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ABSTRACT: The shop scheduling problem with limited buffers has broad applications in real-world production
scenarios, so this research direction is of great practical significance. However, there is currently little research on
the hybrid flow shop scheduling problem with limited buffers (LBHFSP). This paper deeply investigates the LBHFSP
to optimize the goal of the total completion time. To better solve the LBHFSP, a multi-level subpopulation-based
particle swarm optimization algorithm (MLPSO) is proposed, which is founded on the attributes of the LBHFSP
and the shortcomings of the basic PSO (particle swarm optimization) algorithm. In MLPSO, firstly, considering the
impact of the limited buffers on the process of subsequent operations, a specific circular decoding strategy is developed
to accommodate the characteristics of limited buffers. Secondly, an initialization strategy based on blocking time
is designed to enhance the quality and diversity of the initial population. Afterward, a multi-level subpopulation
collaborative search is developed to prevent being trapped in a local optimum and improve the global exploration
capability. Additionally, a local search strategy based on the first blocked job is designed to enhance the MLPSO
algorithm’s exploitation capability. Lastly, numerous experiments are carried out to test the performance of the proposed
MLPSO by comparing it with classical intelligent optimization and popular algorithms in recent years. The results
confirm that the proposed MLPSO has an outstanding performance when compared to other algorithms when
solving LBHFSP.

KEYWORDS: Hybrid flow shop scheduling problem; limited buffers; PSO algorithm; collaborative search; blocking
phenomenon

1 Introduction
Given the rapid advancement in the intelligent manufacturing field, production scheduling, as a crucial

technology of intelligent manufacturing, plays a pivotal role in the modern manufacturing industry [1,2].
Being the most prevalent scheduling problem in manufacturing systems, the flow shop scheduling problem
(FSSP) has been applied in many scenarios [3,4]. As an expansion of the conventional FSSP, the hybrid
flow shop scheduling problem (HFSP) considers machine flexibility, thereby possessing a stronger industrial
background and higher practical application value [5,6]. At present, the HFSP has been widely applied in the
chemical industry, transportation, manufacturing, medical care, and other industries [7,8].

However, the traditional FSSP still faces practical limitations due to its reliance on an infinite buffer size
between consecutive stages [9]. Generally, once a job completes processing at a particular stage, it proceeds
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directly to the next stage if a machine is available. Otherwise, the job enters a buffer zone to wait for an
available machine. However, in actual production scenarios, due to constraints such as space and cost, the size
of the buffer is often limited [10]. For example, space and storage facilities are finite, especially in the battery
and steel production industry [11]. Therefore, studying the flow shop scheduling problem with limited buffers
(LBFSSP) holds crucial practical significance [12]. In the case of limited buffers, after the job is processed,
the job cannot directly enter the buffer even if no machine is available in the next stage. In detail, if all
buffers are occupied, the job can only remain on the present machine, causing congestion. Only when there
is an available machine in the subsequent stage, allowing the job stored in the buffer to enter the next stage
according to the first-in first-out principle, can the buffer be released. Thus, the job can leave the current
machine and enter the released buffer. At this moment, the released machine can be used to process other
jobs, and the congestion phenomenon is terminated [13]. Although the blocking phenomenon may occur
in LBFSSP, it’s different from the blocking flow shop scheduling problem (BFSSP). The BFSSP has no buffer,
while the FSSP has unlimited buffers. However, the quantity of buffers ranges from 1 to N (the number of
jobs) in LBFSSP. Therefore, the LBFSSP lies between the BFSSP and the FSSP.

Compared to the FSSP, the hybrid flow shop scheduling problem with limited buffers (LBHFSP) is more
widely used in realistic production, so studying the LBHFSP is more meaningful and practical [14]. HFSP,
being a classical NP (Non-deterministic Polynomial)-hard problem [15], is hard to solve, while the LBHFSP
not only considers machine flexibility but also the buffer size, making it even more difficult to solve [16]. Thus,
this paper studies the LBHFSP and proposes a multi-level subpopulation-based particle swarm optimization
algorithm (MLPSO), aiming to optimize the goal of total completion time. The primary contributions of this
article are summarized below.

(1) According to the constraint characteristics of this problem, a specific circular decoding strategy is
designed in this paper. This method considers the impact of the limited buffers on the process of
subsequent operation, which helps to decide the time when the blocked job gets into the buffer and
calculates the blocking time.

(2) Considering the influence of the limited buffers, an initialization strategy based on blocking time is
proposed. This strategy helps to produce promising initial solutions through the selection mechanism
based on blocking time and makespan, thereby improving the quality and diversity of the population.

(3) To deal with the shortcomings of the PSO, a multi-level subpopulation collaborative search strategy
is designed. This strategy can achieve multi-directional search and information exchange, thereby
preventing getting into a local optimum.

(4) Given the characteristics of the scheduling process of the LBHFSP, a local search strategy based on
the first blocked job is developed. This strategy can avoid unnecessary operations and achieve precise
search, thereby greatly improving the search efficiency.

The structure of this article is as follows: Section 2 is the review of the literature. Section 3 describes the
problem in detail and presents the mathematical model. Section 4 is the detailed framework of the MLPSO
algorithm. Section 5 is a comparative experiment. Finally, Section 6 provides a summary of the content and
looks forward to promising research subjects.

2 Literature Review
So far, there has been a large amount of literature on the hybrid flow shop scheduling problem owing

to its broad range of applications. In addition, many researchers have made an extension on HFSP and
proposed effective algorithms to deal with this sophisticated problem. For instance, Guan et al. [17] designed
a new crossover operator and developed a modified genetic algorithm incorporating multiple crossover
operators to solve the HFSP in collaborative manufacturing. Considering the link between the solution space
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represented by different solutions, Kuang et al. [18] developed a novel algorithm with a two-stage cross-
neighborhood search process for HFSP. Zhang et al. [19] designed a metaheuristic approach including the
meta-training and the Q-learning process to deal with the HFSP with learning ability and forgetting factors.
There are still kinds of literature on the HFSP and its expansion [20–24].

Traditional FSSP is under the assumption that the buffer capacity is unlimited. However, with the
continuous development of production mode, the flow shop scheduling problem with limited buffers
(LBFSSP) arises. Therefore, research on the LBFSSP has been continuously emerging. For instance, Moslehi
et al. [25] applied the hybridization algorithm combining the simulated annealing algorithm (SA) and the
variable neighborhood search method (VNS) to settle the permutation flow shop scheduling problem with
limited buffers (LBPFSP). Zhao et al. [26] made improvements to the PSO algorithm by introducing the
linearly declining perturbation factor to address this problem better. Zhang et al. [27] developed an efficient
discrete artificial bee colony algorithm (DABC) to deal with the FSSP with intermediate buffers. Additionally,
Abdollahpour et al. [28] adopted an approach integrating the artificial immune system algorithm with the
iterated greedy method to optimize the makespan in this problem. Deng et al. [29] introduced several
effective strategies into the DABC algorithm for LBPFSP to minimize the objective of the total flow time.
The hybrid shuffled frog leaping [30] was also applied to LBFSSP. Le et al. [31] combined the improved NEH
(Nawaz-Enscore-Ham) heuristic with the iterated local search method to solve the two-machine LBPFSP
with invariable processing time at a certain machine. Moreover, Lu et al. [32] were the first to investigate the
multi-objective distributed LBPFSP and develop an effective collaborative optimization algorithm based on
the Pareto to optimize the objective of total energy consumption (TEC) and makespan. In summary, there
is much research on LBFSSP.

