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ABSTRACT: Federated Learning (FL) has emerged as a promising distributed machine learning paradigm that
enables multi-party collaborative training while eliminating the need for raw data sharing. However, its reliance on a
server introduces critical security vulnerabilities: malicious servers can infer private information from received local
model updates or deliberately manipulate aggregation results. Consequently, achieving verifiable aggregation without
compromising client privacy remains a critical challenge. To address these problem, we propose a reversible data hiding
in encrypted domains (RDHED) scheme, which designs joint secret message embedding and extraction mechanism.
This approach enables clients to embed secret messages into ciphertext redundancy spaces generated during model
encryption. During the server aggregation process, the embedded messages from all clients fuse within the ciphertext
space to form a joint embedding message. Subsequently, clients can decrypt the aggregated results and extract this
joint embedding message for verification purposes. Building upon this foundation, we integrate the proposed RDHED
scheme with linear homomorphic hash and digital signatures to design a verifiable privacy-preserving aggregation
protocol for single-server architectures (VPAFL). Theoretical proofs and experimental analyses show that VPAFL
can effectively protect user privacy, achieve lightweight computational and communication overhead of users for
verification, and present significant advantages with increasing model dimension.

KEYWORDS: Verifiable federated learning; privacy-preserving; homomorphic encryption; reversible data hiding in
encrypted domain; secret sharing

1 Introduction

1.1 Motivation
With the widespread adoption of cloud computing technologies [1], the migration of large amounts

of user data to the cloud has become an irreversible trend. To address the risks of privacy breaches,
encrypting data for storage has become essential. However, this measure introduces new challenges, par-
ticularly in performing operations such as metadata embedding and identity authentication while ensuring
data confidentiality.

To address these challenges, the technique of reversible data hiding in the encrypted domain
(RDHED) [2–4] has emerged as a promising solution. This technology enables the reversible embedding
of data, such as identity markers and integrity labels, within encrypted data [5,6]. Upon decryption, both
the original data and the embedded data can be completely recovered, providing an innovative approach
to managing encrypted data. Despite significant advancements in traditional RDHED methods, most
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existing schemes rely on stream cipher encryption mechanisms, which do not support ciphertext operations
[2,4–6]. This limitation makes them unsuitable for emerging privacy-preserving computing scenarios, such
as federated learning (FL) [7].

In recent years, homomorphic encryption (HE)-based RDHED schemes have gained attention as
a potential solution [8–10]. However, these approaches face two major technical challenges. First, their
applicability is often limited because most existing research focuses on image data processing, while FL
predominantly involves model parameters. Second, compatibility issues arise: existing methods do not
adequately address the destructive effects of homomorphic processing on embedded data [11]. For instance,
when encrypted data undergo homomorphic processing, such as ciphertext aggregation, embedded data
may suffer irreversible distortion, resulting in extraction failures [12–14]. Furthermore, FL usually involves
multiple participants, yet enabling each user to independently perform data embedding and extraction
independently in decentralized scenarios remains a great challenge.

In a typical FL architecture, users upload their local models to the server, which aggregates the received
local models to generate the global model and distributes it back to users. However, this collaborative training
mechanism raises concerns about privacy leakage. In particular, a semi-honest server can infer user privacy
by analyzing local or global gradients [15–17], while a malicious server could manipulate the aggregation
results, thereby compromising the usability of the global model [18]. Existing privacy protection solutions,
such as HE [19,20], differential privacy [21,22], and secure multiparty computation [23], can mitigate some
privacy risks. However, they fail to address a critical issue: verifying the correctness of model aggregation.

To address these challenges, several verifiable federated learning (VFL) schemes have been successively
proposed [18,24–27]. These solutions primarily utilize linear homomorphic hash (LHH) [18,24–26] or dual-
aggregation techniques [27] to achieve verifiability. However, they exhibit limitations: the former incurs
computational overhead that scales with the model dimension, while the latter suffers from the inflation of
communication costs and requires auxiliary protocols for full verifiability [28,29].

1.2 Our Contributions
This study addresses existing challenges by focusing on two core issues: (1) designing a RDHED scheme

compatible with homomorphic processing, and (2) integrating this RDHED scheme with cryptographic tools
to develop an efficient verifiable privacy-preserving aggregation protocol under a single-server architecture.

To achieve these goals, we propose a joint embedding-extraction mechanism (JEEM). Using the
additive homomorphic property of the Paillier encryption algorithm [19], JEEM enables multiple users to
collaboratively embed and extract secret messages without altering the original plaintext. Building on JEEM,
we further integrate LHH [30] and digital signatures to design a verifiable privacy-preserving aggregation
protocol based on a single server (VPAFL).

The contributions of this study can be summarized as follows:
1) RDHED Scheme for Joint Secret Message Embedding and Extraction: This study resolves the com-

patibility limitations of existing RDHED schemes with homomorphic processing. Each user independently
exploits ciphertext redundancy during encryption to embed secret messages. After the server aggregates
the ciphertexts, homomorphic properties enable the fusion of all user-embedded messages within the
ciphertext space, yielding a joint embedded message. Users can then extract this joint embedded message
after decrypting the aggregation result.

2) Efficient Verifiable Aggregation Protocol: Compared to existing LHH-based VFL schemes, VPAFL
enhances efficiency by integrating the proposed RDHED scheme. Specifically, VPAFL utilizes the secret
message embedded by the users in each communication round as input for the hash value computation. This
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design decouples hash generation computational overhead from the model dimension, thereby significantly
reducing the computational overhead of users for verification. Furthermore, VPAFL maintains minimal
communication overhead of users for verification (below 0.2 KB) and achieves verification of aggrega-
tion results within only two interaction rounds under a single-server framework, significantly enhancing
practical deployability.

1.3 Organization
The rest of this article is organized as follows: Section 2 reviews related works, while Section 3 introduces

preliminary concepts. Section 4 provides an overview of the system and the threat Section 5 presents the
proposed RDHED scheme and details the VPAFL protocol. Sections 6 and 7 offer theoretical analyses and
experimental results, respectively. Finally, Section 8 concludes this study.

2 Related Works
In this section, we provide a brief review of the work related to RDHED schemes in the homomorphic

encrypted domain and VFL.

