented carbide design, and
we will explore this issue in future studies.

In conclusion, the local interpretability results obtained via LIME align well with the global feature
importance analysis provided by SHAP, further confirming the critical roles of Co, Ni, and Fe in regulating
the mechanical properties of HEAs. These insights not only deepen our understanding of the relationship
between alloy microstructure and mechanical performance but also provide a scientific foundation for opti-
mizing alloy composition. In future research, integrating microstructural characterization with molecular
dynamics simulations may further elucidate the synergistic mechanisms among different elements, offering
new strategies for the rational design of high-performance HEAs.
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3.5 Experimental Verification

Through the integrated analysis from the dual perspectives of global SHAP and local LIME, this study
systematically reveals the key regulatory role of the Co-Fe-Ni-Cr-Al metallic binder phase system on the
hardness of HEAs. To verify the prediction reliability of the ML model, based on the methodological
framework described in Section 2.1, we designed and prepared 8 sets of composition gradient samples for
experimental verification: (1) The WC content (65%-90%) covers the typical compositional range of WC
in cemented carbides; (2) The content of the binder phase is strictly controlled within the optimized range
of 10%-35% (Table 2). This range not only avoids the insufficient effect of the binder phase effects at a low
content but also prevents the deterioration of mechanical properties caused by a high content. As shown
in Fig. 14, the experimentally measured values show good consistency with the model prediction results
(with a small average error). This not only confirms the effectiveness of the model but also verifies, from an
experimental perspective, the key role of the composition design of the binder phase in property regulation.

Table 2: Composition table of HEAs; composition of HEA powder mixture (wt%)

Samples WC Al Co Cr Fe Ni Mn Cu Mo Ti Si B Y203 W
A 81 0 0 o o0 7 0 2 5 2 0 1 1 1
B 73 6 0 0 9 7 0 0 0 2 0 0 2 1
C 65 0 6 7 9 7 0 2 0 2 0 0 1 1
D 90 0 2 2 2 2 2 0 0 0 0 0 0 0
E 73 18 0 o 0 O 0 0 5 2 0 1 0 1
F 81 0 6 0 0 0 0 2 5 2 2 0 1 1
G 73 0 0 7 0 0 0 0 15 2 2 0 0 1
H 65 12 6 0 0 0 0 2 10 1 2 1 1 0

1600
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1150
A B C D E F G H

Predicted results Experimental results
Figure 14: Comparison between hardness prediction and experimental results

The comparison results show that the deviation between the measured HV values and the predicted
values is small, and the overall error is controlled within a reasonable range, verifying the high precision and
generalization ability of the XGBoost prediction model. Especially in the samples with a high WC content
(>75%), the maximum deviation between the experimental value and the predicted value does not exceed 5%,
indicating that the role of WC in strengthening HEAs has been experimentally supported. In addition, the
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experimental results of the binder phase Al, Fe, Co, and Ni under different ratios are also consistent with the
predicted trends, further demonstrating the effectiveness of the model in revealing the composition-property
relationship of HEAs.

These experimental verification results not only indicate that the feature-analysis method based on
SHAP and LIME can effectively identify the key components affecting the properties of HEAs, but also
demonstrate the feasibility and practicality of ML in material design. In the future, further integration
of microstructural characterization (such as X-ray Diffraction, Scanning Electron Microscopy, Electron
Backscatter Diffraction) and first-principles calculations will help to more deeply reveal the specific contri-
butions of different elements to the alloy strengthening mechanism, providing more solid theoretical and
experimental support for the intelligent design of high-performance HEAs.

At the same time, to increase the feasibility of the experimental work of this study, we also added
numerical experiments. We imposed noise on the input data and compared the mechanical properties of
five algorithm models. Meanwhile, a sensitivity analysis was carried out to identify the input parameters that
have the greatest impact.

As shown in Fig. 15, the Robustness analysis results of five ML models (XGBoost, RE, KNN, MLP, KAN)
are presented for the task of HEAs material optimization and selection under different levels of measurement
noise (from 0% to 50%). Judging from the trends, as the noise level increases, the performance of all
models fluctuates to varying degrees. However, XGBoost shows the strongest robustness, and its performance
fluctuation is significantly lower than that of other models. Especially when the noise level is high (such as
30%-50%), the performance advantage of XGBoost is more prominent, indicating that it can better handle
the noise interference in the data and is suitable for the HEAs material datasets with possible measurement
errors in practical applications.