The PSO algorithm is a population-based optimization algorithm, which is derived from the observation
of bird social behavior. In comparison to other algorithms, the PSO algorithm’s framework is more
straightforward, and its process is easier to implement. Moreover, it achieves the optimization process
through an information-sharing mechanism, which accelerates the algorithm’s convergence. Therefore, the
PSO algorithm is widely applied to scheduling problems. For instance, Ding et al. [33] studied the flexible
job shop scheduling problem (FJSP) and proposed an improved particle swarm optimization algorithm
(IPSO), in which a new chain encoding and effective decoding scheme were proposed to shorten the
makespan effectively. To solve the multi-objective FJSP, Zhang et al. [34] proposed an improved hybrid
particle swarm optimization algorithm with a new method for updating particles. Hayat et al. [35] proposed
the modified PSO algorithm (MPSO) for the permutation flow shop scheduling problem (PFSP). The MPSO
is hybridized with VNS and SA. The effectiveness of the MPSO is proven through the experimental results.
Leguizamon et al. [36] designed a PSO-based algorithm oriented by decision for the scheduling problems
in the flow shop production field. Kaya et al. [37] presented an improved local search method (LS) and
applied it to the chaotic hybrid firefly and PSO algorithm to tackle FSSP in production systems. A parallel
hybrid PSO-GA (Genetic Algorithm) algorithm that can shorten run time remarkably was proposed for
HFSP with transportation [38]. Additionally, Zhang et al. [39] studied the distributed FSSP and specifically
designed a bi-objective PSO algorithm to optimize the total processing time and makespan of this problem
simultaneously. Later, Zhang et al. [40] also developed a multi-objective PSO algorithm relying on the Q-
Learning mechanism to tackle the distributed FFSP with the criteria of makespan and TEC. Additionally,
for the FFSP with limited buffers, several academic studies have also used the PSO algorithm. Liu et al. [41]
were the first to apply the PSO algorithm with some adaptive search strategies (HPSO) to the LBFSSP due
to its excellent performance in continuous optimization problems. Zhao et al. [26] developed a modified
PSO algorithm (LDPSO) incorporating a linearly decreasing disturbance term in the velocity to regulate
the capability between exploration and exploitation. However, both the encoding methods of the HPSO
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and LDPSO reduce the initial population’s diversity greatly, which is not beneficial for obtaining the best
solution. Therefore, the LDPSO algorithm is required for further improvements to enhance performance.
For LBHFSP, Li et al. [42] explored an algorithm that is a mixture of the artificial bee colony algorithm
with the tabu search method (TS), and the neighborhood search strategy and LS method based on TS were
conceived in it. Besides, Zhang et al. [43] adopted the discrete whale swarm algorithm to address the LBHFSP,
in which a hybrid initialization approach and a deduplication mechanism were designed to enrich the initial
population’s diversity. Zheng et al. [44] proposed the hybrid metaheuristic algorithm called GVNSA to
solve the LBHFSP with step-deteriorating jobs. Additionally, Rooeinfar et al. [45] studied the LBHFSP with
preventive maintenance and presented a novel method called HSIM-META, which includes the computer
simulation model and GA, PSO, and SA. Zohali et al. [46] introduced batch processing machines into the
LBHFSP and designed the discrete fruit fly algorithm to reduce total cost as much as possible. Moreover,
Janeš et al. [47] proposed a modified steady-state genetic algorithm to deal with this complex problem. Zheng
et al. [48] studied the reentrant LBHFSP with sequence-dependent setup times and proposed a cooperative
adaptive genetic algorithm to minimize the makespan. The genetic operations based on the collaborative
mechanism are designed to enhance the search capability. Chang et al. [49] proposed a discrete particle
swarm optimization algorithm with multi-population reduction for the LBHFSP, in which the elite retention
strategy is designed to improve the algorithm’s performance. Although they are efficient in solving LBHFSP
and its extension, none of them considered the influence of limited buffers on the processing state of the job.
This paper digs into the blocking phenomenon caused by limited buffers and aims to optimize the objective
by reducing the occurrence of blocking. Consequently, a multi-level subpopulation-based particle swarm
optimization algorithm is put forward for LBHFSP in this article.

3 Problem Description and Mathematical Model

3.1 Problem Description
The hybrid flow shop scheduling problem with limited buffers (LBHFSP) is defined as follows: there are

N jobs and S stages. Each stage i(i = 1, 2, 3, . . . , S) is equipped with Mi parallel machines, with Mi > 1 at
least one stage. Each job is processed with the same processing path. The buffer capacity between adjacent
stages is limited, and the buffer size between stage i and i + 1 is Bi . The processing situation of each job is
affected by the buffer size between consecutive stages. In detail, when the job is processed in stage i, the
following processing scenarios may occur: (1) The job immediately enters the next stage for processing when
a machine in stage i + 1 is available; (2) In the case of no available machine in stage i + 1, the job will go into
the buffer for waiting when a buffer between adjacent stages is available; (3) In the case of no available buffer
between consecutive stages, the job is not allowed to leave the current machineuntil the buffer or the machine
in the next stage is available. The purpose of the LBHFSP is to obtain an optimal schedule that minimizes
the maximum completion time of all jobs. The LBHFSP is depicted in Fig. 1.

In addition, the assumptions are as follows:

1. Each job can only be processed by one machine at a time;
2. One machine can process at most one job at a time;
3. All jobs are independent and ready for processing at time 0;
4. The time for transportation and setup between adjacent stages is negligible;
5. No preemption and machine breakdown are permitted.
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Figure 1: The processing flowchart of the LBHFSP

To better illustrate the LBHFSP, we give an example of the problem. This instance discusses the LBHFSP
with 10 jobs and 3 stages. Furthermore, each stage contains 3 machines. In this example, the buffer size
is set to 2. The time required to process each job in each stage is listed in Table 1. Given a solution
π = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, Fig. 2 shows the Gantt chart pictured by solution π in the case where the buffer
size is limited. “B1, B2, B3, and B4”, respectively, represent the buffer between stages, that is, the gray area
in the figure; “M1 and M2” indicate the machine in each stage. Due to the limited size of the buffer, jobs
might be blocked on the current machines, where “Blocking time” represents the duration during which the
job is blocked on the machine, resulting in a final makespan of 29. Meanwhile, under infinite buffers, the
makespan corresponding to the solution π is 28. By comparison, the maximum completion time is extended
as a result of the limited buffer. However, in terms of practical applications, the limited buffer is more in
line with realistic production scenarios, so this article aims to reduce the maximum completion time under
limited buffers.

Table 1: The time required to process each job in each stage

Job J1 J2 J3 J4 J5 J6 J7 J8 J9 J10
Stage 1 3 1 3 3 2 4 2 3 2 1
Stage 2 4 5 1 2 3 6 3 4 6 4
Stage 3 5 9 7 5 6 7 4 5 9 6
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Figure 2: Gantt chart of one solution with limited buffers

3.2 Mathematical Model
The related notations of the LBHFSP are presented in the following:

(1) Indices
j, j′: index of jobs, j = 1, 2, . . . , N , j′ = 1, 2, . . . , N .
i: index of stages, i = 1, 2, . . . , S.
k: index of machines, k = 1, 2, . . . , M.
b: index of buffers, b = 1, 2, . . . , B.
r: index of the position on the machine or buffer, r = 1, 2, . . . , N .

(2) Sets
J∶ set of jobs, J = {1, 2, . . . , N} .
B∶ set of buffers, B = {B1 , B2, . . . , Bs−1} .
M∶ set of machines, M = {M1 , M2, . . . , Ms} .