2.1 RDHED Schemes in the Homomorphic Encrypted Domain
With the widespread application of HE in privacy computing, HE-based RDHED methods have

emerged as a research hotspot [12]. These schemes are categorized into two types based on their impact on
plaintext: plaintext modification schemes (Type I) and lossless data hiding schemes (Type II). Specifically,
Type I methods involve embedding operations that result in changes to plaintext [9,10,13,14]. For example, a
typical method modifies the ciphertext value c to produce a decrypted plaintext of the form 2m + b, where
m is the original plaintext, and b ∈ {0, 1} denotes the embedded 1 bit message. During data extraction,
the embedded bit b is extracted by computing (2m + b) mod 2, while m is recovered by integer division
⌊(2m + b)/2⌋. However, a critical limitation of Type I schemes is that they are not well suited for directly
processing ciphertexts containing embedded messages. As a result, employing Type I methods may limit the
processing of ciphertexts.

In contrast, Type II schemes aim to achieve lossless data hiding in ciphertexts (LDH-CT) without
altering plaintexts or increasing ciphertext size [8,11,12]. For example, Zheng et al. [12] proposed a LDH-
CT scheme based on numerical interval mapping: the data hider modifies the ciphertext to fall into specific
subintervals corresponding to embedded bits. Using the homomorphic and probabilistic properties of
cryptosystems to ensure invariance of plaintext. Wu et al. [11] proposed a RDHED scheme using random
number substitution (RS). In this scheme, binary secret messages are first converted into decimal numbers
that then replace the random numbers used during the encryption process to embed the data. However,
this method constrains the bit length of embedded messages, as exceeding predefined limits disrupts both
encryption and decryption processes.

Despite advances in existing research, two critical challenges hinder the application of RDHED schemes
to FL: First, existing RDHED schemes primarily target image data carriers, whereas FL predominantly
processes model parameters. Second, existing schemes do not adequately address compatibility with
homomorphic processing [12–14]. In particular, when encrypted data containing embedded information
undergoes homomorphic computations, such as ciphertext aggregation, the embedded data may suffer
irreversible distortion, thereby leading to extraction failure.
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2.2 Verifiable Federated Learning
In FL, the trustworthiness of the servers cannot be absolutely guaranteed as malicious servers can

return incorrect aggregation results [18,24,25]. Models derived from such compromised servers inevitably
underperform in prediction or classification tasks, necessitating VFL schemes to mitigate these risks.

Existing VFL research follows mainly two technical paths: LHH-based schemes [18,24–26] and dual-
aggregation frameworks [27]. Xu et al. [18] proposed the first VFL framework, integrating a double-masking
protocol [23] for privacy protection with LHH and pseudorandom techniques to achieve verifiable aggre-
gation. However, this scheme suffers from two critical drawbacks: First, communication overheads scale
with the model dimension. Second, computationally intensive bilinear pairing operations. To optimize
communication efficiency, Guo et al. [24] proposed VeriFL, which decouples communication overhead for
verification from model dimensions via LHH combined with equivocal commitments. Recent advances
include VPFLI [25] and PriVeriFL [26], where VPFLI [25] designs a novel aggregation protocol to minimize
performance degradation caused by heterogeneous client data quality, while PriVeriFL [26] employs a
blockwise encryption strategy to alleviate computational bottlenecks of HE, reducing resource demands
without compromising security.

However, LHH-based VFL schemes remain plagued by high computational overhead, as the complexity
of hash value calculation increases with model dimensions [26]. To enable lightweight verification, Hahn
et al. proposed VERSA [27], a dual-aggregation verification framework that eliminates the need for trusted
setups and uses a lightweight pseudorandom generator (PRG) to enable efficient verification of the aggrega-
tion result. However, recent studies have identified vulnerabilities that compromise its verifiability [28,29].

In summary, neither LHH-based VFL nor dual-aggregate verification-based schemes achieve high
efficiency. As shown in Table 2 (detailed in Section 7.4.1), the LHH-based approach incurs significant
computational overhead during verification as the model dimension grows, requiring approximately
12,490 s to compute the LHH values for models with dimensions reaching 10,000,000. In contrast, dual-
aggregate verification-based schemes face substantial communication overhead: Users must submit both
local model updates and validation codes derived from these parameters, which doubles their commu-
nication expenditure. Furthermore, as the model dimensionality increases, the communication overhead
introduced by validation becomes impractical for real-world applications. Crucially, given the resource
constraints of end-user devices, the designed VFL framework should maintain lightweight communication
and computational overheads for verification to facilitate practical deployment.

3 Preliminaries
In this section, we provide the foundational concepts necessary to understand our VPAFL scheme.

3.1 Federated Learning
Deep learning has attracted significant attention for its remarkable achievements in various fields,

though high-performance deep neural networks (DNNs) typically rely on extensive datasets. However, the
data used to train DNNs often contain sensitive information. For example, location-based services [31]
could expose personal whereabouts, while goods purchase records can be exploited for targeted advertising.
More critically, the leakage of health information or facial data poses serious privacy risks. To address these
challenges, FL has emerged as a promising solution [7]. Since its inception, FL has been widely adopted
in various applications such as the Internet of Things (IoT), smart healthcare [32], and smart cities [33].
FL is a distributed machine learning paradigm that collaboratively trains a global model by coordinating
multiple participants without compromising data privacy. In this architecture, the server does not directly
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access user data; instead, it iteratively aggregates parameters to optimize the global model. Let U denote
the set of participating users, where ∣U∣ = n represents the total number of users, and each user ui ∈U
has a private dataset Di . The FL training process proceeds iteratively through the following stages per
communication round:

a) Global Model Distribution: The server broadcasts the current global model Mk to all users, where k
denotes the current communication round.

b) Local Model Training: Each user ui initializes their local model with M
k and trains on Di using the

stochastic gradient descent (SGD) algorithm [34].
c) Model Aggregation: The server aggregates the received local models via the Federated Averaging

(FedAvg) algorithm [7] to generate the updated global model Mk+1.
Formally, during the k-th communication round, each user ui updates its local model parameters using

the SGD algorithm [34]:

wk
i = wk−1

i − lr∇L(wk−1
i ; Di), (1)

where lr denotes the local learning rate, wk
i denotes the parameters of the local model for user ui during

the k-th communication round, and L(⋅) denotes the loss function. Subsequently, the server aggregates the
received local models using the FedAvg algorithm [7] as follows:

wk = ∑
ui∈U

∣Di ∣
∣∑ui∈UDi ∣

wk
i . (2)

