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ABSTRACT: While automatic image captioning systems have made notable progress in the past few years, generating
captions that fully convey sentiment remains a considerable challenge. Although existing models achieve strong
performance in visual recognition and factual description, they often fail to account for the emotional context that
is naturally present in human-generated captions. To address this gap, we propose the Sentiment-Driven Caption
Generator (SDCG), which combines transformer-based visual and textual processing with multi-level fusion. RoBERTa
is used for extracting sentiment from textual input, while visual features are handled by the Vision Transformer
(ViT). These features are fused using several fusion approaches, including Concatenation, Attention, Visual-Sentiment
Co-Attention (VSCA), and Cross-Attention. Our experiments demonstrate that SDCG significantly outperforms
baseline models such as the Generalized Image Transformer (GIT), which achieves 82.01%, and Bootstrapping
Language-Image Pre-training (BLIP), which achieves 83.07%, in sentiment accuracy. While SDCG achieves 94.52%
sentiment accuracy and improves scores in BLEU and ROUGE-L, the model demonstrates clear advantages. More
importantly, the captions are more natural, as they incorporate emotional cues and contextual awareness, making them
resemble those written by a human.
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1 Introduction
Image captioning stands out as a significant and fast-evolving research focus in computer vision [1],

enabling the automatic generation of textual descriptions from images [2]. Its applications include
aiding visually impaired individuals, improving content-based search engines, and organizing media
databases [3,4]. As the volume of content in the digital environment increases, understanding not just
the topic but also the emotions linked to it becomes more important. Despite breakthroughs in image
captioning methods focusing on object recognition and scene depiction [5,6], often fail to capture sentiment,
limiting interaction with visual content [7–9]. This limitation is especially significant in areas like social
media, where personalized content drives user engagement, and mental health evaluation, where emotional
context plays a key role in enhancing diagnostic tools [10–12]. The challenge of integrating sentiment into
captions has been largely overlooked [13–16]. Current methods process both natural language and visual
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data to generate captions expressing emotional content [17,18]. These models use neural network architec-
tures such as CNNs for visual feature extraction [19,20] and attention mechanisms for generating textual
descriptions [21]. Pretrained models like Inception, Xception, DenseNet, and EfficientNet help in building
descriptive emotional captions [22–26]. For image captions to accurately convey sentiment, more advanced
fusion techniques are needed to effectively integrate visual and sentiment embedding [27,28]. However,
such techniques often struggle with imbalances in sentiment classes (e.g., positive, neutral, and negative),
leading to suboptimal performance [29]. Furthermore, while multimodal fusion strategies using attention
mechanisms have shown promise in improving sentiment alignment, fine-grained sentiment analysis still
remains a challenge [30–34]. These challenges are addressed through in-depth experiments as part of our
research, using the Emo-At-Cap dataset [35]. We obtain textual sentiment embeddings with the RoBERTa
model [36] and extract visual features using ViT [37]. A custom transformer model is designed using these
embeddings, employing fusion methods such as attention fusion, concatenation, cross-attention, VSCA, and
our proposed model, SDCG, to seamlessly combine sentiment and visual embeddings. This research makes
three key contributions: First, we introduce fusion strategies based on a custom transformer architecture
that outperform traditional methods by more effectively integrating sentiment cues with visual information
for image captioning. Second, we perform an extensive comparison of the proposed SDCG framework with
two benchmark models, GIT [38] and BLIP [39], evaluating both the quality of generated captions and their
impact on sentiment accuracy. Third, we combine Vision Transformer (ViT)-derived visual representations
with RoBERTa textual embeddings, resulting in improved sentiment-aware caption accuracy. The remainder
of the paper is structured as follows: Section 2 introduces prior research, Section 3 elaborates on our
methodology, Section 4 describes the experimental setup and how evaluation was performed, Section 5
provides results with corresponding analysis and a discussion of limitations, and Section 6 offers concluding
remarks and prospects for future study.

2 Related Work

2.1 Early Techniques in Image Captioning
Image captioning has progressed considerably over time, moving from simple neural network

techniques to more complex models that incorporate sentiment analysis. One of the early models combined
CNNs and RNNs to create captions and used an LSTM-based decoder setup to improve on the basic
encoder–decoder design [40]. Similarly, reference [41] used convolutional neural networks to extract visual
information from images, while recurrent networks with LSTM layers were responsible for forming the
captions. These models helped show that when larger models are trained from start to finish, they tend to
produce captions that are not only accurate but also better at reflecting the overall context of the image.
They showed promising results, especially when tested on the COCO dataset, proving their effectiveness in
generating coherent descriptions [42]. As deep learning technology advanced, more refined models built
upon this encoder-decoder architecture began to emerge [43,44].

