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ABSTRACT: Despite the gradual transformation of traditional manufacturing by the Human-Robot Collaboration
Assembly (HRCA), challenges remain in the robot’s ability to understand and predict human assembly intentions.
This study aims to enhance the robot’s comprehension and prediction capabilities of operator assembly intentions
by capturing and analyzing operator behavior and movements. We propose a video feature extraction method based
on the Temporal Shift Module Network (TSM-ResNet50) to extract spatiotemporal features from assembly videos
and differentiate various assembly actions using feature differences between video frames. Furthermore, we construct
an action recognition and segmentation model based on the Refined-Multi-Scale Temporal Convolutional Network
(Refined-MS-TCN) to identify assembly action intervals and accurately acquire action categories. Experiments on our
self-built reducer assembly action dataset demonstrate that our network can classify assembly actions frame by frame,
achieving an accuracy rate of 83%. Additionally, we develop a Hidden Markov Model (HMM) integrated with assembly
task constraints to predict operator assembly intentions based on the probability transition matrix and assembly task
constraints. The experimental results show that our method for predicting operator assembly intentions can achieve an
accuracy of 90.6%, which is a 13.3% improvement over the HMM without task constraints.

KEYWORDS: Human-robot collaboration assembly; assembly intent prediction; video feature extraction; action
recognition and segmentation; HMM

1 Introduction
With the continuous progress of robotics technology, the Human-Robot Collaboration Assembly

(HRCA) production mode propels the traditional manufacturing production mode toward intelligence.
Among them, the prediction of the collaborative robot’s behavior intention based on the recognition of the
operator’s assembly movements is an important research direction of HRCA, which is of great significance
for improving the flexibility and adaptability of the production system while ensuring the overall production
efficiency of the assembly to achieve seamless collaboration.

Traditional action recognition methods mainly use manual feature-based methods [1–3]. Most of these
methods need help with problems of complex preprocessing, slow speed, poor stability, and feature selection
that significantly affect the accuracy and efficiency of action recognition. Deep learning methods effectively
avoid these problems due to their superior learning capabilities, and researchers have focused on using deep
learning for action recognition.
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In the field of 3D Convolutional Neural Networks (3D CNNs), researchers have proposed a variety
of network architectures to optimize video processing tasks, including spatiotemporal feature extraction
and action classification. Chen et al. [4] utilized C3D network multi-frame inputs for end-to-end video
data processing. The I3D model proposed by Carreira et al. [5] improves the ability to capture temporal
information by extending 2D CNN weights to 3D. The SlowFast network of Feichtenhofer [6] balances
capturing spatial and temporal information through a two-branch design. Zhu et al. [7] utilized an A3D
network combined with adaptive mechanism optimization for spatiotemporal feature extraction. Methods
such as X3D and TS-D3D [8,9] further explore the extension of the convolutional kernel and optimization
of the network structure to improve action recognition accuracy. However, their computational complexity
is high.

Some researchers [10–13] have investigated methods based on 2D convolutional neural networks to
reduce computers’ processing power while maintaining the accuracy of action video feature extraction.
Strategies such as temporal interleaving [14], pyramidal structures [15], and differential networks [16] have
also been used to improve the extraction of temporal features.

In summary, current deep learning methods have achieved good results in human action recognition.
However, most of the current research focuses on recognizing daily behaviour actions. In the industrial
environment, assembly actions are flexible and changeable and have temporal constraints between various
actions during the assembly process, and the influence of the temporal factors of assembly actions needs to
be considered in the research.

However, most of the current research focuses on the recognition of daily behaviors. In industrial
environments, assembly actions are flexible and variable, and there are time constraints between various
actions in the assembly process, which require considering the influence of the time factor of assembly
actions. Assembly action recognition belongs to the application field of action recognition methods.
Research on action recognition based on machine vision and deep learning has achieved a high accuracy
in laboratory environments [17]. In recent years, scholars have begun to pay attention to the problem of
action understanding in human-robot collaboration assembly scenarios, dividing continuous human activity
streams into different parts through temporal action segmentation methods, each part corresponding to a
semantically meaningful action, and realizing the segmentation of simple assembly actions [18,19]. Jones
et al. [20] extended the fine-grained settings of action recognition for the assembly process, considering the
relevance between actions and assembly objects, by unifying assembly actions and motion structures in a
framework, realizing assembly action perception at the spatial detail level, and comprehensively achieving
the task of assembly action recognition. Koch et al. [21] proposed an assembly progress estimation method
based on Methods-Time-Measurement (MTM) and action recognition for a multivariate assembly process,
combining the results of skeleton data action recognition to complete progress estimation. The existing
methods still have significant gaps in the hierarchical action representation of complex assembly. Therefore,
the research on assembly action recognition in industrial scenarios is still in the early exploration stage,
and the key challenges such as robustness, fine-grained action segmentation, and real-time requirements
in complex environments have not been fully resolved. Video streams are usually transmitted during the
video data collection process, and the assembly process combines multiple assembly actions. The assembly
process and actions are flexible and variable, and action recognition methods can only predict single-action
videos. The manual editing and processing of video data undoubtedly causes a huge workload. Therefore, it
is necessary to have methods that can directly process uncut, long-time sequence video action segmentation
and recognition for the assembly process.