3.2 Linear Homomorphic Hash
LHH [30] is a one-way and collision-resistant homomorphic hash function that can calculate the hash

of a composite data block based on the hash of a single data block. The LHH scheme is formally defined by
three algorithms LHH = (LHH.Gen, LHH.Hash, LHH.Eval):

a) LHH.Gen(κ, v): Given the security parameters κ and a d-dimensional vector v = {vi , . . . , vd}, this
algorithm outputs public parameters pp = {G, q, {g1 , . . . , gd}}, where G is a cyclic group of prime order q,
g is a generator of G, and g1 , . . . , gd are distinct elements in G.

b) LHH.Hash(pp, v): For a d-dimensional vector v, this algorithm computes its LHH value of v: hv ←
∏d

i=1 gvi
i ∈ G.

c) LHH.Eval(pp, h1 , . . . , hl , α1 , . . . , αl): Given l hash values h1 , . . . , hl and l coefficients α1 , . . . , αl ∈
Zq , this algorithm outputs the linear combination of the l hash values: h ←∏l

i=1 hαl
l .

4 Overview of the System and the Threat Model

4.1 System Model
As illustrated in Fig. 1, the system model of the VPAFL protocol comprises three entities, consistent with

previous works [18,24]: The trusted authority (TA), the server, and the users.

• TA: The TA initializes the system by generating cryptographic parameters (public/private keys) and
distributing the initial global model to all participants. It is considered trustworthy and remains offline
after initialization.

• Server: The server aggregates encrypted local models received from users, updates the global model,
and broadcasts the aggregated result to the user for verification.
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• Users: In each communication round (except for the first), users download the latest global model from
the server as their local mode. During the first communication round, the TA initializes the global model.
Each user trains the local model on their private dataset, encrypts the local model parameters with their
private key, and uploads the ciphertext to the server. Upon receiving the aggregated result, users verify
its correctness. Training continues only if verification succeeds; otherwise, training is aborted.

Figure 1: System model of VPAFL

4.2 Threat Model
Our threat model is defined as follows:

• Semi-honest users: Users follow the FL protocol faithfully, but may attempt to infer sensitive infor-
mation from the data of honest users. Additionally, a subset of users may collude with the server to
manipulate the aggregation results.

• Server: The server may attempt to infer user privacy or forge verifiable aggregation results. In particular,
the server can collude with up to t − 1 users, where t denotes the threshold parameter in Shamir’s Secret
Sharing (SS) protocol [35].

• Out-of-Scope attacks: In FL systems, not all participants are trustworthy, as malicious users can launch
poisoning attacks [36] aimed at manipulating local models to compromise the performance of the global
model. However, this paper does not consider poisoning attacks, as our primary objective focuses on
ensuring the correctness of the aggregation results while maintaining user privacy protection.

5 Proposed Scheme
In this section, we first propose a RDHED scheme designed for compatibility with homomorphic

processing. In particular, we design a JEEM by utilizing the additive homomorphic properties of the Paillier
cryptosystem [19]. Subsequently, we further construct the VPAFL protocol by integrating the proposed
RDHED scheme with the LHH [30] and digital signature algorithms.
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5.1 Joint Embedding-Extraction Mechanism
Extending the drop-tolerant secure aggregation algorithm (DTSA) proposed by Zhao et al. [20], we

propose a novel secure aggregation-data hiding (SADH) hybrid algorithm that is compatible with homo-
morphic processing. The core innovation of SADH lies in its JEEM, which enables users to collaboratively
embed secret messages in ciphertext and extract them after aggregation. For simplicity, we assume that no
user dropout occurs during training. The scheme operates as follows:

• SADH.Gen(κ, t,U): This algorithm initializes cryptographic parameters. The inputs include the secu-
rity parameter κ, the threshold t for the SS protocol [35] and the user setU with ∣U∣ = n. First, generate
the public key PP = {n, g , h, N} shared among all users, along with the private key {SK , SKi} assigned
to each user ui , and the public parameter N2 for the server. In particular, two large prime numbers p, q
are selected such that ∣p∣ = ∣q∣ = κ. Then, compute N = p × q and λ = l cm(p − 1, q − 1), where l cm(a, b)
denotes the least common multiple of a and b. Next, choose a random integer g ∈ Z∗N2 that satisfies
gcd(L(gλ mod N2), N) = 1, where L(x) = x − 1/N . Subsequently, compute e = gσ mod N2, where σ
is a large prime satisfying ∣σ ∣ ≤ κ. Finally, construct the polynomial f (x) as follows:

f (x) = a1 ⋅ x + a2 ⋅ x2 + . . . + at−1xt−1 mod p, (3)

where the private key is denoted as SK = {λ, σ} and SKi = sq⋅ f (i) mod N2, the coefficients a1 , . . . , at−1 ∈
Zp and s ∈ ZN are randomly chosen.

• SADH.Ence(SKi , wi , di): This encryption-embedding hybrid algorithm processes the plaintext wi and
messages di as input, encrypts wi using SKi and outputs the ciphertext [[wi]]:

[[wi]] = gwi ⋅ edi ⋅ SK
(n−1)!∏ j∈U , j≠i

j
j−i

i mod N2. (4)

The core mechanism lies in embedding secret messages through redundant ciphertext values without
changing the plaintext, as demonstrated in Section 6.1. The key parameters are defined as follows:
– The embedded message di = ri × dmi serves two purposes: (1) to carry a secret message and (2)

to allow collaborative generation of joint embedded messages. Where mi = {b0, . . . , bl} denotes a
binary sequence of length l , and dmi denotes its decimal value.

– The random number ri ∈ ZN is used to ensure the confidentiality of the message and ∣ri × dmi ∣ < κ/2.
– The user setU contains n users (∣U∣ = n).
SADH.Agg({[[wi]]}ui∈U): The server aggregates the received ciphertexts as follows:

[[w]] = ∏
ui∈U
[[wi]] mod N2.