2.2 The Role of Sentiment in Image Descriptions
It became evident that simple image descriptions were insufficient, as they overlooked the emotional and

personal nuances of language. To address this, reference [45] suggested concentrating on the relationships
and positioning of objects in images. This approach improved the captions by considering the size and spatial
connections of objects. Focusing on the need to grasp object interactions for richer captions, significant
progress was made especially in evaluation metrics such as CIDEr-D and SPICE. A prime example is
the Senti-Transformer model [46], whose multimodal transformer encoder links each description to the
mood the image conveys, giving captions greater emotional weight. The model was trained in two steps.
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Initially, it used cross-entropy loss to learn the basics, and then it was fine-tuned with full supervision
to improve its overall performance. This setup helped the system become better at picking up on the
emotional tone in images, leading to stronger results in both BLEU and CIDEr scores. It also performed
reliably on benchmarks like MSR-VTT and COCO. Similarly, reference [47] introduced the In Senti-
Cap architecture, which integrates CNN and LSTM modules to detect dominant sentiments in images.
This approach, especially useful for visually impaired users and social media applications, coordinates
sentiment regularization with traditional supervised learning, improving the alignment of captions with
images conveying strong emotions.

2.3 Attention Mechanisms and Multimodal Fusion
Recent advances in sentiment-aware image captioning now use attention modules to more closely

synchronize visual cues with their textual descriptions. Reference [48] proposed the ICAM model, which
addresses challenges in multimodal sentiment analysis by using a Joint Attention mechanism for image
captioning. To resolve issues like poor image-text alignment and adaptive attention, the model applies a
Sentence-Image Cross Attention technique, allowing for dynamic adjustment of focus between the image and
text. This technique integrates CATR and CBAM to improve feature refinement before caption generation.
The combination of attention mechanisms and data has had a profound effect on both the linguistic and visual
components of image captioning. In a similar vein, reference [49] applied Cross-on-Cross Attention (CoCA)
and the Global Cross Encoder (GCE) to improve the model’s focus on both visual and text features, especially
on the MS-COCO dataset. They used layered attention to better align images with their descriptions.
Additionally, they assessed a transformer architecture based on deep fusion (DFT) to evaluate how effectively
it blends visual cues with semantic context during both encoding and decoding.

2.4 Task Adaptive Attention and Fine-Grained Sentiment Analysis
The Task Adaptive Attention (TAA) module combines non-visual and visual input through the

application of task-specific vectors developed in transformer-based models. Reference [50] emphasized
the importance of attention tuning in sentiment classification and caption accuracy, leading to significant
improvements in BLEU, CIDEr, and ROUGE scores. Within few-shot learning, reference [51] intro-
duced MATANet (Multi-scale Adaptive Task Attention Network) to overcome the shortcomings of earlier
techniques. MATANet first produces feature maps at several spatial resolutions, then applies an adaptive
task-attention module that zeroes in on the most informative local cues for a given task. This combination
has proven highly effective when only a handful of training examples are available.

2.5 Fusion Methods in Multimodal Sentiment Analysis
Reference [52] introduced SENTI-ATTEND, an innovative framework that applies a dual attention

mechanism to merge sentiment information at both the high-level and word levels. This model enhances
caption generation by focusing on the layers of the image that carry the strongest emotional content, ensuring
that the resulting captions are both emotionally accurate and factually correct. In a similar approach,
reference [53] offered two ways to weave emotion into a captioning network. The first method, Direct
Injection, adds a sentiment signal at every step of the RNN, while the sentiment flow method disperses
sentiment across particular units of the LSTM, allowing for greater control over the affective tone and better
coordination of sentiment in captions. Recent studies on sentiment-based image captioning have expanded
to include complex emotions, such as sarcasm, by utilizing multimodal data.
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2.6 Emerging Applications: Sarcasm and Complex Emotions
Reference [54] uses OpenAI’s CLIP model for recognizing sentiment in images by continuously

processing both visual and textual information. Two customized models, Emotion Clip and CIFAR100
Clip, demonstrated the adaptability of CLIP in both object classification and emotional analysis. Also,
reference [55] proposed a different pipeline for recognizing sarcasm. Their system couples a residual CNN
that adapts its spatial attention to pull out visual cues with a cross-lingual language model that interprets the
accompanying text, while a Transformer generates descriptive captions to round out the context. By merging
insights from all three streams, the model can more reliably pick up sarcastic intent in posts that mix images
and words. Emerging image captioning models are focusing on enhancing contextual understanding and
combining various modalities to improve the accuracy of the generated captions.

2.7 Advances in Hierarchical Attention Networks and Multimodal Fusion
With the goal of improving caption accuracy, reference [56] proposed HAN, a hierarchical attention-

based model that extracts features from object detection systems, OCR-derived text, and patch-level visual
data. The model adaptively adjusts feature importance through the pMRM, while a context gate ensures
coherent interaction among these inputs. It also includes a histogram derived from the Multivariate Residual
Module (MRM), which helps the model better understand the relationships between different elements in
context. This type of design supports the main goals of SDCG by bringing together various types of data
in a way that allows for accurate sentiment recognition without losing contextual meaning. To address the
challenge of generating captions for images that contain embedded text, reference [57] introduced a model
tested on the TextCaps dataset. By applying CLIP, the model captures robust features from both the image
and OCR outputs, which are passed through multiple layers of attention. A decoder was implemented to
select between fixed vocabulary tokens and detected text, demonstrating the model’s strength in producing
captions that account for the written content within images.