According to the different processing processes and methods of the action segmentation task, existing
methods can be divided into direct segmentation methods (Direct Segmentation) and indirect segmentation
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methods (Indirect Segmentation). Direct segmentation methods separate the segmentation process from
the action recognition process, usually adopting a two-stage framework: first, generate coarse-grained
action boundaries based on time series or sensor data, and then classify the segmented segments [22];
indirect segmentation methods achieve synchronous processing of action segmentation and recognition
through end-to-end models, with typical representatives such as joint modeling methods based on temporal
convolutional networks (TCN) or Transformers [23]. The performance differences between the two methods
are mainly reflected in the long-term dependency modeling capability of complex action sequences. Shou
et al. [24] achieve the segmentation of video actions by using three 3D convolutional networks based on
segmentation to respectively realize the candidate segments of actions possibly contained in the nominated
video, the initialization of the action classification model positioning network, and the fine-tuning network
to locate each action, and finally recognize the nominated action segments. However, in implementing action
nomination, it is necessary to separate non-action intervals between multiple actions in the video. Otherwise,
it is difficult to accurately locate the start and end moments of the action intervals, which in turn affects the
subsequent extraction and recognition of actions. Therefore, the action nomination method is unsuitable for
continuous operations in the assembly process.

Current research has made progress in identifying individual assembly actions, but there is still little
research on the recognition and segmentation of continuous assembly actions in assembly scenes [25].
Therefore, the focus of this study is to address the recognition and segmentation of continuous assembly
actions, which is also a key and prerequisite issue for understanding and predicting the operator’s assembly
intention in the process of human-robot collaborative assembly.

Research on human intention prediction mainly focuses on sensor technology [26,27] and data-driven
deep learning methods [28–32]. Behavioral intention recognition methods based on inertial measurement
units (IMUs), pressure sensors, and other physiological signals can effectively solve the recognition blind
spots of the visual modality in occlusion scenarios through multi-sensor data fusion. However, methods
based on deep learning rely on large-scale offline data training to cover potential patterns in the high-
dimensional state-action space (such as the sensitivity of the model to data distribution shifts) [33], and the
prediction process is limited in interpretability due to the black-box characteristics [34]. Studies have shown
that the performance of data-driven methods is strongly positively correlated with the amount of training
data, but it is difficult to reach the causal reasoning ability of humans under a small number of samples [35].
The Hidden Markov Model (HMM) [36] requires a smaller sample size for effective learning and prediction.
Therefore, this paper proposes an innovative HMM algorithm that incorporates assembly task constraints
to improve the interpretability of prediction results by introducing task-specific constraints. At the same
time, the algorithm also includes an incremental learning mechanism so that the model can flexibly adjust
the parameters to better adapt to the needs of intention prediction under different assembly sequences. This
research not only enriches the technical means of assembly intent prediction but also provides strong support
for improving the intelligence of human-machine collaboration. The main contributions of this work can be
summarized as follows:

(1) Feature extraction of assembly action video clips. To solve the problem of significant computation and
poor real-time performance of 3D-CNN-based video feature extraction network, this paper adopts
ResNet50 [37] as the backbone network, introduces Temporal Shift Module (TSM) [10] into it, and
constructs a TSM-ResNet50 network structure for extracting the spatiotemporal features of video clips
to reduce the amount of data and the subsequent model computation.

(2) Recognition and segmentation of continuous assembly actions. In this paper, MS-TCN++ [38] is
adopted as the backbone network, and the Adaptive Temporal Fusion module (ATFM) and the Efficient
Channel Attention module (ECA) [39] are embedded into the MS-TCN++ network to construct the
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Refined-MS-TCN network. The model predicts the action categories and intervals existing in the
unedited assembly video, verifies the method’s feasibility through instance validation, and conducts
model comparison experiments to verify the method’s accuracy.

(3) Aiming at the problem that deep learning-based operator assembly intention prediction methods
require a large amount of training data and the prediction process is not sufficiently interpretable, an
operator assembly intention prediction model based on Hidden Markov Model (HMM) with assembly
task constraints is proposed. Meanwhile, an incremental learning method is introduced to adjust the
model parameters to adapt the intention prediction under different assembly sequences.

2 Materials and Methods

2.1 Overview of the Modeext Layout
In this paper, an operator assembly intent prediction method based on video analysis with Hidden

Markov Models is proposed to enable the prediction of the operator’s next assembly intent. An overview
of the framework of the operator assembly intention prediction system for human-machine collaborative
reducer assembly scenarios is given in Fig. 1. It mainly consists of two parts, assembly action recognition,
segmentation, and operator assembly intention prediction, which are described as follows. It primarily
consists of the following steps: (1) extraction of action features from the assembly action dataset; (2)
recognition and segmentation of successive assembly actions based on the extracted action features; and
(3) prediction of operator intention based on the obtained assembly action sequence. These three parts are
described accordingly below.

Figure 1: Technical roadmap of paper research

2.2 Based on TSM-ResNet50 Video Feature Extraction Network
Currently, video spatiotemporal feature extraction is commonly used in 3D Convolutional Neural

Networks (3D CNN), which have high computational complexity and poor real-time performance. To
achieve a good compromise between computational efficiency and performance, this paper constructs
a video feature extraction network based on TSM-ResNet50 for extracting spatio-temporal features in
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assembled videos, and the framework diagram of the feature extraction network is shown in Fig. 2. In TSM,
T denotes the temporal dimension of the extracted feature maps, C denotes the channel dimension of the
feature maps, and H and W represent the height and width of the feature map.