= ∏
ui∈U

gwi ⋅ edi ⋅ SK
(n−1)!∏ j∈U , j≠i

j
j−i

i mod N2

=e∑ui∈U di ⋅
⎛
⎝∏ui∈U

gwi ⋅ SK
(n−1)!∏ j∈U , j≠i

j
j−i

i
⎞
⎠

mod N2, (5)

where ∑ui∈Uo di denotes the joint embedded message d, formed by fusing the user-embedded secret
messages within the ciphertext domain.
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SADH.Dece(SK , [[w]]): After receiving the aggregated ciphertext [[w]], the user decrypts it with the
private key SK and extracts the joint embedded message d through the following steps:

w = ∑
ui∈Uo

wi =
L([[w]]λ mod N2)

L(gλ mod N2) mod N mod σ

=
⎛
⎝ ∑ui∈Uo

wi + σ ⋅ ∑
ui∈Uo

di
⎞
⎠

mod σ

= ∑
ui∈Uo

wi . (6)

Define w′ = (∑ui∈Uo wi + σ ⋅ ∑ui∈Uo di) mod N . Because∑ui∈Uo wi and σ are known parameters, the
user can derive∑ui∈Uo di , which corresponds to the joint embedded message d.

5.2 Verifiable Privacy-Preserving Aggregation for Federated Learning
In the proposed protocol, users first utilize SADH to encrypt their local models and embed secret

messages, subsequently uploading both the hash and the signature to the server. Following this, the server
aggregates the received ciphertexts and returns the aggregation results along with the collected hashes and
signatures to the users. Finally, after receiving these, each user decrypts the aggregation result to obtain the
global model, extracts the joint embedded message, and performs verification to confirm the correctness of
the aggregation result. The specific details of VPAFL (Algorithm 1) is illustrated in protocol in particular,
the proposed protocol requires two rounds of interaction, with the specific processes for processes for each
round described below:

Algorithm 1: Details of our VPAFL
1: Round 0 (Generation of public parameters)
2: TA:
• Select a secure parameter κ and a threshold t(t < n) for the SS protocol [35]. Define the user set
U = {u1 , u2, . . . , un}.

• Generate public parameters PP and secret keys SK and SKi(i ∈ {1, 2, . . . , n}) by performing
SADH.Gen(κ, t,U). Distribute the public parameter N2 to server and {SK , SKi} to each user ui ∈U.

• Compute public parameters pp by performing LHH.Gen(κ, v), where v is a 1-dimensional vector.
• For each user ui ∈U, generate a digital signature key pair {sski , spki} ← DS.Gen(⋅), where DS

denotes a digital signature algorithm.
• Initialize the global model M.
• Send public keys {PP, pp}, global model M, {spki}i∈{1,2, . . . ,n} to all user and assign secret key sski

to user ui ∈U.
3: For each user ui inU:
• Train the local model Mk−1

i using private dataset, where k denotes the current communication
round, and send a signal of training completion to the server after training.

4: Server:
• Upon receiving signals from at least t users, add the user ui to the setU1 and compute∏ j∈U1 , j≠i

j
j−i for

each ui ∈U1.
• Send∏ j∈U1 , j≠i

j
j−i and the setU1 (∣U1∣ = c) to each user ui ∈U1 ⊆U.

5: Round 1 (Model encryption & message embedding, model aggregation)
(Continued)
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Algorithm 1 (continued)
6: For each user ui in parallel:
• Compute the ciphertext of wk−1

i and embed the secret message di:
[[wk−1

i ]] ← SADH.Ence(SKi , wk−1
i , di), where wk−1

i is the parameters of model Mk−1
i .

• Generate the hash value hi ← LHH.Hash(pp, di) and signature sighi ← DS.Sign(hi , sski)
for verification.

• Send {[[wk−1
i ]], hi , sighi} to the server.

7: Server:
• Execute the SADH.Agg({[[wk−1

i ]]ui∈U1}) to get the aggregation of encrypted models parameter
[[wk−1]].

• Send {[[wk−1]], {h j , sigh j}u j∈U1 , j≠i} to the user ui ∈U1.
8: Round 2 (Model decryption and verification)
9: For each user ui in parallel:
• Check whether the hash values and the signatures {h j , sigh j}u j∈U1 , j≠i are same to those send to

the server in Round 1, abort if it fails.
• Execute the SADH.Dece (SK , [[wk−1]]) to get the aggregation of models parameter wk−1 and

extract the joint embedded message d.
• Calculate h ← LHH.Hash(pp, d) and check:

h ?= LHH.Eval(pp, h1 , . . . , hc , 1, . . . , 1).
Update the global model Mk if it holds, abort otherwise.

In Round 0, TA initializes the system, distributes the public parameters PP, pp, the global modelM, and
{spki}i∈{1,2, . . . ,n}, assigns private keys sski to each user, and transmits the public parameter N2 to the servers.

In Round 1, each user ui ∈U1 encrypts their local model wk−1
i while embedding a secret message di ,

obtaining the ciphertext [[wk−1
i ]] ← SADH.Ence(SKi , wk−1

i , di), where k denotes the current communica-
tion round. To optimize efficiency, for models with multiple parameters, the user embeds di solely during
the encryption of the first parameter, and subsequent parameters replace the embedded message with a
random number ri ∈ ZN . As demonstrated in Section 6.3, embedding the message in even one parameter
suffices to verify the aggregation results. Subsequently, the user ui ∈U1 computes the LHH value hi of the
embedded message di and generates a digital signature sighi for hi . These values will later be used to verify
the aggregated result. Finally, the user ui ∈U1 sends {[[wk−1

i ]], hi , sighi} to the server. Upon receiving the
ciphertexts, the server aggregates them and returns {[[wk−1]], {h j , sigh j}u j∈U1 , j≠i} to each user ui ∈U1.