2.8 Challenges in Sentiment Prediction and Image Captioning
Accurate sentiment prediction and emotionally expressive captions depend to a large extent on effective

use of visual attention [58]. Transformer-based models [59,60] use attention mechanisms to highlight emo-
tionally relevant features in images, which can improve the quality of the caption, especially in emotionally
nuanced scenarios. Despite this, matching the emotional tone of a caption with the degree of visual detail
an application requires is not always straightforward. When captions lack this balance, the system’s ability to
recognize emotion can suffer, often because many models either overlook affective signals or fail to express
them in a meaningful way [61,62].

3 Methodology
This section begins with an overview of the dataset, followed by an explanation of how we addressed

the class imbalance problem using oversampling. Subsequently, we explain the extraction of textual and
visual sentiment embeddings. The methodology also includes a custom transformer-based architecture for
combining these embeddings with the help of advanced fusion techniques.

3.1 Dataset Overview
In this study, we utilized the Emo-At-Cap dataset [35], which includes 3840 images accompanied by

human-generated captions. The sentiment of each image is classified into one of three categories: positive,
negative, or neutral.
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Fig. 1 illustrates how the language of a caption can impact its affective tone. Referring to laughter or
euphoria, such as “The two laugh at a joke” or “Three friends leap with elation,” evokes positivity. Referring
to distress or violence, such as “The woman agonizes over her condition” or “A man tightly holds another,”
evokes negation. Captioning that simply states what is going on, such as ‘Two men stand facing a third’
or ‘A man looks after a woman,’ is neutral. The above examples shows that a captioning model can always
add the underlying emotion to every description. The Emo-At-Cap dataset serves as an excellent choice
because it contains a distinctive multimodal structure consisting of image-caption pairs along with sentiment
annotations. The equal distribution of the dataset between image content and sentiment annotation labels
made it perfect for conducting research into sentiment-based image captioning.

Figure 1: Sentiment-aware image captioning examples from the Emo-At-Cap dataset

Class Distribution and Addressing Imbalance
An unbalanced distribution between classes tends to create performance degradation because the model

prefers majority category classifications, thus impairing caption generation accuracy for minority sentiments.
The Random Over-Sampling technique [63] helps balance class distributions through its instantiation in the
RandomOverSampler class of the imblearn library. This technique duplicates minority class samples multiple
times to achieve a more appropriate class distribution. Oversampling was applied exclusively to the training
data, increasing the number of samples per sentiment class from 3840 to 6111. We kept the validation and test
data separate from the training process to reduce the risk of data leakage and ensure that the results reflect
real-world performance.

Fig. 2 highlights the improved balance between sentiment classes. This adjustment reduced the risk of
the model favoring one class over the another and helped it treat each sentiment category more equally
during training.
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Figure 2: The sentiment class distribution before and after oversampling

3.2 Textual and Visual Sentiment Embeddings
Sentiment analysis often involves understanding input data across different modalities, such as text and

images. RoBERTa and ViT both leverage transformer-based architectures to generate embeddings, but they
process different types of input data: RoBERTa handles text, while ViT processes images. Despite sharing the
transformer backbone, the encoding methods for text and images differ.

3.2.1 Textual Embedding Extraction (RoBERTa)
RoBERTa [36] processes the input text by using Byte Pair Encoding (BPE) for tokenization and includes

special tokens to mark the boundaries of sequences. Each token is converted into an embedding vector and
passed through several layers of a transformer model. The final hidden state of the [CLS] token is then
extracted and used for sentiment classification. A weighted cross-entropy loss function is employed to handle
class imbalance. The architecture of RoBERTa, shown in Fig. 3, is based on an encoder structure with multiple
transformer layers. To assess the performance of RoBERTa’s embeddings, t-SNE is employed to map the high-
dimensional feature space to two dimensions. The chart in Fig. 4 reveals separate clusters for each sentiment,
with neutral sentiment grouping closely together. While there is some overlap between the positive and
negative sentiment representations, this is anticipated due to the subtle emotional distinctions in the text.
This overlap, however, does not have a significant impact on the model’s overall performance.