(3) Parameters
N : total number of jobs.
S: total number of stages.
Bi : the number of buffers between stage i and i + 1.
pi , j ∶ the processing time of job j in stage i.
Si , j ∶ starting time of job j in stage i.
Ci , j ∶ completion time of job j in stage i.
Bi , j ∶ start waiting time of job j in the buffer between stage i and i + 1.
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Ei , j ∶ end waiting time of job j in the buffer between stage i and i + 1.
BTi , j ∶ the blocking time of job j in stage i.
FAMi ∶ the earliest available time of the machine in stage i.
FABi ∶ the earliest available time of buffer between stage i and i + 1.
LA: an infinite positive integer.

(4) Decision variables
w j , i ,k ,r : a binary number, set 1 if job j is blocked on the k-th machine in the r-th position in stage i;

otherwise, set 0.
x j , i ,k ,r : a binary variable, set 1 if job j is processed on the k-th machine in the r-th position in stage i;

otherwise, set 0.
y j , j′ , i ,k : a binary variable, set 1 if job j is processed on the k-th machine before job j′ in stage i; otherwise,

set 0.
u j , i ,k ,r : a binary variable, set 1 if job j is stored in the k-th buffer in the r-th position between stage i and

i + 1; otherwise, set 0.
y j , j′ , i ,k : a binary variable, set 1 if job j is stored in the k-th buffer before job j′ between stage i and i + 1;

otherwise, set 0.
In summary, LBHFSP aims to minimize the makespan. Below is the mathematical model of the LBHFSP.
Objective function:

OF =min Cmax (1)

subject to:

∑
Mi

k=1 x j , i ,k ,r = 1, j ∈ {1, 2, . . . , N}, i ∈ {1, 2, . . . , S} (2)
Si , j ≥ 0, i ∈ {1, 2, . . . , S}, j ∈ {1, 2, . . . , N} (3)
Ci , j = Si , j + pi , j , i ∈ {1, 2, . . . , S}, j ∈ {1, 2, . . . , N} (4)
y j , j′ , i ,k + y j′ , j , i ,k ≥ x j , i ,k ,r + x j′ , j ,k ,r − 1, j ∈ {1, 2, . . . , N}, j ≠ j′ (5)
y j , j′ , i ,k + y j′ , j , i ,k ≤ 1, j ∈ {1, 2, . . . , N} j ≠ j′ (6)
Si+1, j ≥ Ci , j , i ∈ {1, 2, . . . , S}, j ∈ {1, 2, . . . , N} (7)
Si , j′ ≥ Si+1, j − LA× (3 −w j , i ,k ,r − x j′ , i ,k ,r − y j , j′ , i ,k) , j ∈ {1, 2, . . . , N}, j ≠ j′, (8)
BTi , j′ = w j , i ,k ,r × (Ei , j − Ci , j′) × y j , j′ , i ,k , j ≠ j′, j ∈ {1, 2, . . . , N} (9)
Si , j′ = Ci , j + BTi , j′ , j ≠ j′, j ∈ {1, 2, . . . , N} (10)

∑
Mi

k=1 u j , i ,k ,r = 1, j ∈ {1, 2, . . . , N}, i ∈ {1, 2, . . . , S − 1} (11)
Bi , j > 0, i ∈ {1, 2, . . . , S − 1}, j ∈ {1, 2, . . . , N} (12)
Ei , j′ = Ci+1, j , j ∈ {1, 2, . . . , N}, i ∈ {1, 2, . . . , S − 1} (13)
z j , j′ , i ,k + z j′ , j , i ,k ≥ u j , i ,k ,r + u j′ , i ,k ,r − 1, j ∈ {1, 2, . . . , N}, i ∈ {1, 2, . . . , S − 1}, j ≠ j′ (14)
z j , j′ , i ,k + z j′ , j , i ,k ≤ 1, j ∈ {1, 2, . . . , N}, i ∈ {1, 2, . . . , S − 1}, j ≠ j′ (15)

Eq. (1) is the objective function of the LBHFSP problem. Eq. (2) indicates that each job can only be
processed on one machine at any stage. Eq. (3) ensures that the starting time of each job is not less than 0
in all stages. Eq. (4) gives the method of calculating the completion time of each job. Eqs. (5) and (6) ensure
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that each machine can only process one job at a time. Eq. (7) ensures that the job can be processed only after
the previous stage of processing is completed. Eq. (8) shows that the machine can process subsequent jobs
only when the blocking phenomenon on the machine is released. Eq. (9) reveals the relationship between
the blocking time of the processing job and the end waiting time of the previous job in the buffer. Eq. (10)
indicates that the starting time of the subsequent job is the sum of the completion time and the blocking
time of the previous job. Eq. (11) guarantees each job can only be stored in one buffer and cannot be
transferred. Eq. (12) indicates that the start waiting time of the job entering the buffer is greater than 0. Eq. (13)
shows that the end waiting time in the buffer is equal to the previous job’s completion time in the next
stage. Eqs. (14) and (15) ensure that each buffer can only store one job at a time.

4 The Proposed Algorithm for LBHFSP

4.1 The Framework of MLPSO
For LBHFSP, this paper proposes the algorithm MLPSO. Firstly, an initialization strategy is developed

under the features of the LBHFSP to enhance the initial population’s quality. Secondly, a multi-level
subpopulation collaborative search is developed to protect the MLPSO from being caught in the local
optimum. Finally, to promote the search performance of the MLPSO, a local search strategy is proposed
depending on the properties of the scheduling process of the LBHFSP. The framework of MLPSO is shown
in Algorithm 1. MLPSO is a hybrid framework that combines the discrete PSO with a novel local search
method. The basic update method of particles in the discrete PSO can be obtained in this reference [50].

The primary components of MLPSO consist of encoding and decoding, population initialization,
collaborative search, and local search. The following subsections describe these components in detail.

Algorithm 1: The main framework of MLPSO
Input: PS (the size of the population), d (the number of subpopulation)
Output: best solution s and makespan
1. pop ← Initial izationStrateg y(PS) //Initialization phase
2. subpopi ← Col l aborativeSearch(d)
3. Gbest ← LocalSearch() //U pdate Gbest by blcoking job
4. Find the best solution s among Gbest in d subpopulations
5. Output best solution s and its makespan

4.2 Encoding
To address LBHFSP, this article adopts an encoding method based on the job sequence, where a set

of integers represents one solution, with each integer corresponding to a specific job. Taking Fig. 2 as an
example, the solution is represented as π = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} which means that the job is processed
according to this job sequence during the first stage. In other stages, the processing order is determined by
the processing state of the previous operation, buffer size, and the available machines together. The details
are given in the following section.

4.3 Decoding
Since the size of the buffer is limited by the realistic production scenario, the decoding method of

LBHFSP is different from the classical HFSP, which needs to consider the influence of the limited buffer on the
subsequent processing operation. Therefore, a specific circular decoding method is designed according to the
properties of LBHFSP. Under this decoding method, the job is selected sequentially according to the initial
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solution. Once the job is selected, the job is arranged sequentially to each stage until this job is completed,
and then the next job is selected circularly. This procedure iterates until all jobs are processed. The circular
decoding process is given below:

Step 1: According to the solution π = {J1 , J2, J3, . . . , J j , . . . , JN}, select the job J j circularly. At first, j = 1.
If j ≤ N , turn to Step 2; otherwise turn to Step 3.

Step 2: Originally, i = 1. For each job J j at each stage i, execute the subsequent steps:
Step 2.1: Select the earliest available machine. The job J j is directly allocated to the available machine.

The starting time Si , J j and completion time Ci , J j are recorded. If i = S, it indicates that the job is in the final
stage and has completed processing. Therefore, j + + and return to Step 1. If i < S, perform the Step 2.2.