In Round 2, each user ui ∈U1 first checks the validity of the received digital signature
{sigh j}u j∈U1 , j≠i to ensure the integrity of the associated hash values {h j}u j∈U1 , j≠i . If valid, the
user decrypts the aggregation result to obtain the global model and the joint embedded message
(wk−1 , d) ← SADH.Dece(SK , [[wk−1]]). Next, the user verifies the aggregation result by checking whether
LHH.Hash(pp, d) ?= LHH.Eval(pp, h1 , . . . , hc , 1, . . . , 1), where c = ∣U1∣ denotes the total number of par-
ticipating users. If equality holds, the verification succeeds and the user accepts the aggregation result
as valid.
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6 Theoretical and Comparative Analysis

6.1 Correctness
We define correctness as the ability to ensure that the user gets the correct aggregation result to update

the local model when all entities involved in the FL honestly perform the predetermined operations in
the protocol.
Theorem 1. The user can obtain the correct aggregation result if at least t users participate in FL and the server
performs the aggregation operation honestly, where t is the threshold of the SS protocol [35].
Proof of Theorem 1: Assume k = 1. From Eq. (4), the user ui applies the encryption-embedding hybrid
algorithm SADH.Ence(SKi , wi , di) to encrypt the local model wi and embed the message di as follows:

[[wi]] = gw i ⋅ edi ⋅ SK
(n−1)!∏ j∈U1 , j≠i

j
j−i

i mod N2. (7)

Then, as shown in Protocol 1, the ciphertext received by server aggregation in Round 1 is as follows:

[[w]] = ∏
ui∈U1

[[wi]] mod N2 (8)

= ∏
ui∈U1

gw i ⋅ edi ⋅ SK(n−1)!γi
i mod N2

=g∑ui∈U1 w i ⋅ e∑ui∈U1 di ⋅ sq(n−1)!⋅∑ui∈U1 f (i)γi mod N2,

where γi = ∏ j∈U1 , j≠i
j

j−i , and SKi = sq⋅ f (i) mod N2. Based on SS protocol [35] and Lagrange interpolation
formula, we can define a polynomial as follows:

F(x) = ∑
ui∈U1

f (i) ∏
j∈∈U1 , j≠i

j − x
j − i

mod p (9)

From Eq. (3), F(0) = 0. When ∣U1∣ ≥ t, there is∑ui∈U1 f (i)γi = a ⋅ p, where a ∈ Zp, thus Eq. (8) can be
modified as follows:

[[w]] =g∑ui∈U1 w i ⋅ e∑ui∈U1 di ⋅ sa(n−1)!⋅N mod N2 (10)

=g∑ui∈U1 w i ⋅ gσ ⋅∑ui∈U1 di ⋅ sa(n−1)!⋅N mod N2,

where e = gσ mod N2. Finally. users decrypt [[w]] as:

w = ∑
ui∈U1

wi =
L([[w]]λ mod N2)

L(gλ mod N2) mod N mod σ (11)

=
⎛
⎝ ∑ui∈U1

wi + σ ⋅ ∑
ui∈U1

di
⎞
⎠

mod σ

= ∑
ui∈U1

wi .

This concludes the proof. ◻
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6.2 Privacy-Preserving
This section begins by analyzing the security of SADH and subsequently evaluates the security of

VPAFL under two adversarial scenarios: (1) a malicious server operating independently and (2) a malicious
server colluding with up to t − 1 users.
Theorem 2. If DTSA is indistinguishability under chosen-plaintext attack (IND-CPA) security, then the SADH
is IND-CPA security.
Proof of Theorem 2: As mentioned earlier, according to Eq. (4), the user replaces the random number used
in the encryption process with the product of a decimal number and the random number ri ∈ ZN . This sub-
stitution does not compromise security, as the decimal multiplier does not alter the underlying randomness
of ri . Therefore, the modifications introduced by SADH to DTSA [20] do not weaken the security of the
scheme. Furthermore, DTSA [20] is IND-CPA security, then the security of SADH is guaranteed.
Theorem 3. (Security Against Malicious Server) In the absence of collusion between the malicious server and
semi-honest users, the privacy of all honest users is preserved.
Proof of Theorem 3: To formally prove privacy guarantees, we employ a standard hybrid argument [37],
proved as follows: Under the (SADH, LHH)-hybrid model, assuming that the security parameter of VPAFL
is κ, the threshold of SS protocol is t, and the total number of users is n. For simplicity, we define Server as
S , V = S ∩U1, whereU1 = {u1 , . . . , uc}, c ≤ n andU1 ∈U. The joint view of all entities inV can be denoted
as a random variable REALU ,t ,κ

V . There is also a probabilistic polynomial-time (PPT) simulator SIMU ,t ,κ
V . In

order to prove the security of VPAFL, it is necessary to prove that the outputs of SIMU ,t ,κ
V and REALU ,t ,κ

V
are indistinguishable, which is formally expressed as follows:

REALU ,t ,κ
V ≡ SIMU ,t ,κ

V . (12)

hyb0 First, we create a series of random variables, which are indistinguishable from the joint real view
of V in REALU ,t ,κ

V in the actual implementation of the VPAFL.
hyb1 In this hybrid, we change the behavior of the user ui through the simulator, and replace the real

local model wi with the random vector vi . Then, the user ui is invoked to encrypt the random vector vi and
embed the message di . Note that in Section 5, di is defined as the product of two components: (1) a decimal
number converted from a binary sequence, and (2) a random number ri ∈ ZN . However, in the simulation
phase, the simulator replaces di with an random value ra ∈ ZN . The encryption process is adjusted as follows:

[[vi]] =← SADH.Ence(SKi , vi , ra), (13)

where SKi denotes the secret key of user ui . The simulator then invokes the user ui to calculate the hash value
of ra : hi ← LHH.Hash(pp, ra), and generates the digital signature of hi : sighi ← DS.Sign(hi , sski). Finally,
the user ui sends {[[vi]], hi , sighi} to the server. Reviewing the proof of Theorem 2, SADH guarantees that
[[vi]] is computationally indistinguishable from [[wi]]. In particular, it has been proved that the output of
LHH is random and indistinguishable under different inputs. Thus, VPAFL guarantees the same distribution
between hyb1 and hyb0.

hyb2 In this hybrid, the server aggregates the received ciphertext and returns the aggregation result, the
received LHH value and the digital signature to each user:

[[v]] ← SADH.Agg({[[vi]]ui∈U1}). (14)

Similarly, the security of SADH algorithm ensures the same distribution between hyb2 and hyb1.
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As mentioned above, based on the security of the SADH and LHH algorithms, we prove that the view
in the PPT simulator SIMU ,t ,κ

V is indistinguishable from the real view of V in the REALU ,t ,κ
V , i.e., that the

REALU ,t ,κ
V ≡ SIMU ,t ,κ

V . ◻
Theorem 4. (Security against Colluding Malicious Server and Users) Even if a malicious server colludes with
up to t − 1 users, the privacy of all honest users is preserved.
Proof of Theorem 4: According to Eq. (7), the user ui encrypted local model wi as follows:

[[wi]] =gw i ⋅ edi ⋅ SK
(n−1)!∏ j∈U1 , j≠i

j
j−i

i mod N2 (15)

=gw i ⋅ edi ⋅ sq⋅ f (i)⋅γi(n−1)! ,

where U1 = {u1 , . . . , uc}, where t(t ≤ c ≤ n) denote the threshold of the SS protocol [35], and γi =
∏ j∈U1 , j≠i

j
j−i . According to the SS protocol [35], if the malicious server colludes with ≥ t users, Eq. (15) can

be modified as follows:

[[wi]] = gw i ⋅ edi ⋅ sa⋅N ⋅(n−1)! , (16)

where a ∈ Zp. At this point, the encrypted local model [[wi]] can be decrypted using the private key SK,
otherwise it cannot be decrypted. ◻

According to Theorem 3 and Theorem 4, we further demonstrate the resistance of VPAFL to inference
attacks under two threat scenarios: (1) attacks initiated solely by the server and (2) collusion between the
server and malicious users.

Regarding the global model, since all users transmit encrypted model parameters, the server exclusively
operates on ciphertexts during aggregation. This prevents the server from directly analyzing sensitive
information. Even if the server colludes with a user to obtain the private key SK, the inherent lack of auxiliary
training data ensures that meaningful inference remains infeasible.

For local updates, in the VPAFL protocol, users employ SADH to encrypt local model updates. Under
the first threat model (only malicious server), Theorem 3 guarantees that the server cannot decrypt the
encrypted parameters of any user without access to the corresponding private key SKi . Under the second
threat model (server-user collusion), Theorem 4 ensures confidentiality even if up to t − 1 users conspire
with the server: the colluding parties cannot decrypt the local updates of honest users. Since adversaries
cannot analyze relevant sensitive information from ciphertext, VPAFL satisfies security requirements against
inference attacks in both scenarios.

6.3 Verifiability
Theorem 5. We define verifiability as the ability of each client to independently verify the correctness of the
aggregation results under the threat model defined in Section 4.2.
Proof of Theorem 5: According to the operation of the malicious server on the aggregation results, we
consider two scenarios to prove the effectiveness of the verification.

Scenario 1 (Partial Model Aggregation): Let the total number of users be n, and let t denote the threshold
of the SS protocol [35]. Assume the server aggregates the models received from c (t ≤ c < n) users. According
to Eqs. (7) and (8), the results obtained by the server aggregation as follows:

[[w]] = g∑
c
i=1 w i ⋅ e∑

c
i=1 di ⋅ sq(n−1)!⋅∑c

i=1 f (i)γi mod N2. (17)
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According to Eq. (10), the user decrypts the ciphertext using private key SK to to obtain the global
model w and extracts the joint embedded message∑c

i=1 di . Subsequently, the user will check if the following
equation is true.

LHH.Hash(pp,
c
∑
i=1

di) ?= LHH.Eval(pp, h1 , . . . , hn , 1, . . . , 1). (18)

Based on the definitions in Section 3.2, we have:

LHH.Eval(pp, h1 , . . . , hn , 1, . . . , 1) =
n
∏
i=1

hi = g∑
n
i=1 di

1 ≠ g∑
c
i=1 di

1 . (19)

Obviously Eq. (18) does not hold and therefore the aggregation result fails to pass validation.
Scenario 2 (Collusion Attack): The server colludes with c (c < t) users to forge aggregated results that

pass verification, where t denote the threshold of the SS protocol [35]. Assume the total number of users is
n (c < t < n). To forge an aggregation result that passes the validation, the server must craft a result of the
following form:

[[w]] = gΔw ⋅ e∑
n
i=1 di ⋅ sq(n−1)!⋅∑n

i=1 f (i)γi . (20)

Let Δw denote the modified aggregation results. To forge a verified aggregation result, the server must
ensure the joint embedded message∑n

i=1 di can be extracted from [[w]]. However, since the server colludes
with only c(c < t) users, it cannot access the secret messages {d j} j∉Uc of non-colluding users and must
instead guess their values. Suppose the server attempts this forgery by manipulating the aggregation result
as follows:

[[w]] = gΔw ⋅ e∑
c
i=1 di+∑

n
i=c+1 Δdi ⋅ sq(n−1)!⋅∑n

i=1 f (i)γi , (21)

where∑n
i=c+1 Δdi denotes the guess of the server of the secret messages embedded by non-colluding users. As

defined in Section 5, the user extracts the joint embedded message∑c
i=1 di +∑n

i=c+1 Δdi from the ciphertext
[[w]]. To verify the correctness of the aggregation results, the user checks if the following equation is true:

LHH.Hash(pp,
c
∑
i=1

di +
n
∑

i=c+1
Δdi) ?= LHH.Eval(pp, h1 , . . . , hn , 1, . . . , 1), (22)

where LHH.Eval(pp, h1 , . . . , hn , 1, . . . , 1) = ∏n
i=1 hi = g∑

n
i=1 di

1 ≠ g∑
c
i=1 di+∑

n
i=c+1 Δdi

1 , therefore the forged aggre-
gation result cannot pass the verification. ◻

6.4 Comparison
We compare VPAFL with existing LHH-based VFL schemes, including VerifyNet [18], VeriFL [24],

VPFLI [25], and PriVeriFL [26], as shown in Table 1. VerifyNet [18] and VeriFL [24] are based on the double-
masking protocol [23], which effectively protects the local gradients of users but fails to protect the privacy
of aggregation results. Moreover, these schemes require multiple rounds of interaction between users and
the server, increasing communication overhead. In particular, they do not address the risk that corrupted
clients colluding with a malicious server are forged to bypass verification. To mitigate collusion attacks during
verification, VPFLI [25], PriVeriFL [26], and our proposed VPAFL employ LHH combined with digital
signatures, ensuring collusion-resistant verification.
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Table 1: Comparison of VFL protocols

Protocol
Local privacy

(WITH
collusion)

Aggregation
privacy (without

collusion)

Collusion-
resistant

verification

Verification
complexity

Rounds of
interac-

tions
VerifyNet [18] ✓ × × O(2d) 4

VeriFL [24] ✓ × × O(d + d/tr) 4
VPFLI [25] ✓ ✓ ✓ O(2d) 3

PriVeriFL [26] ✓ ✓ ✓ O(2d) 2
VPAFL (our) ✓ ✓ ✓ O(1) 2

Regarding aggregation privacy, VPFLI [25] introduces a blinding factor to mask the aggregation results,
while VPAFL and PriVeriFL [26] delegate decryption authority to users. This approach prevents the server
from directly decrypting the aggregation results, thus enhancing privacy protection. However, it is important
to note that neither VPFLI [25], PriVeriFL [26], nor VPAFL can fully preserve aggregation results in privacy
under collusion attacks. Since FL inherently involves collaborative training of a unified global model, the
server only needs to collude with a single user to obtain the global model.