3.2.2 Visual Embedding Extraction (ViT)
In ViT [37], an image is first broken down into smaller patches. Each patch is then turned into a high-

dimensional vector. These vectors pass through several transformer layers, where the [CLS] token gathers
insights from all the patches. This combined information forms a complete image representation that helps
with sentiment classification.
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Figure 3: Sentiment-aware embedding extraction using RoBERTa architecture

Figure 4: Visualization of textual embeddings clustered by sentiment categories using t-SNE

The diagram in Fig. 5 offers an in-depth view of the Vision Transformer architecture, demonstrating
its process from image preprocessing to the final sentiment classification. The t-SNE visualization in Fig. 6
shows that neutral sentiment forms a compact cluster, indicating that the model effectively extracts sentiment
features. While separating positive and negative sentiments remains somewhat tricky, the model performs
well in recognizing and extracting sentiment details from visual content.
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Figure 5: Visualization of the Vision Transformer (ViT) architecture

Figure 6: Visualization of visual embeddings clustered by sentiment categories using t-SNE

3.3 Fusion Techniques Leveraging Transformers
The proposed framework employs a Transformer-based decoder with novel fusion strategies to

align and integrate textual and visual embeddings for sentiment-aware caption generation. These fusion
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techniques enhance multimodal learning by capturing long dependencies and contextual details through
self-attention mechanisms. Key fusion strategies include concatenation fusion, attention fusion, VSCA,
cross-attention transformer and SDCG fusion. Each technique contributes uniquely to generating sentiment-
aligned captions.

3.3.1 Concatenation Fusion
Concatenation fusion is computationally efficient and preserves the independence of low-level visual

and textual features. The textual embedding hCLS and the visual embedding v are projected into a shared
D-dimensional space:

v′ =Wvv + bv , t′ =Wt hCLS + bt (1)

where Wv and Wt are learnable projection matrices, and bv and bt are bias terms. The projected embeddings
v′ and t′ are then concatenated into a single feature vector:

FC = [t′; v′] (2)

Transformers require this step because they fail to naturally grasp the order of input tokens. Each token
receives positional encoding which contains information about its sequence position to allow the model to
differentiate input tokens by their positions. Positional encoding refers to the method defined for the i-th
token is defined as:

E(ti) = t′i + pi (3)

The symbol t′i is the i-th projected textual embedding, and pi provides its sequence position for the i-th
token in the sequence. Through this addition, the model can determine word order relations in sequences
during text processing. The fused embeddings become the input to the transformer encoder module before
the attention mechanism operation. The computations for query Q, key K, and value V matrices are computed
from the fused feature vector FC using the following expressions:

Q = FC WQ , K = FC WK , V = FC WV (4)

The calculation of attention mechanism follows this form:

Attention(Q , K , V) = Softmax(QKT
√

dk
)V (5)

The logits required for caption generation are calculated:

L =Wf FC + b f (6)

The caption prediction depends on visual and textual embedding fusion which uses positional encoding
to maintain textual sequence order from text input.

3.3.2 Attention Fusion
Attention fusion uses a dynamic attention mechanism to align textual and visual features. The textual

embedding t′ interacts with the visual embedding v′ through text-to-visual and visual-to-textual attention



3416 Comput Mater Contin. 2025;84(2)

mechanisms:

Attentiontv = Softmax(QT KT
V√

dk
)Vv (7)

Attentionv t = Softmax(Qv KT
t√

dk
)Vt (8)

The attention outputs get combined into a single consolidated representation:

FA = [Attentiontv ; Attentionv t] (9)

Lastly, the combined attention output is mapped to the final latent space for generating captions.

L =Wf FA + b f (10)

3.3.3 Visual-Sentiment Co-Attention Mechanism (VSCA)
The VSCA connects visual and textual embeddings through a two-way attention system, aiming to

create captions that are more sensitive to sentiment.

AttentionV S = Softmax(Qt KT
v√

dk
)Vv (11)

AttentionSV = Softmax(Qv KT
t√

dk
)Vt (12)

The results from these bidirectional co-attention mechanisms are combined and normalized in the
following manner:

FC A = LayerNorm(AttentionV S +AttentionSV) (13)

This stage is important for keeping calculations consistent and letting information pass smoothly both
ways before it’s merged into one final output. The final fused representation FCA is used for sentiment-related
caption generation.

L =Wf FC A + b f (14)

3.3.4 Cross-Attention Transformers
The Cross-Attention Fusion mechanism integrates vision and sentiment embeddings to generate con-

textual captions. It utilizes cross-attention to dynamically align and merge features from multiple modalities.
Text queries Qt⋅ are applied to visual keys Kv , and the resulting attention weights highlight the most pertinent
features.

AttentionCross = Softmax(Qt⋅KT
v√

dk
)Vv (15)

A unified representation is created by concatenating the output vectors from both attention systems.

FCROSS = LayerNorm (AttentionT V +AttentionV T) (16)
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FCROSS is used in the equation to blend the outputs from the (AttentionT V ) and visual-to-textual
attention (AttentionV T ).

Once attention is fused, the resulting FCROSS is projected into the latent space and used to derive logits.

L =Wf FCROSS + b f (17)

In this phase, the learned weight matrix Wf and bias term b f are applied to map the fused attention into
the final feature space, facilitating the creation of the contextual caption.