[a—
(—]

=
b=}
1

Coefficient of Deetermination(R?)
= [—]
Q %]

=
=

0 10 20 30 40 50
HV Measurement Noise Level(%)

Figure 15: Robustness analysis

At the same time, to quantitatively evaluate the relative importance of each input variable to the model
output and identify the influence of the interaction between input variables (the secondary elements) on
the output, we conducted a systematic study on the data and performed a sensitivity analysis using the
Sobol method. As shown in Fig. 16a,b, the influence degrees of single input variables on the mechanical
properties of HEAs show obvious differences: the first-order indices (S) of the main elements Co, Fe, and
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Ni in the bonding phase are significantly higher than those of other elements (0.25-0.45). The influences
of Co and Ni are relatively significant, followed by Fe, indicating that the independent effects of these main
elements contribute the most to the output variables. Among the secondary elements in the bonding phase,
Cr shows a significant influence, while the first-order indices of Al, Mn, and Mo are close to 0, indicating
that their respective influences can be ignored. The ST values of Co/Fe/Ni are close to the S values, further
verifying their dominant position; although Cr has a certain ST value (~0.01), it is mainly reflected through
the interaction (see the second-order analysis). The above results are highly consistent with the SHAP
interpretation results in Section 3.2, verifying the reliability of the analysis method.
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Figure 16: Sensitivity analysis of a single input variable. (a) Co/Fe/Ni/Cr (b) Al/Mn/Mo

Regarding the interactions among secondary elements, Fig. 17 shows the analysis results of the second-
order Sobol indices. It should be noted that the negative values appearing in the analysis may be due to the
estimation fluctuations of the Monte Carlo simulation under a small-sample dataset, especially when the
true value is close to zero (which is consistent with the characteristic of a relatively small sample size in
this study). Nevertheless, the analysis results still show that the interaction intensities among the secondary
elements (e.g., Al, Cr, Mn, Mo) in the binder phase are significantly lower than the independent effects of
the main elements (e.g., Co, Fe, Ni). The Sobol index of Mn-Mo is close to zero, indicating that the non-
linear effect is not significant. The results of the sensitivity analysis in this study show that the second-order
interaction intensities among the secondary elements (Al/Cr/Mn/Mo) in the binder phase are significantly
lower than the error range of the Monte Carlo simulation (|S;| < 0.014), and their weak effects may be masked
by numerical calculation noise. This phenomenon is consistent with the inherent fluctuation characteristics
of Sobol index estimation under small-sample conditions [39]. In addition, the absolute value of the negative
value reflects the degree of estimation fluctuation—the larger the negative value, the more significant the
fluctuation and the larger the estimation error.
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Figure 17: Sensitivity analysis of second-order interaction effects

Therefore, this numerical experiment further validates the credibility of our final choice of XGBoost
as the core model for HEAs material optimization in this study, taking into account both the prediction
accuracy and the anti-noise ability.

3.6 Finiteness and Instability

The HEAs dataset constructed in this study exhibits significant compositional diversity, encompassing
14 key elements. It fully covers the typical alloying systems used in high-entropy binder phase design,
including solid-solution-strengthening transition metals (Fe/Co/Ni-based systems), carbide-forming ele-
ments (e.g., W, Mo, Ti), and grain boundary modifiers. In terms of performance space, the dataset spans
a wide range of HV values, encompassing both traditional cemented carbides and novel HEAs. Synergistic
distribution analysis of composition and performance reveals that the existing dataset effectively captures
the relationship between the content of high-entropy constituents in the binder phase and the resulting
alloy hardness. This provides the XGBoost model with a broad and representative feature space, facilitating
the learning of complex correlations between compositional combinations and mechanical performance.
However, the coverage of the compositional space in the dataset is inherently constrained by the scope of the
collected data. Due to limitations in experimental resources and costs, it is not feasible to include all possible
compositional permutations, and thus, the dataset retains certain limitations.

Consequently, the finiteness of the data, noise, and the unevenness of the data distribution will all give
rise to uncertainties. For instance, the finiteness of HEAs data may not be able to comprehensively reflect the
complex relationships of material properties, leading to significant uncertainties in the model’s predictions
in unknown regions. Moreover, the complexity and assumptions inherent in the XGBoost model itself
introduce uncertainties. Although it is capable of handling complex nonlinear relationships, inappropriate
selection of the model structure may result in overfitting or underfitting, which will affect the accuracy and
reliability of predictions.
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3.7 Future Research Directions
3.71 Applications of Artificial Intelligence in Solving Partial Differential Equations

In recent years, with the significant improvement of computer hardware performance, the continuous
innovation of ML algorithms, and the mature application of automatic differentiation algorithms in artificial
intelligence frameworks such as PyTorch and TensorFlow, artificial intelligence has made significant progress
in the field of solving partial differential equations [40]. This research currently mainly uses traditional
ML algorithms. However, we are actively exploring cutting-edge algorithm technologies and also plan to
introduce the method of solving partial differential equations with the help of artificial intelligence to the
research fields of HEAs and other materials. Specifically, we plan to establish a learning model for partial
differential equations, learn the internal laws of partial differential equations through training data, and then
solve key problems in materials science. The following are the key advancement directions of this research:

Physics-Informed Neural Networks (PINNs)

Physics-Informed Neural Networks are an innovative deep-learning framework. By directly integrating
the mathematical expressions of partial differential equations (PDEs) into the neural network training
process, it enables efficient modeling of physical systems [41]. This method shows unique advantages in
handling sparse, noisy, unstructured, and multi-fidelity data. In the research of HEAs, we plan to incorporate
the basic principles, such as the laws of thermodynamics and the diffusion equation, which are incorporated
into the neural network as loss functions. For example, by adding constraint terms to ensure that the alloy
composition conforms to the stoichiometric relationship or making the model prediction results consistent
with physical laws, a physically interpretable neural network model can be constructed.

Deep Energy Method (DEM)

DEM proposed by Samaniego et al. [42] has its core idea in utilizing the variational energy structure of
the Boundary Value Problem (BVP). It directly takes the energy function of the system as the loss function
of the Deep Neural Network (DNN) for optimization. This method, through the principle of physics-driven
energy minimization, effectively ensures the mechanical consistency of the solution process, and thus it is
named DEM.

Based on this theoretical framework, our research team plans to extend the core methodology of DEM to
the field of material design and performance optimization of HEAs. Specifically, by constructing an energy-
driven ML model, with the alloy composition as the input variable and the minimization of the strain energy
density functional as the optimization objective, the loss function can be expressed as:

L(6) = /Ql//(e (16); ¢) dQ (4)

y: the strain energy density function
u0: the displacement field predicted by the neural network
c: the parameter of the alloy composition

The optimal composition ¢* = argmincL(6) is obtained as the output. The implementation of this method
is expected to achieve the directional optimization of the mechanical properties of high entropy alloys and
provide a new computational paradigm for material design.
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Physics-Informed Neural Operator (PINO)

The Physics-Informed Neural Operator is a new algorithm framework that integrates physical modeling
and deep learning [43]. This technology not only inherits the physical constraint idea of PINNs but also has
the generalization ability of neural operators. It can perform functional mapping in the function space, thus
efficiently predicting the evolution of physical fields under different initial/boundary conditions. We plan to
integrate the thermodynamic and kinetic principles of HEAs into the PINO model through methods such
as loss functions, regularization terms, or network structure design, to improve the accuracy and reliability
of the model in predicting material properties.

3.7.2 Expansion Directions of ML-XAI

This research currently mainly focuses on the mechanical performance indicators of HEAs, such as
hardness, fracture toughness, and flexural strength. To further expand the application scope of ML in the
design and optimization of HEA materials, future research will be extended to multiple key performance
indicators, including physical properties (e.g., thermal conductivity and electrical conductivity), corrosion
resistance, wear resistance, and low-cost preparation processes.

3.7.3 Universality of the ML-XAI Framework

The ML-XAI framework developed by our team exhibits excellent universality characteristics. This
framework can efficiently process massive material data (including information such as composition, struc-
ture, and preparation processes) and discover the potential correlation laws between material characteristics
and properties. Even when faced with high-dimensional and complex-structured material data, ML-XAI
can still automatically extract the most predictive key features. Based on this advantage, we plan to expand
the application of this framework to other material systems, including but not limited to: predicting
the optical/electrical properties of optoelectronic materials, predicting the mechanical/physical/chemical
properties of polymer materials, and optimizing the key properties of other metallic materials [44]. This
expansion will provide strong technical support for the Materials Genome Initiative and accelerate the
research and development process of new materials.

4 Conclusions

(1)  This study established a characteristic database for cemented carbides with HEAs as the binder phase
and applied the XGBoost model to predict HV, achieving an R* of 0.88, which indicates strong
predictive performance.

(2) SHAP analysis clarified the decision-making mechanism of the model, identifying Al, Fe, Co, and Ni
as key binder phase elements influencing mechanical properties.

(3) High-throughput calculations determined an optimized binder phase composition. Results suggest
that a five-element system—combining Co, Fe, and Ni with Al-Cr, Cr-Mn, and Cr-Mo—significantly
enhances mechanical properties, providing data-driven guidance for alloy design.

(4) LIME analysis and experimental validation of eight cemented carbide compositions confirmed align-
ment with SHAP results. The high correlation between model predictions and experimental values
demonstrates the reliability of the XGBoost model.

(5) By developing a composition-property prediction model with an interpretable framework, this study
enhances model transparency and provides a theoretical foundation for replacing Co with HEAs in
cemented carbides, advancing ML-driven materials design.
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