In terms of verification complexity, we assume that the computational complexity of each call to LHH is
O(d), where d represents the model dimension. In VerifyNet [18] and VeriFL [24], users perform LHH twice
per verification: once to generate the hash value and once to verify the result. Thus, the verification complexity
is O(2d) per communication round. To optimize this, VeriFL [24] employs an amortized verification
mechanism. Specifically, users sample a set of random coefficients to compute the linear combination of
hash aggregations across multiple communication rounds (for example, after tr rounds). They then verified
whether the combined hash matches the hash of the linear combination (using the same coefficients) applied
to the aggregation results of those rounds. Consequently, VeriFL [24] reduces the verification complexity
to O(d + d/tr). In contrast, VPAFL further optimizes the process by integrating the proposed RDHED
with LHH (see Section 7.4.1 for details), thus reducing the verification complexity to O(1). Moreover,
VPAFL requires only two interaction rounds, establishing it as a more efficient protocol compared to
existing solutions.

7 Experimental Results
In this section, similar to previous studies [18,25], we evaluate the performance of VPAFL in terms of

fidelity, computational overhead, and communication overhead.

7.1 Experimental Settings
This subsection describes the experimental settings for VPAFL.
Model Architectures and Datasets: We employ two deep neural network architectures: AlexNet [38] for

the CIFAR-100 [39] classification task and FedCNN for the MNIST [40] and CIFAR-10 [39] classification task.
Federated Learning Settings: Based on the open-source personalized FL framework (https://github.

com/TsingZ0/PFLlib, accessed on 7 May 2025) [41], we simulate a horizontal FL environment where users
employ the SGD algorithm [34] for local model updates during each communication round, with the server
using the FedAvg algorithm [7] for model aggregation.

All experiments were conducted on an Ubuntu 22.04 workstation equipped with an Intel Xeon Platinum
8352V 2.10 GHz CPU, 60 GB RAM, and a single NVIDIA 4090 GPU. Our implementation uses Python 3.9

https://github.com/TsingZ0/PFLlib
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with stable libraries. The LHH is implemented using NIST P-256 curves. FedCNN is a convolutional neural
network with the following architecture: Conv(x , 32, 5×5) → ReLU → MaxPool(2, 2) → Conv(32, 64, 5×
5) → ReLU → MaxPool(2, 2) → FC(1024, 512) → ReLU → FC(512, 10), where x denotes the dimension of
the input, Conv denotes the convolutional layer, ReLU denotes the type of activation function, MaxPool
denotes the pooling layer, and FC denotes the fully connected layer.

7.2 Evaluation Metrics
Fidelity: We measure fidelity using the accuracy of the model on the classification task, denoted by Acc.
Computational and Communication Overhead: Similarly to previous studies [18,24], we measure

computational and communication overhead to evaluate the efficiency of the VPAFL.
Baseline: Regarding the selection of the baseline for overhead comparison, we adopt VPFLI [25] because

it also uses the DTSA algorithm [20] as the privacy-preserving strategy. In particular, VPFLI [25] introduces
a weight aggregation protocol to mitigate the degradation of model performance caused by heterogeneous
user data quality. To ensure comparability, we exclusively retain the core modules relevant to VFL during
baseline reproduction.

7.3 Fidelity
To validate that the proposed scheme maintains aggregation accuracy without compromising privacy

guarantees, we evaluate its performance on three datasets: MNIST [40], CIFAR-10, and CIFAR-100 [39],
adopting identical training configurations (e.g., learning rate, batch size) for direct comparison with the
FedAvg algorithm [7]. As shown in Fig. 2, the proposed VPAFL protocol achieves an aggregation effective-
ness comparable to that of FedAvg [7], with a stable convergence behavior observed across all datasets. This
consistency originates from the mathematically lossless encryption and decryption of the plaintext model
parameters, thereby preserving data integrity throughout the FL process.

Figure 2: The task accuracy (Acc) on MNIST, CIFAR-10 and CIFAR-100

7.4 Computational and Communication Overhead
To systematically analyze system efficiency, we define n as the number of participating users, κ = 512 as

the security parameter and d as the model dimension. To isolate variable impacts, we evaluate computational
and communication overhead under two scenarios: (1) Different number of users (n from 100 to 1000) with
fixed model dimension d = 5000. (2) Different model dimension (d from 1000 to 10,000) with fixed number
of users n = 500.
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7.4.1 Computational Overhead
The computational overhead of the user in VPAFL is primarily determined from modular arithmetic

operations in ZN and ZN2 . Let Tm1 and Tm2 denote the time costs of single modular multiplications in ZN
and ZN2 , respectively, and Te for modular exponentiation in ZN2 . Based on Eqs. (4) and (6), the encryption
overhead per user is theoretically d ⋅ (3Te + 2Tm2), while decryption requires d ⋅ (Tm1 + Te). Thus, the total
computational overhead per user becomes d ⋅ (Tm1 + 2Tm2 + 4Te).

Fig. 3 illustrates the computational overhead of a single user per communication round. The computa-
tional overhead exhibits a positive correlation with both the number of participating users n and the model
dimension d. This growth comes from increasing computational demands in both the model encryption and
the decryption phases. Mathematically, as the user count n grows, the exponent of the SK term in Eq. (4)
increases, resulting in more computationally intensive operations. The higher model dimension d not only
expands the set of encryption parameters, but also prolongs the decryption time. In particular, the VPAFL
protocol shows superior operational efficiency compared to VPFLI [25], achieving an average reduction in
computational overhead of 10 s.