3.3.5 Sentiment-Driven Caption Generator (SDCG)
In this research, we propose a transformer-based model called the SDCG fusion strategy, which

combines visual and sentiment embeddings to generate captions that are both informative and in line with
the sentiment of the image. The model uses a hierarchical fusion technique, along with multi-head attention
and layer normalization, to improve the way visual and textual information work together. This framework
helps the model create captions that are grammatically precise and that also pick up on the sentiment of the
image. Fig. 7 presents the architecture of SDCG, describing how visual and textual data are integrated using
hierarchical fusion and multi-head attention.

Figure 7: Sentiment-Driven Caption Generator (SDCG) architecture overview

The SDCG model starts by projecting textual embeddings (t′) which undergo a projection process,
allowing the model to set up attention between text and image. This step is important for understanding
how sentiment and content align across the two. The model’s design leans heavily on multi-head attention,
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guiding textual embeddings to focus on the visual ones in the way described below. The SDCG model starts
by projecting textual embeddings:

AttentionV =MultiHead(v′, v′, v′) (18)

The self-attention within multi-head attention results in the refined visual embeddings (v′) performing
an attention scan of themselves. Through the MultiHead function, the model develops the ability to
focus simultaneously on multiple representation subspaces. The textual embeddings use the self-attention
mechanism known as multi-head attention to process their elements.

Similarly, the textual embeddings attend to themselves through the multi-head attention mechanism:

AttentionT =MultiHead(t′, t′, t′) (19)

The multi-head attention mechanism works on the refined textual embeddings to yield AttentionT .
The learned textual embeddings (t′) use the same MultiHead function to self-attend during this operation.
Results from visual and textual attention are combined. The results of the visual and textual attention
operations are then concatenated:

FSDCG = [AttentionV ; AttentionT] (20)

FSDCG is the concatenation of the visual and textual attention outputs along a specific dimension. This
fusion allows the model to integrate both modalities effectively.

The concatenated representation FSDCG is then normalized using LayerNorm to eliminate numerical
instability and ensure consistency:

FSDCG = LayerNorm(FSDCG) (21)

Finally, the normalized representation is processed through a learnable weight matrix (Wf ) and a bias
vector (b f ) to produce the final logits:

L =Wf ⋅ FSDCG + b f (22)

L represents the output logits for caption generation, with Wf as a learnable weight matrix and b f as a
bias term that strengthens the bias vector on the normalized FSDCG.

3.4 Baseline Models
To benchmark our fusion method, we compared it to GIT (Generative Image-to-Text Transformer)

and BLIP (Bootstrapped Language-Image Pre-training) models known for top-quality captions. GIT excels
at mapping visual content to natural text, and BLIP brings visual and linguistic data together seamlessly.
We chose them for their reliability in producing coherent captions. The side-by-side results reveal both our
model’s advantages and its limitations.

3.4.1 Generative Image-to-Text Transformer (GIT)
We adapt the GIT [38] framework by integrating ViT for visual feature extraction and RoBERTa

for sentiment-aware caption generation. In this architecture, the ViT encoder processes the input image,
breaking it down into patches and encoding them into visual embeddings. The autoregressive decoder
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generates captions token by token. At each step t, the probability of generating a token yt is conditioned on
the previously generated tokens y1∶t−1 and the visual embeddings v from ViT, as expressed by:

P(yt ∣ y1∶t−1 , v) = Decoder(y1∶t−1 , v) (23)

After the caption is generated, RoBERTa is used to extract sentiment-aware embeddings from the [CLS]
token. This enables sentiment alignment in the generated captions. We use this framework as a baseline
because of its strong performance on benchmark datasets such as COCO, and its use of ViT (which is
shared with our own architecture). The integration of RoBERTa allows for sentiment analysis directly in the
generated captions, making it a relevant baseline for evaluating sentiment alignment.

3.4.2 Bootstrapping Language-Image Pre-Training (BLIP)
Similarly, we adapt the BLIP model [39], using ViT to extract visual features and RoBERTa to process

the text for sentiment-aware analysis. The model uses ViT for visual feature extraction and a transformer-
based encoder for text. In the cross-attention layer, visual queries Qv attend to textual keys Kt and values Vt ,
as follows:

AttentionCross = Softmax(Qv KT
t√

dk
)Vt (24)

BLIP is trained with a hybrid loss function that combines captioning loss Lcaption and contrastive loss
Lcontrastive:

L = Lcaption + λLcontrastive (25)

This hybrid approach ensures strong alignment between the visual and textual modalities. We chose
BLIP as a baseline because of its state-of-the-art performance in vision-language tasks and its ability to
achieve robust cross-modal alignment.

4 Experimental Hyperparameter and Evaluation
This section of the paper discusses the experimental setup, while Table 1 presents the core hyperparam-

eters for the different models. These configurations are essential for understanding the training process and
have been carefully selected to optimize performance across various fusion models.