Step 2.2: After the job is finished in the current stage, it is necessary to determine whether the job will
proceed directly to the next stage for processing, wait in the buffer, or wait on the current machine. This is
achieved by the following steps:

(1) If Ci , J j ≥ FAMi+1, it denotes that there is an available machine and the job proceeds directly to the next
stage for processing. Then, let i + + and turn to Step 2.1.

(2) If FAMi+1 > Ci , J j ≥ FABi , it means that there is no available machine but an available buffer. Thus, the
job gets into the buffer area to wait until the machine is available. The job is sent to the next stage to
process. At this point, set i + + and turn to Step 2.1.

(3) If Ci , J j < FABi , it indicates that there is neither an available machine nor an available buffer. As a result,
the job is supposed to keep on the current machine until the buffer becomes available. Then, BTi , J j =
FABi − Ci , J j , Ci , J j = FABi , turn to Step 2.2.

Step 3: All jobs have been finished. And the makespan =max
J j∈J
{Cs , J j}.

4.4 Population Initialization
For LBHFSP, due to the limited buffer, jobs may be blocked on machines, resulting in a longer

completion time. Considering the influence of blocking time on completion time, the initialization strategy
based on blocking time is designed in this article to enhance the initial population’s quality. This initialization
strategy aims to add solutions with a smaller blocking time to the initial population, making it more likely
to find better solutions with a smaller completion time. The detail is given below.

As we all know, NEH is one of the famous heuristic methods that has been demonstrated to perform
well in solving scheduling problems [51]. In the case of a small buffer size, prioritizing jobs with longer total
processing times is more likely to result in a longer blocking time. Given this, we sort jobs in ascending
order according to their total processing completion times, giving higher priority to jobs with shorter
completion times. Therefore, this article employs the NEH heuristic rule to generate two solutions for the
initial population. Other solutions are generated using the following strategy based on the characteristics of
the problem. Firstly, randomly generate individuals and adopt the decoding strategy to obtain the makespan
and blocking time of an individual. Subsequently, these individuals are ranked in ascending order depending
on makespan and blocking time, respectively. Then, the top 50% of individuals from each sorting result
are added to the population, while the last individual from both sorting results is recorded. Finally, replace
the last two individuals with the two solutions generated by NEH. Consequently, the initial population is
obtained. Algorithm 2 gives the pseudocode of the initialization strategy.
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Algorithm 2: The pseudocode of the initialization strategy
Input: PS (the size of the population), s1 , s2 (initial solution obtained from total processing time in
ascending order and descending order)
Output: initial population pop
1. Get two individuals based on NEH:
2. π1 = NEH (s1) , π2 = NEH (s2) ;
3. Randomly generate an initial population pop′;
4. Get PS/2 individuals based on makespan:
5. For i = 1 to PS: //decoding phase
6. makespan = Decoding (pop′i) ;
7. end
8. Sort the population pop′ based on makespan, add the top 50% individuals to population pop and

record the last solution π3;
9. Get PS/2 individuals based on blocking time:
10. for i = 1 to PS: //decoding phase
11. blockingtime = Decoding(pop′i);
12. end
13. Sort the population pop′ based on blocking time, add the top 50% of individuals to population pop,

and record the last solution π4.
14. Replace π3 and π4 with solutions generated by NEH to form the initial population;
15. π3 = π1, π4 = π2

4.5 Collaborative Search Strategy
To cope with the poor global search capability of the PSO because of its single population, the multi-level

subpopulation collaborative search strategy is proposed. Subpopulations at varying levels can evolve along
distinct directions through collaborative search, allowing them to explore and exploit in different directions.
This strategy can effectively avoid being trapped in local optimum and enhance the global search ability of the
MLPSO. In detail, this strategy includes three parts: population division, particle update, and information
exchange between subpopulations.

Firstly, the population is segmented into d subpopulations at the same level according to the makespan.
This helps to reduce the differences among subpopulations, making sure that each subpopulation has the
same search ability initially. The number of subpopulations d is determined through parameter calibration
experiments. Parameter calibration makes the population division more accurate.

Next, to better tackle the scheduling problem, each particle’s update method needs to be discretized.
The updating process can be equivalent to the mutation operation, crossover with its historical optimal
particle, and crossover with the historical optimal particle of the population, respectively. Both crossover
and mutation operations are performed with a certain probability. Among them, MR represents a mutation
probability, PCR and GCR represent crossover probability with its own historical best particle and the group’s
historical best particle. PCR and GCR are also called learning factors and represent the probabilities of
learning from themselves and the group. However, in the beginning, the historical best position of the particle
is identical to its current position. If the particle does not perform mutation operation, then crossover with
its own historical best position is invalid. To avoid invalid crossover operation, a moving-based crossover
operator (MBX) is specifically designed. Even if the two individuals to be crossed are the same, crossover
results different from their parents can be obtained by MBX. Fig. 3 displays the process of the moving-based
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crossover operator. In addition, when two crossover individuals differ, the partial matching crossover (PMX)
is adopted. The mutation operation adopts the exchange operation, which randomly selects two points and
exchanges the job at these two points.

1 2 3 4 5 6 7 8 9 10

3 4 1 2 5 6 7 8 9 10

iX

i
bestP 1 2 3 4 5 6 7 8 9 10

x y z

1 2 3 4 8 9 10 5 6 7

Figure 3: MBX crossover operator

Finally, the multi-level subpopulation collaborative search is achieved through information exchange.
The information exchange between populations is achieved through particle migration. The migration
method is as follows: the worst particle in an excellent subpopulation replaces the worst particle in an
inferior population, and the best particle in an inferior population replaces the worst particle in an excellent
population. The substitution of superior particles for the inferior particles of another population can not
only guide the evolution of the population in a good direction but also retain the excellent solution structure.
The substitution between the inferior particles is beneficial to enrich the population’s diversity and boost
the optimization capability. After each collaborative search, the subpopulations will evolve towards the level
of excellent, common, and inferior. The pseudocode of the collaborative search strategy is expressed in
Algorithm 3.

Algorithm 3: The pseudocode of the collaborative search strategy
Input: pop (initial population), d (the number of subpopulation), MR (mutation rate), PCR (crossover
rate with Pbest), GCR (crossover rate with Gbest)
Output: subpop′1 , . . . , subpop′d (the new subpopulation)
1. Calculate the makespan of individuals in population pop.
2. for i = 1 toPS: //decoding phase
3. makespan = Decoding(popi)
4. end
5. Divide the population into d subpopulations {subpop1 , . . . , subpopd} at the same level according

to makespan.
6. Update each particle in the subpopulation by mutation and crossover operation
7. for i = 1 to d: //Update each subpopi
8. for each particle p in subpopi : //Update particle
9. if rand() <MR
10. p ← Mutation(p)
11. if rand() < PCR
12. p ← Crossover(p, Pbest)
13. if rand() < GCR

(Continued)
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Algorithm 3 (continued)
14. p ← Crossover(p, Gbest)
15. Calculate the makespan of the particle p and compare it with Pbest
16. if f (p) < f (Pbest) //Update Pbest in histor
17. Pbest ← p
18. end
19. Choose the particle p′ having the best makespan in subpopi and compare it with Gbest
20. if f (p′) < f (Gbest) //Update Gbest in history
21. Gbest ← p′
22. end
23. Record the best and worst particle of each subpopulation as pb

i and pw
i respectively and exchange

them to form multi-level subpopulations.
24. pb

d = pw
1 , pw

d−1 = pb
d , . . . , pw

1 = pb
2 ;

25. Update Gbest of each subpopulation.

4.6 Local Search Strategy
As we know, limited buffers usually lead to the blocking phenomenon during the process of manufactur-

ing. Therefore, given the characteristics of the scheduling process of the LBHFSP, a local search strategy based
on the first blocked job is designed. The local search strategy is aimed at reducing the occurrence of blocking
by performing insertion operations on the blocked jobs, thereby shortening the processing completion time.
This method can reduce unnecessary operations to improve search efficiency.