Figure 2: TSM-ResNet50 network structure

The core idea of TSM is to shift part of the passes of the feature map back and forth along the time
dimension so that the feature map at a given moment contains the information of the neighboring frames,
which can express the temporal characteristics of the video. In addition, since shifting the passes will damage
the spatial information of the video, TSM is inserted into the main path of the ResNet50 network to maintain
the integrity of the original spatial data through the residual connection of the ResNet50 network. This paper
is based on the ResNet50 network as the backbone network of the feature extraction network. The TSM-
ResNet50 video feature extraction network structure is constructed. Among them, the Residual Temporal
Shift module (Residual-TSM) has two main paths, in which the time-shift residual mapping path is used
for time-shift and convolution operations, and the other branching judgment path can retain the features
before the time-shift operation so that the overall accuracy of the network can be ensured while modeling
the temporal information.

The core idea of TSM is to shift part of the passes of the feature map back and forth along the time
dimension so that the feature map at a given moment contains the information of the neighboring frames,
which can express the temporal characteristics of the video. In addition, since shifting the passes will damage
the spatial information of the video, TSM is inserted into the main path of the ResNet50 network to maintain
the integrity of the original spatial data through the residual connection of the ResNet50 network. This paper
is based on the ResNet50 network as the backbone network of the feature extraction network. The TSM-
ResNet50 video feature extraction network structure is constructed. Among them, the Residual Temporal
Shift module (Residual-TSM) has two main paths, in which the time-shift residual mapping path is used
for time-shift and convolution operations, and the other branching judgment path can retain the features
before the time-shift operation so that the overall accuracy of the network can be ensured while modeling
the temporal information.

Since the feature maps extracted by ResNet50 can only represent spatial features, while TSM performs
partial channel shift operations on the feature maps of video frames at time t, the feature map at time t
contains information from the video frames at time t − 1 and t + 1. Although the shift operation affects
the feature information of the 2D spatial dimension, the original 2D spatial features can be preserved by
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the residual operation; since the shift operation does not increase the computation of the network, the
performance of 3D CNN can be achieved with the complexity of 2D CNN.

To improve the network training performance, this paper adopts a pre-training+ fine-tuning strategy to
train the TSM-ResNet50 network. The ResNet50 network is first pre-trained using the ImageNet dataset [40],
and the trained network parameters are used as the initial TSM-ResNet50 network model parameters. Then,
the initial model parameters were fine-tuned using the self-constructed assembly action video data set to
obtain the optimized TSM-ResNet50 network model. During the fine-tuning process, for each video clip,
eight frames were randomly extracted from it, and then the frames were normalized to a size of 224 × 224
and fed into the network for training.

Since the temporal field of the network expands by 2 bits after each insertion of TSM, the final temporal
field of the whole framework will be significant. To obtain sufficient temporal information, this paper extracts
the fully connected (FC) layer in the TSM-ResNet50 network before the M × 2048 dimensional output to
characterize the temporal features of the video clip, in which M is the number of input video frames, and
2048 is the spatiotemporal feature dimension of the video frames.

2.3 Based on Refined-MS-TCN Action Recognition and Segmentation Network
2.3.1 Refined-MS-TCN Network Architecture

In this paper, MS-TCN++ is used as the backbone network, and the adaptive temporal fusion module
(ATFM) and the efficient channel attention module (ECA) are embedded into the MS-TCN++ network to
construct the refined MS-TCN network. These two modules complement the refined MS-TCN++ network,
and the overall architecture of action recognition and segmentation is shown in Fig. 3.

Figure 3: Refined-MS-TCN network schematic diagram
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The ATFM module is a response to the AUGFPN [41]. The Adaptive Spatial Fusion Module (ASFM) in
the target detection network is adapted to obtain the structures shown in Fig. 4. By introducing the attention
mechanism, it can adaptively weight the layered temporal context features, thus effectively aggregating multi-
scale temporal information and reducing the interference of irrelevant features.

Figure 4: Adaptive temporal fusion module

ATFM extracts multi-scale temporal context features in the Prereduction Generation Stage of the
Refined-MS-TCN network and splices these features as inputs; subsequently, ATFM assigns a temporal
weight to each scale of temporal features. Finally, ATFM generates temporal context information with
high-level semantics by aggregating these scales. This is done as shown below:

on = fn (on−1) , (1)
H (x) = E (g (o1 , o2, . . . , on)) , n ∈ N , (2)

where o1 = x denotes the input features (video features) of the network; on denotes the output of the n dilated
convolutional layer; fn denotes the convolution operation of the n dilated convolutional layer; H denotes the
output result of ATFM; E denotes the adaptive weighted fusion operator; g denotes the cascade operator; N
denotes the number of inflated convolutional layers in each stage. The temporal feature size for all scales is
P × Q, where P is the number of feature channels and Q is the number of frames.

The ATFM module consists of a 1 × 1 convolution structure, a ReLU activation function, a 3 × 3
convolution structure, a Sigmoid activation function, and a matrix dot product operation. As a ‘plug-
and-play’ module, ATFM has a small number of parameters, so its integration into the network does not
increase the computational burden. In Refined-MS-TCN, only the inputs of the first stage of the network
are the features extracted from the video, while the inputs of the subsequent stages are the outputs of the
previous stage.
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The ECA module finely tunes the feature channels through the weighting mechanism, which can
adaptively enhance the features that have a more significant impact on the classification results and suppress
the features that have little or no effect. The structure of this mechanism is shown in Fig. 5.