Table 1: Hyperparameter settings for model training

Parameter Concatenation
fusion

Attention
fusion

Cross-
attention

fusion

VSCA SDCG BLIP GIT

Optimizer Adam Adam Adam Adam Adam Adam Adam
Step size 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Dropout

rate
0.1 0.1 0.1 0.1 0.1 0.1 0.1

Epochs 20 20 20 20 20 20 20
Batch size 32 32 32 32 32 16 16
Loss type X-Entropy X-Entropy X-Entropy X-Entropy X-Entropy X-Entropy X-Entropy

(Continued)
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Table 1 (continued)

Parameter Concatenation
fusion

Attention
fusion

Cross-
attention

fusion

VSCA SDCG BLIP GIT

Attention
size

100 100 100 128 100 256 256

Text
embed-

ding

512 512 512 512 512 768 768

Visual
embed-

ding

768 768 768 768 768 768 768

Tokenizer RoBERTa
Tokenizer

RoBERTa
Tokenizer

RoBERTa
Tokenizer

RoBERTa
Tokenizer

RoBERTa
Tokenizer

BLIP
Tokenizer

GIT
Tokenizer

Captioning
enabled

Yes Yes Yes Yes Yes Yes Yes

The key components of the model training and evaluation pipeline include batch size, learning rate,
optimization strategy, and loss function, all of which are crucial for model convergence and generalization.
In our evaluation, we benchmarked the captioning models with BLEU [64], ROUGE-L [65], and CIDEr [66].
BLEU gives us a quick count of overlapping n-grams with the reference, ROUGE-L measures recall by finding
the longest shared subsequence, and CIDEr uses TF-IDF to reward those less common, more meaningful
words. To make sure we weren’t missing the emotional mark, we also calculated a sentiment-accuracy score,
checking that each caption reliably hit its intended positive, negative, or neutral tone.

BLEUn = exp(
n
∑
k=1

wk log pk) × exp(min(1 − c
r

, 0)) (26)

In this notation, n as the maximum n-gram order, wk as the weight for each 1
n , pk refers to the modified

n-gram precision, c is the generated caption’s length, r indicates the effective size of the reference corpus, and
other formulas for ROUGE-L and CIDEr follow similarly as shown in the initial setup.

BLEUn = exp(
n
∑
k=1

wk log(pk)) × exp(min(1 − c
r

, 0)) (27)

Here, n stands for the top n-gram size, wk is its usual weight (1/n), pk the adjusted n-gram precision,
c indicates the limit of the generated caption, and and r denotes the effective corpus limit.

pk =
∑c∈candidate min(count(c), countref(c))

∑c∈candidate count(c) (28)

In this case, count(c) measures how frequently an n-gram is found in the generated caption, and
countref(c) notes the highest number of times it appears in the reference captions.

ROUGE-L = Fβ ×
LCS(S , R)
∣R∣ + ∣S∣ (29)
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For each caption, S be the generated caption and, R the true caption, LCS(S , R)finds how many elements
they share in a row, and Fβ gives a balanced mix of recall and precision.

Fβ =
(1 + β2) × (Precision × Recall)

β2 × Precision + Recall
(30)

where β is typically set to 1.

CIDEr(S) = 1
N

N
∑
n=1

1
∣R∣ ∑R∈R

cos(similarity(S , R)) (31)

In this metric, S is the produced caption, R the reference-caption collection, N the total produced
captions, and cos(similarity(S , R)) computes TF-IDF cosine similarity between S and R.

TF-IDF(t, D) = TF(t, D) × log( N
DF(t)) (32)

Under this notation, t is the target term, D the document or caption, TF(t, D) the count of occurrences
of t in D, DF(t) the number of reference captions where t appears, and N is the full set size of captions
reference.

Sentiment Accuracy = ∑
N
i=1 1(yi = ŷi)

N
(33)

Let N stands for the total samples number, yi for the true label of the i-th sample, ŷi for the predicted
label, and i-th sample, and 1(⋅) outputs 1 if the given condition is satisfied; otherwise, it returns 0.

5 Experimental Results
In this section, the results of the custom transformer model’s performance in generating sentiment-

aligned captions are presented. The results suggest that fusion techniques improve both the quality of the
captions and the accuracy of the sentiment. Ablation studies comparing the proposed framework to baseline
models demonstrate its superiority.

5.1 Performance of Models in Caption Generation
This research is built upon a transformer-based backbone. We evaluated five fusion techniques: con-

catenation fusion, attention fusion, cross-attention fusion, VSCA and SDCG. Evaluation metrics included
BLEU, ROUGE-L, and CIDEr, as shown in Table 2. The visual sentiment co-attention model achieved a top
CIDEr of 4.4273, while the sentiment-driven caption generator achieved 4.4211.