The key to this strategy is to find the first blocked job, determine the local search area accordingly, and
then perform the local search process within the specific area. The detailed process of local search can be
explained in conjunction with Fig. 4, where the blue square represents the blocked job. From Fig. 4, we can
know that the blocked jobs are J7, J8, and J10. The first blocked job is J7, which means the solution structure
before J7 is not blocked. This part is denoted as the optimal substructure s1, so the local search process is
executed in the s2 region. First, randomly pick a job within the s2 region, then insert it into all reasonable
positions in s2, and find the position that minimizes the makespan. Finally, the job is inserted into the specific
position to form the solution s′. If the new solution outperforms the original solution, it takes the place of
the original one. The pseudocode of the local search strategy is illustrated in Algorithm 4.

1 2 3 4 5 6 7 8 9 107 8 9 10

Local searchJ7

1 2 3 4 5 6 7 8 9 107 8 9 10
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Figure 4: The process of local search based on the first blocked job
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Algorithm 4: The pseudocode of the local search strategy
Input: s (best solution of subpopulation), Q (set of blocked job), N (the number of job)
Output: s′′
1. s′′ = s;
2. Record the blocked job while decoding and add it to Q, find the first blocked job Jpos and its position

pos in Gbest;
3. s = s1 + s2, s1 represents the solution before Jpos in s and the other is s2;
4. Randomly select a job J from s2, perform the local search process on s2 to find new solution s′;
5. for i = pos to N :
6. Insert the job J into all possible positions in s2 and record the position with the smallest

makespan;
7. end
8. if f (s′) < f (s) then
9. s′′ = s′.

4.7 Complexity of the MLPSO
In this part, a comprehensive analysis of the algorithm’s time complexity is made. In the initialization

stage, initial solutions are produced at random. Then the quality of each solution is assessed through
the decoding process, which consists of 2 × PS × N operations, where PS represents the population size
and N denotes the number of jobs. In the collaborative search stage, the population is separated into d
subpopulations, and the subpopulations are updated to achieve collaborative search through migration,
which includes PS × N × S + d ∗ N ∗ PS

d + N ∗ d operations. In the local search phase, locate the first
blocked position pos according to each blocked job from the current solution. Then the insertion operation
is performed in the local search area, which involves only one insertion operation. d and S are constants
that are much smaller than N , and the value of PS is close to N . Therefore, the MLPSO algorithm’s time
complexity is O(N2).

5 Experimental Comparison and Analysis

5.1 Experimental Instances
At this part, 90 instances are generated randomly, with the number of stages S ∈ {4, 5, 6, 7, 8}, the

number of jobs N ∈ {40, 60, 80, 100, 120, 160}, the size of buffers between consecutive stages B ∈ {1, 2, 4}.
The time required for processing is randomly produced from the discrete distribution ranging from 1 to 99.
However, each job’s processing time at each stage remains consistent once the number of jobs and stages is
the same, regardless of the buffer size between adjacent processing stages. Moreover, the number of machines
for processing varies for different instances, but the quantity of machines at each stage is identical for the
same instance.

All comparative algorithms are realized by using IntelliJ IDEA2022 on the same PC. To ensure the
fairness and accuracy of the comparison experiment results, each algorithm is independently executed 20
times for each data. The criterion for termination is determined by the CPU (Central Processing Unit)
running time. The largest operation time is established to LOT = N ∗ S ∗ ω, where ω, a constant, is up
to a specific instance. For different cases, the constant ω ∈ {20, 30, 40}. In this paper, the average relative
percentage deviation (ARPD) is applied to evaluate the results. The ARPD is expressed as follows:

ARPD = 1
R

R
∑
i=1

Ci − Cbest

Cbest
× 100% (16)
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In Eq. (16), R signifies the total iteration times carried out by each algorithm on each instance, Ci denotes
the makespan of the solution received by a specific algorithm in the i-th iteration for a specific instance, and
Cbest represents the makespan of the best solution found for a certain instance.

5.2 Parameter Calibration
Parameter configuration significantly influences the algorithm’s overall performance. Therefore, the

MLPSO algorithm’s ideal parameter configuration is up to the Taguchi method of design-of-experiment
(DOE). MLPSO includes five key parameters: (1) Population size PS ∈ {60, 90, 120, 150} . (2) Mutation
rate MR ∈ {0.2, 0.4, 0.6, 0.8}. (3) Crossover rate with Pbest PCR ∈ {0.2, 0.4, 0.6, 0.8}. (4) Crossover rate
with Gbest GCR ∈ {0.2, 0.4, 0.6, 0.8}. (5) The number of subpopulations d ∈ {2, 3, 4, 5}. To obtain a more
representative parameter configuration, we specially perform the DOE test on medium-sized instances and
the ARPD is adopted as the evaluation indicator. In this context, the ARPD serves as the response variable
(RV). Table 2 presents each parameter’s RV value and significance ranking, utilizing the Delta metric to
capture the maximum deviation in average RV values at diverse levels. The importance of the corresponding
parameter increases with the Delta value. Additionally, Fig. 5 displays the main effect plot for five parameters
of MLPSO.

Table 2: Response value of each parameter

Level Parameter

PS MR PCR GCR d
1 0.851 1.027 1.059 1.013 0.936
2 1.042 0.967 1.007 0.915 0.933
3 0.968 0.954 0.924 1.004 0.966
4 0.991 0.904 0.861 0.920 1.017

Delta 0.190 0.122 0.198 0.098 0.084
Rank 2 3 1 4 5

Figure 5: The main effect plot of the five parameters
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The data in Table 2 indicates the parameter PCR is ranked first, with the population size PS following
in second place. Meanwhile, the parameters MR and GCR rank third and fourth, respectively, and the last
parameter is the number of subpopulations d. From Fig. 5, it is apparent that the PCR curve has the steepest
slope compared to all other parameters, indicating that the crossover rate with Pbest has a significant impact
on MLPSO. Based on the main effect plot, we make a comprehensive analysis and conclude that the best
configuration of parameters is PS = 60, MR = 0.8, PCR = 0.8,GCR = 0.4, and d = 3.

5.3 Effectiveness of Initialization Strategy
The performance of the proposed initialization method is evaluated comprehensively in this section.

The experimental results are acquired by different initialization methods on 30 instances under different
buffers. Table 3 shows the ARPD values derived from 20 independent runs for two distinct initialization
strategies on each instance. The bold entries in Table 3 is explained in this sentence. The NO_INIT stands
for the initialization method that two individuals are generated by NEH and others are generated randomly.
Meanwhile, the proposed initialization strategy is denoted as the ML_INIT. Notably, for all different jobs,
stages, and buffers, the ARPD values generated by the ML_INIT are consistently smaller compared to the
NO_INIT. To verify the significant difference in the initialization strategy, a Kruskal-Wallis test is undertaken
using the experimental data, with a p-value of 0.00395, adequately indicating that the strategy is significantly
effective at the 0.05 level. This initialization strategy fully considers the impact of blocking time due to limited
buffers, making it more possible to search for a potential solution from the solution with a smaller blocking
time. Consequently, this initialization strategy can enhance both the initial population’s quality and diversity,
which helps to find promising solutions.