Figure 5: ECA channel attention mechanism

The ECA module compresses the feature X in the time dimension using Global Average Pooling (GAP),
which converts the time dimension channel into a 1 × C vector with a global perceptual field. It represents
the international distribution of responses across the feature channels. To adjust the weight of each channel
feature, a 1 × 1 convolution is used in the cross-channel feature interaction network. According to the size of
the channel dimension, the convolution kernel size is set to 3 in this paper, where the size of the convolution
kernel represents the range of cross-channel interaction. The convolution result is then activated using the
Sigmoid activation function to obtain the weights ω of each channel, channel weights ω are multiplied by
feature vectors to output weighted features η, as shown follows:

ω = σ (C1D3 (GAP (X))) , (3)
η = X ⊗ ω. (4)

The ECA module has lower complexity and comparable performance to other attention mechanisms.
This is because the ECA module does not require dimensionality reduction when performing inter-channel
interactions, thus reducing the loss of feature information. At the same time, the network can learn each
channel’s weight coefficients and therefore distinguish each channel’s features more effectively.

2.3.2 Loss Function Design
For the loss function, MS-TCN++ uses a combination of multi-categorical cross-entropy loss Lcl s and

smoothing loss LT−MSE . In this paper, we use the Gaussian similarity weight loss function LGT−MSE [42]
to replace the loss function LT−MSE of MS-TCN++ as part of the loss function. The GS-TMSE function
penalizes neighboring frames with large differences with a smaller weight, ensuring a smooth action
transition. The loss function for each stage of Refined-MS-TCN is:

Ls = Lcl s + λLGT−MSE , (5)

where Lcl s is the Cross-Entropy Loss at each stage, LGT−MSE is the Gaussian weighted smoothing loss at each
stage, and the network hyperparameter λ is 0.15.
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The classification loss Lcl s and the Gaussian similarity weighted loss LGT−MSE are defined as follows:

Lcl s =
1
T ∑t

−log(yt , c) (6)

LGS−T MSE =
1

TN ∑t ,c
Δ̃2

t ,c ex p(−∣∣xt − xt−1∣∣2
2

) Δ̃2
t ,c

Δ̃t ,c =
⎧⎪⎪⎨⎪⎪⎩

Δ2
t ,c ∶ Δt ,c ≤ τ

τ∶ otherwise

Δt ,c = ∣log yt ,c − log yt−1,c ∣

where T is the length of the video, N is the number of categories, and yt ,c is the probability that the category
is c at time t. The xt is the input feature of frame t, and the parameter τ is set to 4.

2.4 Operator Assembly Intent Predictive Model Incorporating HMM and Assembly Task Constraints
2.4.1 Modelling Stage

In the Human-Robot Collaboration Assembly process, the operator’s next assembly task can be taken
as the operator’s assembly intention. In this paper, the assembly tasks in the assembly process are taken
as the hidden states of the HMM, and the probabilistic transfer relationship between assembly tasks is
obtained through the state transfer probability matrix A of the HMM. The assembly tasks are not observable
to the robot, and what the robot can observe is the assembly action state sequence obtained by the action
recognition and segmentation model. The assembly tasks are treated as the hidden states of the HMM, while
the observed assembly action states are treated as the observed states of the HMM. Observed states are the
states that can be directly observed externally, and they are linked to the internal hidden states through the
HMM. The assembly tasks and observed assembly action states during assembly are deg-7ned as shown
in Table 1.

Table 1: Assembly task and observed assembly action state of Hidden Markov model

Assembly
task

Assembly task meaning Observed assembly
action state

Observed assembly
action state meaning

q1 Assembly of oil level indicator v1 q1 action observed
q2 Assembly of the oil retainer ring at the

end of the input shaft cover
v2 q2 action observed

q3 Assembly of input shaft through-cap
end bearing

v3 q3 action observed

q4 Assembly of the input shaft cover v4 q4 action observed
q5 Assembly of the oil retainer ring at the

end of the input shaft cover
v5 q5 action observed

q6 Assembly of input shaft mullion end
bearing

v6 q6 action observed

q7 Assembly of input shaft adjusting ring
and cover

v7 q7 action observed

q8 Assembly of the input shaft v8 q8 action observed

(Continued)
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Table 1 (continued)

Assembly
task

Assembly task meaning Observed assembly
action state

Observed assembly
action state meaning

q9 Assembly of output shaft large gear v9 q9 action observed
q10 Assembly of output shaft sleeve v10 q10 action observed
q11 Assembly of output shaft through-cap

end bearing
v11 q11 action observed

q12 Assembly of output shaft cover v12 q12 action observed
q13 Assembly of output shaft mullion end

bearing
v13 q13 action observed

q14 Assembly of output shaft adjusting
ring and cover

v14 q14 action observed

q15 Assembly of output shafts v15 q15 action observed
q16 Assembly of the upper case cover of

the gearbox
v16 q16 action observed

The relationship between the observed assembly action states and the assembly task can be obtained
through the firing matrix B of the HMM. Since the results obtained by the action recognition model are
not necessarily accurate, the observed assembly action states are not necessarily correct. In this paper, we
mitigate the impact of action recognition errors on subsequent intent prediction by corresponding a hidden
state to multiple observed states. Using one hidden state to correspond to various observed states, even if
there is an error in the observed assembly action state, the HMM can use the Viterbi algorithm to obtain the
correct hidden state and then correctly predict the operator’s assembly intention.

2.4.2 Incremental Learning Stage
The accuracy of the operator’s prediction of assembly intent is closely related to the parameters of the

HMM. For an untrained sequence of observed assembly action states, a state transfer probability matrix in
the HMM corresponding to a hidden state transfer probability of 0 will not correctly predict the intention
of the operator.