Table 2: Model performance on caption quality. Bold values indicate the best performance in each metric

Model BLEU ROUGE-L CIDEr
Concatenation fusion 0.355 0.482 3.1025

Attention fusion 0.477 0.5101 3.6102
Cross-attention fusion 0.4912 0.5305 3.905

VSCA 0.5419 0.6045 4.4273
SDCG 0.5382 0.6066 4.4211
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5.2 Sentiment Classification Results
Sentiment classification examines the performance of each model in matching the generated captions

with the emotional tone of the image [67]. The highest sentiment accuracy was achieved by our proposed
model, SDCG, at 94%, followed by the VSCA model at 93%, demonstrating their outstanding ability to
capture sentiment nuances. The models that used fusion performed moderately: concatenation fusion was
85%, attention fusion was 86%, and cross-attention fusion was 87%, but they included a few misclassifications
of positive, neutral, and negative sentiments. An exhaustive comparison of sentiment accuracy for all the
models is provided in Table 3.

Table 3: Sentiment classification scores

Model Accuracy rate
SDCG 94%
VSCA 93%

Cross-attention fusion 87%
Attention fusion 86%

Concatenation fusion 85%

In Fig. 8, each confusion matrix illustrates the performance of the models by showing correct predic-
tions across the positive, neutral, and negative classes, as well as any misclassification errors. The matrices
correspond to the following models: Concatenation Fusion 8(a), Attention Fusion 8(b), Cross-Attention
Fusion 8(c), VSCA 8(d), and SDCG 8(e).

Figure 8: Sentiment classification evaluation using confusion matrix



Comput Mater Contin. 2025;84(2) 3423

5.3 Ablation Study
We evaluated the impact of fusion approaches on our custom transformer model and compared it with

BLIP and GIT baseline models through an ablation study. The results are summarized in Table 4.

Table 4: Ablation study of baseline and enhanced transformer models with fusion techniques

Model Fusion technique CIDEr BLEU ROUGE-L
GIT (Baseline) None 4.2461 0.5256 0.5536
BLIP (Baseline) None 4.3458 0.5358 0.5654

Transformer variant Concatenation fusion 3.5567 0.4892 0.5223
Transformer variant Attention fusion 3.6482 0.4983 0.5350
Transformer variant Cross-attention fusion 3.8546 0.5056 0.5425
Transformer variant VSCA 4.0452 0.5154 0.5578
Transformer variant SDCG 4.2467 0.5257 0.5658

5.4 Qualitative Observations
As can be seen in Fig. 9a, the caption generated, “Two people smile and clap happily,” mirrors the scene’s

joyful tone and showcases the model’s reliable detection of positivity in line with its strong classification
metrics. as shown in Fig. 9b, for example “The family appears troubled and uncomfortable sitting together in
the car,” protrays a negative sentiment. Words such as “uncomfortable” and “troubled” match the expressions
of the actors, highlighting the performance of the model to detect mood within complex environments.
This accuracy is especially important for applications that depend on sentiment analysis, where handling
negative sentiments is crucial, such as those that analyze people’s mental states. Fig. 9c shows the caption
‘Two cameramen capture an actor’s performance on set.’ It contains no negative language and provides a
neutral description. This highlights the model’s ability to capture subtle sentiment without exaggeration or
distortion. The model shows effective performance when used with neutral situations that contain natural
or unnoticed emotional expressions. However, it occasionally fails to identify subtle sentiment patterns,
as demonstrated by its incorrect interpretation in Fig. 9d. In the original caption, ‘The man is whispering
something to the woman,’ there is no specific emotional undertone. The model produces the caption, ‘The
man is whispering something romantic to the woman,’ introducing excessive positive language that changes
a neutral expression into something optimistic. This transformation from accurate to incorrect highlights
both the strengths and weaknesses of the model, illustrating how sentiment alignment fails in this case. The
artificial sentiment introduces romantic intentions even though the original staging provides no evidence
for such romantic behavior. Fig. 9e further emphasizes contextual misinterpretation. The initial description
indicates two people sitting/chatting peacefully, as shown in the picture. The model creates a flawed output
that shows ‘bored and dissatisfied’ attitudes among both individuals, as indicated by the text, ‘The two
individuals are bored and dissatisfied.’ The model misinterprets neutral visual cues as negative expressions,
as it overrelies on such cues in this specific situation. This reveals limitations in the model’s ability to
recognize delicate feelings, resulting in incorrect sentiment readings. These instances demonstrate both the
effective capabilities and key limitations of the SDCG model. The model shows strong results in sentiment
identification but often misinterprets context when subtle emotional expressions occur.
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Figure 9: Generated caption illustrations: (a) Positive, (b) Negative, (c) Neutral, (d) Sentiment misalignment,
(e) Sentiment misalignment

5.5 Training and Validation Loss
The SDCG model’s performance, visualized in Fig. 10, shows a sharp initial drop in training loss from

about 4.2 to below 2.0 by the fourth epoch. Afterward, it continues to decline steadily. Validation loss follows
a similar trend, dropping from around 3.1 to just under 2.0 before leveling out at 1.5.