Table 3: Comparison between the ARPD values of ML_INIT and NO_INIT under different buffers

Instance N_S B = 1 B = 2 B = 4

NO_INIT ML_INIT NO_INIT ML_INIT NO_INIT ML_INIT
40_4 1.15083 0.88767 1.25923 0.61116 1.87864 1.44223
40_5 2.21891 0.85257 0.92453 0.38113 0.35903 0.20786
40_6 1.41313 0.86130 0.50190 0.35361 1.66795 1.51387
40_7 1.55396 1.26619 0.66079 0.61307 1.65926 1.08889
40_8 2.34953 1.34880 1.31774 0.90572 1.48952 0.74102
60_4 0.60555 0.34239 0.01136 0.00568 0.17604 0.13345
60_5 1.69314 1.08054 0.99821 0.96533 1.02004 0.66485
60_6 1.59199 1.50237 1.15216 1.03448 1.59432 1.34947
60_7 0.82404 0.71755 1.02019 0.95377 0.57373 0.38338
60_8 1.95674 0.78722 1.45246 0.83595 1.30195 0.85481
80_4 1.33385 0.90979 1.40065 0.96091 0.76250 0.56667
80_5 1.12519 0.86406 1.33518 0.86371 1.12930 0.68740
80_6 1.06574 0.89273 1.56786 1.01786 1.31754 0.88823
80_7 1.58630 0.99930 1.54348 1.04710 1.27062 1.06822
80_8 1.25934 0.74338 1.49615 0.75333 0.80657 0.69950
100_4 1.17031 0.93352 1.38046 1.00095 1.01085 0.78895
100_5 1.15044 0.75664 1.38405 0.91659 1.22381 0.82381
100_6 2.50856 1.29281 1.80691 1.13818 1.18605 0.87907
100_7 1.19816 0.85583 1.54472 1.30081 0.89872 0.51712
100_8 1.61930 0.79282 1.40637 0.93240 1.61563 1.06366
120_4 1.13043 0.94071 1.39883 1.08243 1.42055 0.66494
120_5 1.07715 0.56769 2.09766 1.35156 1.51442 0.88542

(Continued)



2320 Comput Mater Contin. 2025;84(2)

Table 3 (continued)

Instance N_S B = 1 B = 2 B = 4

NO_INIT ML_INIT NO_INIT ML_INIT NO_INIT ML_INIT
120_6 1.34783 1.05435 1.41489 0.98582 1.37715 1.05243
120_7 1.19816 0.85583 1.02617 0.65771 0.89872 0.51712
120_8 1.64262 1.12787 1.29581 0.84424 1.98991 1.60418
160_4 1.61264 1.30470 1.39883 1.08243 1.28848 0.98945
160_5 2.04819 1.40813 2.09766 1.35156 0.91093 0.69231
160_6 1.55350 1.12483 1.41489 0.98582 1.50261 0.83893
160_7 1.55350 1.12483 1.49373 1.02020 0.55395 0.36568
160_8 1.32334 1.10651 1.29581 0.84424 1.13950 0.84599

5.4 Effectiveness of Collaborative Search Strategy
In this part, the effectiveness of the collaborative searchstrategy will be verified by performing exper-

iments. The NO_CS, which represents the search strategy within the single population, is compared with
the proposed ML_CS with the multi-level subpopulation collaborative search strategy. The NO_CS and
the ML_CS algorithms are performed on 30 instances under different buffers to obtain the ARPD value.
After analyzing the results, we conclude that the ML_CS exhibits superior performance than the NO_CS
for all instances within the same running time. According to the ARPD, a violin plot is pictured as shown
in Fig. 6. From Fig. 6, we realize that the ML_CS obtains a smaller mean value than the NO_CS. The violin
plot of ML_CS is wider than NO_CS, indicating a relatively concentrated distribution of results, that is, the
results of ML_CS are more stable and reliable. Moreover, the Kruskal-Wallis test is implemented utilizing the
experimental result, yielding a p-value far smaller than 0.05, indicating the remarkable difference in the result
distribution of the ML_CS and the NO_CS algorithms at the level of 0.05. The multi-level subpopulation
collaborative search strategy enables subpopulations at different levels to search in different directions, which
can improve the search diversity capability and prevent being trapped in the local optimum. As a result, the
collaborative search strategy contributes to finding more excellent solutions.

Figure 6: Violin plot of NO_CS and ML_CS
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5.5 Effectiveness of Local Search Strategy
In this section, we conduct experiments to verify the efficacy of the proposed local search strategy.

The NO_LS, which excludes the local search strategy based on the first blocked job, is compared with the
proposed ML_LS including the local search strategy. We experiment under different buffers to obtain the
ARPD value. According to the ARPD of different instances, the violin plot with a box is pictured as shown
in Fig. 7. From Fig. 7, ML_LS obtains a smaller mean value compared to NO_LS. In addition, all other values
obtained by ML_LS are also smaller than those of NO_LS. Moreover, a detailed analysis of the experimental
findings is conducted by the Kruskal-Wallis test, and the p-value is far smaller than 0.05, implying that the
NO_LS and the ML_LS algorithms’ result distribution differs remarkably at the 0.05 level. In the proposed
local search method, the operation that inserts the first blocked job into the specific area is beneficial to
explore a better solution further. The local search strategy can avoid unnecessary insertion operations and
reduce the occurrence of blocking. Therefore, the proposed local search strategy based on the first blocked
job is effective.

Figure 7: Violin plot of NO_LS and ML_LS

5.6 Comparison of MLPSO with Other Algorithms
To fully validate the proposed algorithm’s effectiveness, the MLPSO algorithm is compared with seven

excellent algorithms. Among these are two improved algorithms upon the PSO algorithm, namely IPSO [52]
and DMSPSO [53], respectively. Besides, four swarm intelligent optimization algorithms also serve as
comparison algorithms, namely DDE [54], ABC [42], TLBO [55], and GA [17]. In addition, there is also
an intelligent optimization algorithm namely IGS [56]. Research demonstrates that these seven algorithms
have good performance in addressing LBFSSP. Therefore, the MLPSO algorithm is compared with these
seven algorithms by performing experiments in this section to prove its efficacy. The experimental results
show its superiority in addressing the LBHFSP problem. Notably, the parameter configuration of comparison
algorithms remains consistent with the original. To guarantee the fairness of the experiment, the termination
criteria are identical for all algorithms, and each instance is run 20 times to ensure the solution’s stability
and reliability.
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Table 4 displays the ARPD values calculated by each algorithm in 90 instances. The bold entries
in Table 4 is explained in this sentence. Table 4 reveals that the MLPSO algorithm can achieve the minimum
ARPD in all 90 instances. To further analyze the experimental results and evaluate each algorithm’s
performance, the interval plot is pictured in Fig. 8 using the data from Table 4. In Fig. 8, the lowest mean
ARPD is generated by the MLPSO, while there is little difference between the mean ARPD of IPSO, DDE,
TLBO, ABC, and DMSPSO. Additionally, the interval line of the MLPSO doesn’t have any overlap with those
of other algorithms. This means that the solutions obtained by MLPSO are far better than those obtained
by other algorithms. Next, the Dunn test is applied to analyze the experimental data, with the analysis
result displayed in Table 5. In Table 5, when the mean difference is significantly present at the 0.05 level,
the value of Sig is 1. Otherwise, the value of Sig is 0. The experimental validation indicates a remarkable
distinction between the MLPSO and several comparison algorithms at the 0.05 level, which suggests that the
MLPSO algorithm has advantages in addressing LBHFSP. On the whole, the MLPSO has greater suitability
for solving LBHFSP.