In this paper uses incremental learning approach to dynamically adapt the parameters of the HMM.
The data for incremental learning is obtained from the action recognition and segmentation model. After
each assembly, the assembly action sequences obtained from the action recognition and segmentation
model are recorded, and a set of observed assembly action state sequences are obtained using an action
sequence processing algorithm and assembly action state extraction. Assume that after the t-th assembly,
the parameters of the Hidden Markov Model (HMM) are λt−1 = (At−1 , Bt−1 , πt−1), which represents the
parameters of the HMM after the (t − 1)-th assembly is completed. After the t-th assembly, the parameters of
the HMM model trained by the BW algorithm using the recorded observed assembly action state sequence
Ot are denoted as λ

′

t = (A
′

t , B
′

t , π
′

t). The calculation method for generating new parameters λt = (At , Bt , πt)
using incremental learning in the HMM is as follows:

λt =
⎧⎪⎪⎨⎪⎪⎩

λt−1 + η × λ
′

t , log P(Ot ∣λ′) > ε
λt−1 , otherwise

, (7)
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where η denotes the learning rate, which represents the trade-off between learning new knowledge and
forgetting old knowledge; larger η indicates that the HMM is more inclined to forget old knowledge and is
better able to adapt to new environments, while smaller η indicates that the HMM is more inclined to retain
historical experience. Suppose the likelihood probability log P(O∣λ) is smaller than the set threshold ε. In
that case, it can be considered that this test sample has high confidence and can be used for the updating
operation of the HMM parameters (in this paper, the parameters of the firing matrix B are not updated, and
B is only related to the performance of the assembly action recognition model). The learning rate η is set to
0.2. The threshold ε is obtained by weighting the log P(O∣λ) obtained by using the BW algorithm on a single
training sample, and its computational equation is as follows:

ε = K × 1
N

N
∑
i=1

log(Oi ∣λi), (8)

where N denotes the number of training samples, since log(Oi ∣λi) is the likelihood probability derived on
the HMM generated from the training samples, the probability value will achieve a larger value, which is
adjusted using the scaling factor K to set the threshold ε more objectively. In subsequent incremental learning
experiments, K was set to 0.8.

2.4.3 Prediction Stage
The inputs to the HMM prediction stage are the observed assembly action state sequence O and

the parameter λ of the HMM, the corresponding hidden state sequence is obtained by using the Viterbi
algorithm, and the hidden state qi with the largest transfer probability of the current hidden state q j is found
by the probability transfer matrix A. The assembly task represented by q j is the prediction result of the
operator’s assembly intention.

During the assembly process of the reducer, assembly task constraints refer to the fact that certain
assembly tasks must be completed before others can be carried out, and all assembly tasks must be performed
in a specific order. Some assembly tasks must also be carried out in a specific sequence. For example, the
assembly of the output shaft, the assembly of the input shaft, and other assembly tasks must be completed
before the assembly of the top cover of the gear reducer. In this paper, the assembly task to be completed
before the assembly task is called the preliminary assembly task, the gearbox assembly process of the assembly
task of the initial assembly task as shown in Table 2. In addition, each assembly task in the transmission
assembly process must be performed only once in the whole assembly process. Once an assembly task is
completed, it should not be used as the result of predicting the operator’s assembly intention.

Table 2: The precedent task of the assembly task

Assembly task Pre-assembly tasks
q1 Null
q2 Null
q3 Null
q4 q2q3
q5 Null
q6 q5
q7 q2q3q4q5q6q8
q8 q2q3q4q5q6

(Continued)
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Table 2 (continued)

Assembly task Pre-assembly tasks
q9 Null
q10 q9
q11 Null
q12 q11
q13 q9q10
q14 q9q10q11q12q13q15
q15 q9q10q11q12q13
q16 q2q3q4q5q6q7q8q9q10q11q12q13q14q15

In predicting the operator’s assembly intention, the sequence of observed assembly action states can
be obtained by the action recognition model and assembly action sequence processing method. Then the
corresponding sequence of hidden states and the current hidden state (assembly task) can be obtained by
the Viterbi algorithm through the state transfer probability matrix A; we can get the transfer probability of
each hidden state corresponding to the current hidden state, and then predict the operator’s next assembly
intention. The operator’s assembly intention is then predicted. In the intention prediction process, assembly
task constraints are added to determine whether the predicted assembly task (operator intention) has been
completed and its predecessor assembly task has been completed. Suppose the previous assembly task still
needs to be completed or the predicted assembly task has been completed. In that case, the intention
prediction result is changed to the assembly task with the next highest transfer probability as the operator
assembly intention prediction result, and the cycle is repeated until the final intention prediction result is
obtained intention prediction result. The specific steps of the operator assembly intention prediction method
based on HMM and assembly task constraints are shown in Fig. 6.

Figure 6: Operator assembly intent prediction model based on HMM and assembly task constraints
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3 Experiment and Discussion
Experimental analyses are carried out using the captured reducer assembly video dataset, and a

comparative model is built to validate and evaluate the approach adopted in the model based on the effect of
action segmentation and recognition in real assembly videos.

3.1 Dataset Introduction
3.1.1 Assemble Data Collection

In this study, a reducer assembly process is used as the source of the assembly action dataset. The
assembly process of the reducer is collected using data acquisition equipment (Xiaomi 11, with a resolution
of 108 MP for the primary camera), and a reducer assembly action dataset is constructed.

The dataset contains 79 videos, each with 16 assembly actions, with an average duration of about 3 s
for each action. The video frame rate is 30 fps. The videos are recorded from the perspective of the main
view. As indicated by the name of the dataset, these videos describe the assembly process of the reducer. To
ensure the diversity of experimental data, 20 experimenters were invited to perform reducer assembly tasks,
and the proficiency of each participant in the assembly process was different. During the recording process,
participants repeated multiple times to complete the assembly process of the assembly body. A video data
contains a complete and continuous assembly process. Due to the different proficiency of participants in the
assembly process, the duration of completing the assembly action will vary, so the overall data can meet the
diversity requirements.