Figure 3: Computational overheads of the users [25]

To further evaluate the efficiency of the verification process, Fig. 4 quantifies the computational
overhead for a single user to verify aggregated results. The experimental results show that verification
overhead increases with the number of users n, due to the increasing computational demands required
to validate a growing number of signatures. Specifically, the verification overhead reaches a maximum of
152.73 ms at n = 1000. In contrast, variations in model dimension d exhibit negligible influence on verification
overhead, with the results stabilizing at approximately 80 ms in all tested configurations. In particular, VPAFL
achieves substantially lower verification overhead than VPFLI [25], reducing the average computational costs
by approximately 8 s under identical conditions.

In addition, we further investigate the performance of VPAFL in large-scale user scenarios. To evaluate
scalability, we measure the computational overhead per user during validation under a fixed model dimen-
sion d = 1000 while varying the number of participating users from 1000 to 5000 in increments of 1000 and
compared it with VPFLI [25] and PriVeriFL [26].
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Figure 4: Computational overheads of the users for verification [24,25]

As illustrated in Fig. 5, the results demonstrate that the computational overhead of the users for
verification in all three schemes increases with the number of participating users. This growth pattern
originates mainly from the cost of LHH.Eval, whose computational complexity scales with the number of
participating users. While the verification process requires checking more digital signatures as user numbers
expand, this component contributes minimal overhead, approximately 0.3 ms even at 5000 users. Note that
although VPFLI [25] and PriVeriFL [26] employ distinct cryptographic algorithms, they share the same
verification mechanism. Therefore, the computational overheads of the users for verification remain identical
in both schemes.

Figure 5: Computational overheads of the users for verification with large user scenarios [25,26]

In particular, VPAFL maintains significantly lower overhead than both VPFLI [25] and PriVeriFL [26].
This advantage arises from differences in LHH implementation, and we elucidate the precise reasons for this
disparity in the following analysis.
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The performance superiority of VPAFL originates from a fundamental distinction in hash com-
putation mechanisms between the two schemes. Although VPFLI [25] employs LHH to decouple
communication overhead from model dimension d, its hash calculation operates directly on the model
parameters themselves, resulting in computational demands proportional to d. In contrast, VPAFL
integrates RDHED with LHH, restricting the hash computation to the lightweight secret messages embed-
ded by users during each communication round. This strategic change in computational input—from
high-dimensional model parameters to compact secret messages—decouples hash-related costs from d,
addressing a critical efficiency bottleneck in existing LHH-based VFL schemes [18,24–26]. The ben-
efits of this innovation are significantly amplified in high-dimensional model scenarios, as evidenced
by the quantitative comparisons in Table 2. For model sizes of 10,000, 100,000, 1,000,000 and param-
eters, the hash computation time of VPAFL remains consistently below 4 ms, while the LHH-based
VFL [18,24–26] requires up to 12,490 s when d = 10,000,000, a disparity that strikingly validates the efficiency
gains enabled by RDHED integration.

Table 2: The time cost of calculating the hash value

Dimensions of the model Scheme

Proposed scheme Scheme [18,24–26]
10,000 2.3 ms 9568.51 ms

100,000 2.89 ms 91,861.36 ms
1,000,000 2.9 ms 895,392.4 ms

10,000,000 3.85 ms 12,490,847.49 ms

In summary, the computational overhead of the users for verification in VPAFL is lightweight, making it
more conducive to practical deployment, particularly in scenarios involving large-scale models or numerous
participating users.

In VPAFL, the server is responsible for aggregating the encrypted local models received and its
computational overhead is d ⋅ (n − 1) ⋅ Tm2 . Fig. 6 clearly shows that the calculation overhead of the server
increases when the number n of users and the model dimension d increase. Among them, the computational
overhead of the server in VPAFL is slightly lower than that of the server in VPFLI, because the server in
VPAFL only involves aggregating local models and does not decrypt the ciphertext.

Figure 6: Computational overheads of the server [25]
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7.4.2 Communication Overhead
In the experiment, we measure the communication overhead by the size of the uploaded information.

As shown in Fig. 7, the communication overhead of the users is not related to the number of users, but
related to the model dimension d. With increasing model dimension d, the size of the ciphertext generated
by users becomes larger, leading to greater communication overhead. For the server, as shown in Fig. 8, its
communication overhead is positively correlated with the number of users n and the model dimension d. The
larger the number of users n, the more messages need to be transmitted, and the larger the model dimension
d, the larger the ciphertext size generated by server aggregation.

Figure 7: Communication overheads of the users [25]

Figure 8: Communication overheads of the server [25]

Finally, we evaluate the communication overhead associated with the verification. Since our imple-
mentation reproduces only the verifiable module of VPFLI [25] while maintaining consistency with the
proposed scheme in other components, both schemes exhibit identical communication overhead under
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identical experimental configurations. For the user, LHH and digital signature algorithms transform variable
length messages into fixed size outputs, thus decoupling verification-related communication overhead from
both the number of users n and the model dimension d. Conversely, the verification-related communication
overhead of the server is determined by the cost of broadcasting the received hash values and signatures to
all users, causing the communication costs of the server to scale linearly with the number of users n.

Fig. 9 shows the communication overhead for individual users and servers under fixed model dimen-
sions d = 5000 and varying numbers of participating users n. The results show that the communication
overhead for verification per user remains below 0.2 KB regardless of n, while the server overhead increases
linearly with n due to the increasing volume of hash values and signatures broadcast. Importantly, since
user devices typically face stringent computational and storage resource constraints compared to servers, the
low verification-related communication overhead for users (0.2 KB) in VPAFL enhances its practicality for
real-world deployment.

Figure 9: Communication overheads for verification when d = 5000 with different number of users [25]

8 Conclusion
In this paper, we propose a reversible data hiding in encrypted domains (RDHED) scheme that

designs a joint message embedding and extraction mechanism. Building on this RDHED scheme, we
further design VPAFL, a verifiable privacy-preserving aggregation protocol for single-server architectures,
by combining linear homomorphic hash and digital signature algorithms. Unlike prior verifiable federated
learning schemes based on linear homomorphic hash, VPAFL computes hash values using secret messages
embedded by users during each communication round, thereby decoupling the computational overhead of
hash generation from the model dimension. Theoretical analysis demonstrates the security and feasibility of
VPAFL, while the experiment results confirm that the computational and communication overheads of the
users for verification are lightweight.
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