Table 4: The ARPD values of different comparative algorithms

Instance N_S_B MLPSO DDE IPSO TLBO ABC GA DMSPSO IGS
40_4_1 1.70213 6.28936 8.91915 6.57872 6.80851 8.15319 8.08511 8.33191
40_4_2 1.42298 5.32202 5.27850 3.79025 5.48738 6.69713 6.48390 7.68930
40_4_4 2.08821 6.91269 7.30423 6.22412 7.25023 9.43744 8.47885 9.46895
40_5_1 0.54723 1.40555 1.49175 0.68216 1.69040 2.87106 2.75862 3.48201
40_5_2 0.64319 1.80704 1.64625 1.84916 1.61945 2.40812 2.17458 3.32695
40_5_4 1.06589 2.72868 2.77132 2.74806 2.71318 3.33721 2.87984 3.46124
40_6_1 1.32353 4.67105 5.31347 5.22446 4.36533 5.86687 5.50310 6.21517
40_6_2 0.88492 4.67857 4.87302 4.92063 4.49603 5.61111 5.15873 6.17460
40_6_4 1.13746 5.97669 6.22186 5.88424 5.56672 6.66801 6.06511 7.14228
40_7_1 1.42806 1.45324 2.33094 2.74101 1.38489 3.01799 2.83094 3.07194
40_7_2 0.60841 0.85546 1.06195 1.51180 1.08776 2.40413 2.18289 2.99041
40_7_4 0.62315 1.27596 2.21439 1.14985 1.07938 2.33680 1.86573 3.52003
40_8_1 1.57723 1.63524 2.07397 2.44743 2.16461 2.63234 3.59318 3.97389
40_8_2 0.84821 1.36533 1.29464 1.89732 1.30580 2.48512 2.86086 3.62351
40_8_4 0.69121 1.88580 1.89331 1.78062 1.12697 2.54696 2.76860 3.94440
60_4_1 0.42421 0.98699 0.85690 2.79412 1.03507 0.91912 1.68835 2.50000
60_4_2 1.55998 0.98328 1.56574 1.92042 1.73299 1.77336 1.81373 3.12284
60_4_4 2.33024 1.47708 2.66686 2.22867 2.26059 2.29251 2.31573 3.55485
60_5_1 1.27418 1.73777 3.15415 4.77247 2.89534 2.84414 4.23208 5.42093
60_5_2 1.00060 1.60875 1.79449 4.11025 2.82505 2.89395 3.97843 5.27262
60_5_4 1.55804 3.25574 3.05711 3.78026 3.40161 4.39479 4.64618 6.01490
60_6_1 1.05830 1.57826 1.54149 3.14338 1.96954 1.79622 2.95956 3.54517
60_6_2 0.80539 1.55580 1.28642 1.84992 1.55580 2.08631 2.45739 3.51842
60_6_4 0.82396 2.80371 2.41564 1.47357 1.91507 3.11867 2.86839 3.90045
60_7_1 0.74797 1.18408 1.04463 2.69270 1.43509 1.68357 2.37069 2.53043
60_7_2 0.60582 0.87037 0.72487 1.67196 1.08201 1.89418 1.86773 2.21164
60_7_4 0.29679 0.38770 0.34492 0.53209 0.60428 1.75668 1.42781 1.70856
60_8_1 0.74597 1.56754 1.01059 1.80444 1.19204 1.05091 2.66885 3.38458

(Continued)
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Table 4 (continued)

Instance N_S_B MLPSO DDE IPSO TLBO ABC GA DMSPSO IGS
60_8_2 0.85168 1.29717 1.60377 1.55136 1.07180 1.62736 2.73061 3.80765
60_8_4 0.65483 1.59332 1.65695 1.41835 1.20361 2.15270 3.09385 4.52545
80_4_1 0.97458 1.53313 1.67951 2.23035 1.67180 1.70262 3.42835 4.04854
80_4_2 0.51210 1.13306 0.38710 1.68952 1.51210 1.49597 2.91129 4.22177
80_4_4 0.68087 0.98580 0.98580 0.96074 0.99833 1.09858 1.98830 3.28739
80_5_1 0.74159 1.20031 0.86009 1.52523 2.38532 1.95719 4.53746 5.37462
80_5_2 1.14343 1.60558 2.59363 2.27490 2.53785 2.08765 4.17928 5.38645
80_5_4 0.47347 0.85714 0.55918 0.68571 1.76327 2.43673 3.19184 3.91020
80_6_1 0.92887 1.74033 1.76450 1.59876 2.41022 1.99240 4.10912 3.83287
80_6_2 0.66738 1.04211 1.28123 1.61670 1.68808 1.26695 2.88009 2.91577
80_6_4 0.88388 1.91938 2.09689 1.79734 2.08950 2.28920 3.66864 3.41346
80_7_1 1.31689 1.39680 1.83113 1.62613 2.31411 2.16470 4.26338 3.97846
80_7_2 1.34058 1.48551 1.56522 1.06522 2.19928 1.82971 3.73188 4.25000
80_7_4 0.73198 1.69294 2.06832 2.36111 2.02703 1.95946 3.56607 4.48198
80_8_1 1.32928 1.73077 1.38327 1.60256 2.16937 2.32456 3.77193 3.72132
80_8_2 1.19580 1.23077 2.85315 1.42308 1.66084 1.50000 3.39161 2.96853
80_8_4 0.59914 0.71683 0.69544 0.58845 0.94864 1.09843 2.44650 3.31312
100_4_1 1.19674 1.93110 2.01723 1.25567 1.51859 1.68178 4.12965 4.40617
100_4_2 1.14839 1.57372 1.54064 1.51701 2.04159 1.49811 3.87524 4.95274
100_4_4 0.79961 1.22902 1.03159 1.00691 1.91510 2.05824 3.65252 5.60217
100_5_1 1.44573 2.09075 1.85943 2.14413 3.28737 3.37634 6.02313 6.69484
100_5_2 1.17295 2.02392 1.68813 2.08832 3.41306 3.06808 5.87857 6.48574
100_5_4 1.32409 2.08413 1.50574 1.87381 3.99140 3.52773 5.46845 6.15679
100_6_1 1.17925 2.56003 4.59262 3.06604 2.46570 2.89022 5.21870 4.87136
100_6_2 1.16279 2.81306 3.22451 3.18873 2.42844 2.64311 5.08050 4.99553
100_6_4 0.91036 1.48459 1.17180 1.91410 2.67040 2.78712 4.70588 5.40616
100_7_1 1.10849 2.33098 1.26965 2.88522 2.18160 2.99135 4.71305 4.49293
100_7_2 1.15794 2.45908 2.67594 2.76596 2.56138 3.42062 4.95499 5.65057
100_7_4 0.97386 2.23019 3.17032 2.33137 2.00675 3.44435 4.63744 4.79342
100_8_1 0.96908 2.34163 2.66968 2.99020 1.79487 2.36048 4.63801 4.84163
100_8_2 1.07199 2.52739 2.50391 2.30829 2.13224 2.59390 4.86307 5.30516
100_8_4 0.68770 1.89725 2.73867 2.64563 2.10761 2.74676 4.55906 5.17395
120_4_1 1.10847 1.90816 1.64291 1.86065 1.88044 1.66667 3.88757 4.25970
120_4_2 1.10331 1.67769 1.41736 1.38843 2.11570 1.41322 3.35950 4.45868
120_4_4 0.98005 1.69558 1.79965 1.40937 1.69558 0.70252 2.67563 4.01995
120_5_1 0.93933 1.87135 1.12939 1.94444 1.80190 1.40351 3.63304 4.45906
120_5_2 0.83970 2.14122 1.89695 2.08397 2.33206 1.08397 3.57634 5.03435
120_5_4 0.79646 2.13998 2.40547 1.97506 2.09976 1.59292 3.56798 4.90346
120_6_1 0.73593 2.24026 1.87590 2.26551 3.49206 3.12410 5.69625 6.40693
120_6_2 0.81465 1.54709 1.58819 0.98281 2.51869 1.99178 4.33109 5.41480
120_6_4 0.93087 1.88924 1.53182 2.03064 2.71406 2.32522 4.40299 5.59309