3.1.2 Assembly Action Division
Based on the analysis of the reducer’s assembly process, this paper associates the assembly actions

with the various components of the reducer. Different assembly actions are divided through the assembly
of other components, each assembly action including the entire process of assembling the corresponding
components, such as the assembly action of the upper cover of the reducer, which includes the gripping,
placement, and fastening of the upper cover of the reducer. Due to the absence of reducer components, this
paper does not involve the assembly actions of components such as the reducer sight cover and reducer
oil plug. Since there are repeated components in the reducer, such as oil baffles, deep groove ball bearings
6204, etc., this paper distinguishes the components with the same name by differentiating the input shaft and
output shaft and the through cover installation end of the shaft and the blind cover installation end.

This article divides explicitly the assembly actions in the reducer assembly process into 16 categories,
as shown in Fig. 7. Among these 16 assembly actions, some are relatively special. In the reducer assembly
process, the installation of small covers, reflectors, and oil hole gaskets is continuous, so the assembly action
of the oil level indicator includes the installation of small covers, oil hole indicators, reflectors, and oil hole
gaskets and other components. The assembly of the input shaft and the assembly action of the input shaft are
to install all the components on the shaft into the housing.
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Figure 7: Reducer assembly action categories. (1) Assembling the oil level indicator; (2) assembling the output shaft
gear; (3) assembling the output shaft end cover bearing; (4) assembling the output shaft sleeve; (5) assembling the output
shaft end cover bearing; (6) assembling the output shaft end cover; (7) assembling the output shaft; (8) assembling the
output shaft adjustment ring and end cover; (9) assembling the input shaft end cover oil damper; (10) assembling the
input shaft end cover oil damper; (11) assembling the input shaft end cover bearing; (12) assembling the input shaft end
cover; (13) assembling the input shaft end cover bearing; (14) assembling the input shaft; (15) assembling the input shaft
adjustment ring and end cover; (16) assembling the reducer top cover

3.1.3 Preprocessing and Clipping of Assembly Action Dataset
In this paper, high-definition video data was obtained from the assembly process of the subjects’

reducers, with a resolution of 1920 × 1080 per frame and a frame rate of 30 fps. However, high-resolution
images will increase the burden of network computation. In order to optimize computational efficiency, this
section adjusts the resolution of each frame image to 224× 224. Considering that the action between adjacent
two frames of the video often changes little, one image frame is selected every two image frames, thereby
reducing the frame rate of the video to 10 fps. This data processing method retains the critical information of
the video data while reducing the computational burden, making the motion features more prominent and
conducive to subsequent video feature extraction tasks.

This section edits the complete assembly video, dividing it into multiple single assembly action videos
according to each assembly action’s start and end times, to train the video feature extraction network.

3.2 Video Feature Extraction Experiment
3.2.1 Evaluation Indicators

Euclidean distance measures the absolute distance between two points in multidimensional space. The
formula for Euclidean distance in n-dimensional space is:

d =
�
���

n
∑
i=1
(xi − yi). (9)

Cosine similarity is a measure of the similarity between two vectors by measuring the cosine of the angle
in the direction of the two vectors. The closer the cosine similarity of two vectors is to 1, the more similar
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they are, and the closer the similarity is to 0, the more different they are. For vector X = (x1 , x2, . . . , xn)T

and vector Y = (y1 , y2, . . . , yn)T , the cosine similarity formula is:

cos (θ) = ∑n
i=1 (xi × yi)√

∑n
i=1(xi)2 ×

√
∑n

i=1(yi)2
. (10)

3.2.2 Experiment Dataset
The self-constructed complete reducer assembly action video dataset is randomly divided into two

subsets, with 80% used for training and 20% for testing, both containing assembly action records of
different personnel.

3.2.3 Experimental Results and Analyses
In this paper, the TSM-ResNet50 video-based feature extraction network and the I3D feature extraction

network are used to extract features from the complete video of transmission assembly, respectively. The
average similarity between the TSM-ResNet50 network and the I3D network for extracting frame features
of the same assembly action category and frame features of different assembly action categories is also
compared. The results of the comparison of the network feature extraction results are shown in Table 3.
By calculating the similarity between the feature vectors extracted from each frame, the distribution of the
feature data in the time dimension still retains temporal characteristics, indicating that the TSM-ResNet50
feature extraction network has effectively preserved the temporal information in the video, and the feature
extraction model is adequate.

Table 3: Network feature extraction effectiveness

Feature extraction
method

Mean Euclidean
distance for the

same action
frames

Mean Euclidean
distance for the
different action

frames

Mean cosine
similarity for the

same Action
Frames

Mean cosine
similarity for the
different action

frames
I3D 3.42 8.84 0.992 0.762

TSM-ResNet50 2.86 8.96 0.993 0.772

3.3 Experiments on Continuous Assembly Action Recognition and Segmentation
3.3.1 Evaluation Indicators

In this paper, to verify the effect of Refined-MS-TCN action recognition and segmentation network on
the recognition and segmentation of assembly action, we choose to adopt Acc (frame-wise accuracy), and
F1-score as the main evaluation criteria of this assembly action recognition and segmentation experiment.