Figure 10: Performance of SDCG: training and validation loss
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The similarity between both curves shows that the model maintains a healthy balance between fitting
the training data and performing well on new data, which helps ensure reliable sentiment-based captions.

5.6 Limitations
A dual transformer architectural approach creates the main limitation because it leads to elevated

computational complexity. The model’s need for extensive computational power restricts its use on basic
devices as well as its application on demand. Occasionally, our model produces incorrect image captions
that do not correctly represent the emotional content. The sentiment integration functions well, although it
sometimes misinterprets specific emotional signals. The model encounters major difficulties when analyzing
emotions that adapt to contextual changes or when the emotional signals are ambiguous. The actual
distribution of sentiments in real-world information demonstrates a significant problem because negative
sentiments typically outnumber positive and neutral ones. Due to the unbalanced sentiment distributions
that naturally occur in real scenarios, the model shows reduced generalization abilities, even though
balancing methods were applied to the dataset. The sentiment model limits its analysis to basic positive,
neutral, and negative categories, which makes the identification of advanced emotions like sarcasm, as well
as nostalgic and excited feelings, impossible.

6 Conclusion & Future Work
The integration of sentiment into image captioning remains an underexplored area in computer vision

and natural language processing. This paper introduced SDCG, a novel transformer-based model designed to
generate sentiment-aware image captions with high accuracy. Using five transformer-based fusion strategies,
along with RoBERTa for textual sentiment extraction and ViT for visual feature representation, the proposed
approach effectively merged textual and visual sentiment embeddings. The experimental results demon-
strated that SDCG outperformed existing fusion techniques and baseline models in terms of sentiment
accuracy and caption quality, highlighting its effectiveness in generating captions that better align with both
visual content and emotional context. For future work, we will focus on reducing computational overhead
through model pruning and knowledge distillation, enabling a more efficient yet accurate implementation
of SDCG. Additionally, the current model classifies sentiment into broad categories: positive, neutral, and
negative, limiting its ability to capture fine-grained emotional nuances such as joy, nostalgia, or sarcasm.
Expanding the sentiment classification framework to include more diverse emotional states could enhance
the model’s expressiveness and applicability. Furthermore, improving domain adaptation techniques will
help enhance the generalization of SDCG across diverse datasets with varying linguistic styles, cultural
contexts, and image content. Solving these problems may help researchers move closer to building image
captioning models that are not only technically sound but also emotionally aware, which could benefit tasks
such as analyzing social media, assisting visually impaired users, or tailoring digital content.
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61. Staniūtė R, Šešok D. A systematic literature review on image captioning. Appl Sci. 2019;9(10):2024. doi:10.3390/
app9102024.

62. Li B, Zhou Y, Ren H. Image emotion caption based on visual attention mechanisms. In: Proceedings of 2020
IEEE 6th International Conference on Computer and Communications (ICCC); 2020 Dec 11–14; Chengdu, China.
p. 1456–60.

63. Hayaty M, Muthmainah S, Ghufran SM. Random and synthetic over-sampling approach to resolve data imbalance
in classification. Int J Artif Intell Res. 2020;4(2):86–94. doi:10.29099/ijair.v4i2.152.

https://doi.org/10.1007/s10489-021-02988-x
https://doi.org/10.1007/s11042-021-10632-6
https://doi.org/10.1007/s11263-023-01752-7
https://doi.org/10.1109/tcsvt.2023.3243725
https://doi.org/10.1109/tcsvt.2021.3067449
https://doi.org/10.1109/access.2023.3282444
https://doi.org/10.1007/s11063-020-10201-2
https://doi.org/10.1109/access.2024.3365528
https://doi.org/10.3390/app9102024
https://doi.org/10.3390/app9102024
https://doi.org/10.29099/ijair.v4i2.152


Comput Mater Contin. 2025;84(2) 3429

64. Papineni K, Roukos S, Ward T, Zhu W-J. BLEU: a method for automatic evaluation of machine translation.
In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics; 2002 Jul 7–12;
Philadelphia, PA, USA. p. 311–8.

65. Lin C-Y. Rouge: a package for automatic evaluation of summaries. In: Proceedings of Text Summarization
Branches Out; 2004; Barcelona, Spain. p. 74–81.

66. Vedantam R, Lawrence Zitnick C, Parikh D. Cider: consensus-based image description evaluation. In: Proceedings
of the 2015 IEEE Conference on Computer Vision and Pattern Recognition; 2015 Jun 7–12; Boston, MA, USA.
p. 4566–75.

67. Krotov A, Tebo A, Picart DK, Algave AD. Evaluating authenticity and quality of image captions via sentiment and
semantic analyses. arXiv:2409.09560. 2024.


	Optimizing Sentiment Integration in Image Captioning Using Transformer-Based Fusion Strategies
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experimental Hyperparameter and Evaluation
	5 Experimental Results
	6 Conclusion & Future Work
	References