(Continued)



2324 Comput Mater Contin. 2025;84(2)

Table 4 (continued)

Instance N_S_B MLPSO DDE IPSO TLBO ABC GA DMSPSO IGS
120_7_1 0.56616 2.76498 3.97301 1.49770 1.77749 1.64582 3.97301 4.73009
120_7_2 0.52091 2.18300 2.56340 1.20288 2.22755 1.58670 4.03701 4.71556
120_7_4 0.45129 1.75143 1.35387 1.71562 1.95559 1.82307 3.58166 4.38395
120_8_1 1.16042 2.57068 2.90270 2.32742 2.87640 2.73504 5.21039 5.04602
120_8_2 0.86183 2.06566 2.15458 2.57182 2.76676 2.22298 4.62380 5.18126
120_8_4 0.74590 1.92720 1.94504 1.80228 2.51963 2.53034 4.22912 5.00714
160_4_1 1.01606 1.72691 1.60643 1.28112 2.47390 1.94779 4.73896 5.89157
160_4_2 0.76349 1.75934 1.36515 1.32365 2.34440 0.99585 3.61826 5.63071
160_4_4 0.93860 1.31579 1.15789 1.11404 2.60965 1.14474 3.89912 6.20175
160_5_1 1.08793 2.61923 2.77198 1.66915 3.13338 2.07154 4.90313 5.54024
160_5_2 0.64615 1.80385 1.28846 0.82692 2.81923 1.24615 4.18846 5.18077
160_5_4 1.04878 1.52846 1.47561 1.45935 3.74390 1.90244 4.71138 6.65854
160_6_1 0.62330 1.60422 1.09332 1.10695 2.74864 2.16281 4.88760 6.31131
160_6_2 0.66431 2.16608 2.25442 1.51590 2.70671 1.92580 4.31449 5.75972
160_6_4 0.86567 2.40299 3.79104 1.75000 2.96642 2.03358 4.15299 6.46642
160_7_1 0.97000 1.87000 1.06333 1.41333 2.40667 2.25667 4.81000 5.42333
160_7_2 0.35347 0.65889 0.45164 0.45642 2.00412 1.37268 3.81606 4.83185
160_7_4 0.28902 0.53468 0.32153 0.70448 2.67341 2.21821 4.31720 5.31069
160_8_1 0.86612 1.89721 1.61168 1.57360 2.76650 2.49365 4.71447 5.41244
160_8_2 0.93276 3.55307 2.52802 2.25775 2.69941 2.28741 4.25181 5.69216
160_8_4 0.87379 1.99376 1.47365 1.84813 2.79126 2.30236 4.44868 5.97087

Figure 8: Interval plot of compared algorithms
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Table 5: Dunn test for different comparative algorithms

Algorithm Z P Sig
MLPSO/DDE −6.83717 2.26159E−10 1
MLPSO/IPSO −7.18568 1.87247E−11 1
MLPSO/TLBO −7.65603 5.36959E−13 1
MLPSO/ABC −8.6779 1.12885E−16 1
MLPSO/GA −9.00167 6.22441E−18 1

MLPSO/DMSPSO −15.16943 1.57822E−50 1
MLPSO/IGS −17.03255 1.31899E−63 1

To further explore the effectiveness of the MLPSO algorithm, its performance is visually displayed
through interaction charts. Fig. 9a provides a visual representation of the relationship between the algorithm
performance and the number of jobs when the buffer size between consecutive stages is 1, while Fig. 9b
displays the relationship when B is 4. According to Fig. 9a, it can be observed that with a single buffer,
the ARPD acquired by the proposed MLPSO initially presents a decreasing trend with the number of jobs
increasing. Subsequently, it increases gradually, reaching its peak when N is 100. Finally, the ARPD decreases
as the number of jobs grows continuously. In addition, the ARPD obtained by DDE, DMSPSO, IGS, and GA
algorithm also declines as the number of jobs rises, ranging from 40 to 60 and 100 to 160. Based on Fig. 9b,
as the buffer size is 4, the ARPD of the MLPSO algorithm gradually declines as the number of jobs increases
from 40 to 80, reaching its minimum value when N is 80. As the number of jobs climbs from 80 to 100, the
ARPD of the MLPSO algorithm grows; however, it decreases again as the number of jobs is beyond 100. The
changes in other algorithms are generally similar to the trend observed in MLPSO.

Figure 9: (a) Interaction diagram between algorithm and the number of jobs when B = 1; (b) Interaction diagram
between algorithm and the number of jobs when B = 4

In Fig. 10, the interaction chart is pictured to visually illustrate the connection between the algorithm
performance and the number of stages. As depicted in Fig. 10a, when N is 60, the ARPD of the MLPSO
algorithm decreases accompanied by the increase in the number of stages before stage 7, while the ARPD
of other algorithms increases first and then decreases. After stage 7, the ARPD of all algorithms increases
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with the number of stages. However, in contrast to other algorithms, the ARPD generated by the MLPSO
algorithm changes mildly as a whole, which indicates that the number of stages exerts less impact on the
MLPSO algorithm’s performance. That is, the MLPSO algorithm has better stability than other algorithms.
As can be seen from Fig. 10b, except for MLPSO, the overall performance of other algorithms declines along
with the growth in the number of processing stages, revealing the stability of the MLPSO algorithm is better.

Figure 10: (a) Interaction diagram between algorithm and the number of stages when N = 60; (b) Interaction diagram
between algorithm and the number of stages when N = 120

After a comprehensive analysis of all experimental statistics, we conclude that MLPSO is a useful
algorithm with high efficiency in solving the LBHFSP aiming at optimizing makespan. The MLPSO
algorithm’s strengths are mainly demonstrated as follows: (1) The initialization strategy based on blocking
time contributes to generating potential solutions; (2) The multi-level subpopulation collaborative search
strategy avoids being caught in local optimum and enhances the ability to look for the global optimal solution;
(3) The local search strategy based on the first blocked job avoids blind search and improves search efficiency.

6 Conclusion and Future Work
This paper investigates LBHFSP with the objective of makespan and develops an effective MLPSO

algorithm for LBHFSP. A decoding strategy is given considering the characteristics of the scheduling process
under the condition of limited buffers. During the initialization phase, an initialization strategy based on
blocking time is developed under the characteristics of the problem, which can not only enhance the initial
population’s diversity but also improve its quality. Furthermore, a multi-level subpopulation collaborative
search is developed to prevent getting stuck in a local optimum and promote the global exploration ability.
During the period of the local search, a local search strategy based on the first blocked job is designed
to enhance the exploitation capability. Several experiments are performed to validate the efficacy of these
developed strategies on the MLPSO. Additionally, seven famous optimization algorithms are applied to assess
the MLPSO algorithm’s performance on instances. Ultimately, the comparative results show that MLPSO
finds better results in almost all instances, revealing that MLPSO is more suitable for the LBHFSP.

The research direction in the future will be pursued in two aspects:

(1) Under the background of economic globalization, the distributed production model is increas-
ingly becoming a dominant trend with the constant expansion of enterprises’ production demands.
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Therefore, in the future, we will study the distributed hybrid flow shop scheduling problem with
limited buffers.

(2) In real production scenarios, cost is also a factor that enterprises must consider. Therefore, in the
future, the number of buffers can be linked to cost while optimizing resource costs and makespan to
maximize benefits.
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