3.3.2 Experimental Setup
The action recognition and segmentation network based on Refined-MS-TCN has 4 phases, the first

phase is the prediction generation phase, which includes 11 DDL modules as well as the ATFM module, and
the last 3 phases are the prediction tuning phases, each including 10 inflated convolutional layers based on
residual connectivity and the ECA module. Dropout is used after each layer and the probability is set to 0.5,
the number of channels in each convolutional layer is 64, the size of the convolutional kernel is 3, and λ is set
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to 0.15. In all experiments, the Adam optimizer is used with a learning rate of 0.0005, and no weight decay
is set.

3.3.3 Experiment Dataset
To demonstrate the effectiveness of the ATFM module and the ECA module introduced in this paper,

network structure splitting experiments were performed on the self-constructed assembly dataset, using
MS-TCN++ as a reference. The input features of the self-constructed assembly action dataset use the N ×
M × 2048 dimensional features of the full assembly video extracted with the TSM-ResNet50 video feature
extraction network, where N is the number of videos, and M is the number of video frames. Each assembly
action has three basic attributes: the category of the action, the starting moment, and the ending moment. The
action recognition network needs to input action labels for supervised learning during action learning, so it
is necessary to label the actions contained in each video in the dataset. When performing data annotation,
it is also required to base it on the frame number of the image to complete the annotation of the various
attributes of the actions in the video data and generate the annotation file of the dataset. Taking the collected
reducer assembly video dataset as an example, the annotation method is shown in Fig. 8.

Figure 8: Dataset annotation method

3.3.4 Experimental Results and Analyses
As shown in Table 4, for the task of recognition and segmentation of assembly operations, the refined

MS-TCN network performs better than MS-TCN++ in all evaluation metrics, demonstrating the effective-
ness of the improvements in this paper. Integrating the ATFM module into the MS-TCN++ network can
improve its performance. This is because ATFM weights the multi-scale features in the first stage of the
network, which can better capture the dynamic changes in different time scales, produce more accurate initial
results, and provide a good initial value for the subsequent correction stage of the network.

Table 4: Experimental results of self-built assembly action dataset

Self-built assembly action dataset F0.1 F0.25 F0.5 Acc
MS-TCN++ & ATFM 90.5 88.4 76.2 81.8
MS-TCN++ & ECA 88.6 87.2 74.8 79.2

MSTCN++ & ATFM & GS-TMSE 90.7 88.6 76.2 82.0
MS-TCN++ & ECA & GS-TMSE 88.8 85.7 76.0 80.1

Ours 92.9 92.0 82.9 83.0
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We compare the proposed model with the state-of-the-art method on the self-built assembly dataset.
As shown in Table 5, our model’s F1-score and frame-wise accuracy (Acc) are both better than the state-of-
the-art methods.

Table 5: Comparison with the state-of-the-art on self-built assembly action dataset

Self-built assembly action dataset F0.1 F0.25 F0.5 Acc
MS-TCN++ [38] 88.2 86.2 75.9 80.7
AsFormer [43] 77.2 72.5 77.9 51.8

ICC [44] 43.9 47.2 46.8 25.2
Ours 92.9 92.0 82.9 83.0

The advantage of combining the ATFM and ECA modules in the MS-TCN++ network is that they
complement each other to improve the overall network performance. Although the ECA module alone may
not improve the network’s performance, the two can complement each other when combined with the ATFM
module. The ATFM module provides more accurate initial features to the ECA module, allowing the ECA
to weight the features better, further improving the accuracy of the final detection. The use of the GS-TMSE
loss function has little impact on network performance. The primary purpose of introducing the GS-TMSE
loss function is to ensure that the network can partition different assembly action intervals and mitigate the
effect of similar assembly actions on the results.

To more intuitively display the segmentation results, this section visualizes the action recognition and
segmentation results of the self-built assembly action dataset videos, as shown in Fig. 9. From the figure, it
can be seen that the Refined-MS-TCN used in this chapter can segment assembly actions well and correctly
classify assembly actions. However, there are still some things that need to be corrected, including missed
recognition of assembly actions and assembly actions with durations significantly different from the actual
situation. The missed recognition is because some assembly actions have short durations and are very
similar to adjacent assembly actions, so multiple consecutive assembly actions are recognized as a single
assembly action.

Figure 9: Visualization of assembly action recognition and segmentation results
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3.4 Experiment to Predict Operator Assembly Intent
3.4.1 HMM Model

In this paper, 40 reducer assembly videos are processed using the action recognition and segmentation
network, and the assembly task sequences and the observed assembly action state sequences are extracted
from them, the number of which is 16, and they are matched as the training data of the HMM, and the match
is shown in Fig. 10. Different numbers in the figure represent different assembly tasks and observed assembly
action states, respectively, and the part marked by the red box indicates that the assembly tasks do not match
with the observed assembly action states, and this relationship is reflected in the firing matrix B of the HMM.

Figure 10: Model training data

Using these 40 sequences, the state transfer probability matrix A, the firing matrix B and the initial
state probability distribution matrix π of the Hidden Markov Model (HMM) are approximated by simple
statistical frequency calculations. The results are shown in Tables A1–A3 in Appendix A.

3.4.2 Experiment Dataset
To verify the effectiveness of this paper’s operator assembly intent prediction method based on HMM

with assembly task constraints, an actual Human-Robot Collaboration Assembly scenario is built in this
section, as shown in Fig. 11.

Figure 11: Human-robot collaborative assembly scenario
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During the experiment, 5 subjects were set up, each completing one complete reducer assembly. The
subjects were required to freely choose the assembly sequence during the assembly process without any
assembly errors. The complete assembly action sequence was extracted using an action recognition and
segmentation model and processed using an action sequence processing method. The processed assembly
sequence was segmented, as shown in Fig. 12, ensuring that the assembly action at the segmentation point
had been completed for some time and the following assembly action had yet to start. This paper defines 16
assembly actions, which can be segmented into 15 assembly action sequences, resulting in 75 test data. After
segmentation, assembly action state extraction was performed on them. The test data were input into HMM
and HMM with assembly task constraints to test the effect of assembly intention prediction. HMM uses the
initial probability matrix to predict the operator’s first assembly task, fixed at q1 (π = 0.4 without incremental
training, with the maximum probability value).

Figure 12: The test data segmentation method

3.4.3 Experimental Results and Analyses
The test data were fed into the HMM with the addition of assembly task constraints to examine the

effectiveness of the assembly intention prediction. The HMM predicts the operator’s first assembly task
using an initial probability matrix π fixed at q1 without incremental training. The experimental results are
shown in Table 6, where the prediction accuracy is the ratio of the number of experimental samples correctly
predicted to the number of samples in all experiments. The HMM with the addition of the assembly task
constraints can achieve a prediction accuracy of 90.6%, which is an improvement of 13.3% compared to the
method using the HMM.

Table 6: Operator assembly intent prediction accuracy

Method Predictive accuracy
HMM 77.3%

The HMM with the addition of the assembly task constraints 90.6%

4 Conclusions
In this paper, we use an innovative approach to assembly intent prediction. Based on the HMM and

assembly task constraints, an efficient operator assembly intent prediction model is developed. First, the
interpretability of the HMM prediction results is improved by incorporating assembly task constraints; in
particular, the impact of action recognition errors on intent prediction is mitigated by introducing task-
specific constraints. Then, an incremental learning mechanism is incorporated to allow the model to flexibly
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adjust the parameters to better meet the needs of intention prediction under different assembly sequences.
In terms of feature extraction from assembly action video clips, the Temporal Shift Module (TSM) is
introduced into the ResNet50 network to extract the spatio-temporal features of the video clips to alleviate
the subsequent computational burden. An enhanced MS-TCN network is used for assembly action detection
and segmentation, and the accuracy of action detection is improved by introducing the Adaptive Temporal
Fusion Module (ATFM) and the Efficient Channel Attention (ECA) module. Experiments on our self-built
reducer assembly action dataset demonstrate that our network can classify assembly actions frame by frame,
achieving an accuracy rate of 83%. Finally, an operator assembly intention prediction system based on video
analysis and HMM is constructed. The experimental results show that our method for predicting operator
assembly intentions can achieve an accuracy of 91.7%, which is a 13.3% improvement over the HMM without
task constraints. This paper’s method improves the intelligence level of human-robot collaboration assembly
and provides a new approach to assembly intention prediction. Although the model shows high prediction
accuracy in experiments, further optimization is needed to improve the generalization ability and real-time
performance of the model in practical applications. Future work will focus on lightweight and optimizing
the model to include more real-world assembly scenarios and further improve the accuracy and efficiency
of the prediction.
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Appendix A

Table A1: Initial state probability distribution matrix

State q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16

0.4 0.15 0 0 0.2 0 0 0 0.25 0 0 0 0 0 0 0 0

Table A2: State transition probability matrix

State q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16

q1 0 0.375 0 0 0.125 0 0 0 0.375 0 0.125 0 0 0 0 0

(Continued)
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Table A2 (continued)

State q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16

q2 0 0 0.95 0 0.05 0 0 0 0 0 0 0 0 0 0 0
q3 0 0 0 0.9 0.1 0 0 0 0 0 0 0 0 0 0 0
q4 0 0 0 0 0.35 0 0 0.65 0 0 0 0 0 0 0 0
q5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
q6 0 0.5 0.05 0.1 0 0 0 0.35 0 0 0 0 0 0 0 0
q7 0 0 0 0 0 0 0 0 0.35 0 0.2 0 0 0 0 0.45
q8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
q9 0 0 0 0 0 0 0 0 0 0.95 0.05 0 0 0 0 0
q10 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
q11 0 0 0 0 0 0 0 0 0.05 0 0 0.95 0 0 0 0
q12 0 0 0 0 0 0 0 0 0.2 0.05 0 0 0 0 0.75 0
q13 0 0 0 0 0 0 0 0 0 0 0.7 0.05 0 0 0.25 0
q14 0 0.2 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0.55
q15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
q16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A3: Emission matrix

State v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 q16

q1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
q2 0 0.925 0.075 0 0 0 0 0 0 0 0 0 0 0 0 0
q3 0 0 0.8 0.2 0 0 0 0 0 0 0 0 0 0 0 0
q4 0 0 0 0.975 0 0 0 0 0 0 0 0 0 0 0 0
q5 0 0.025 0 0 0.85 0.1 0 0 0 0 0 0 0 0.25 0 0
q6 0 0 0 0 0.1 0.9 0 0 0 0 0 0 0 0 0 0
q7 0 0 0 0 0 0 0.8 0.2 0 0 0 0 0 0 0 0
q8 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0.1 0
q9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
q10 0 0 0 0 0 0 0 0 0.1 0.9 0 0 0 0 0 0
q11 0 0 0 0 0 0 0 0 0 0 0.85 0.15 0 0 0 0
q12 0 0 0 0 0 0 0 0 0 0 0.025 0.975 0 0 0 0
q13 0 0 0 0 0 0 0 0 0 0 0.15 0 0.85 0 0 0
q14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
q15 0 0 0 0 0 0 0 0 0 0 0 0 0 0.15 0.85 0
q16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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