
echT PressScience

Doi:10.32604/cmc.2025.065665

ARTICLE

DRL-AMIR: Intelligent Flow Scheduling for Software-Defined Zero Trust
Networks

Wenlong Ke1,2,*, Zilong Li1, Peiyu Chen1, Benfeng Chen1, Jinglin Lv1, Qiang Wang2, Ziyi Jia2 and
Shigen Shen1

1School of Information Engineering, Huzhou University, Huzhou, 313000, China
2National Key Laboratory of Advanced Communication Networks, Shijiazhuang, 050050, China
*Corresponding Author: Wenlong Ke. Email: wlke@zjhu.edu.cn
Received: 19 March 2025; Accepted: 14 May 2025; Published: 03 July 2025

ABSTRACT: Zero Trust Network (ZTN) enhances network security through strict authentication and access control.
However, in the ZTN, optimizing flow control to improve the quality of service is still facing challenges. Software
Defined Network (SDN) provides solutions through centralized control and dynamic resource allocation, but the
existing scheduling methods based on Deep Reinforcement Learning (DRL) are insufficient in terms of convergence
speed and dynamic optimization capability. To solve these problems, this paper proposes DRL-AMIR, which is an
efficient flow scheduling method for software defined ZTN. This method constructs a flow scheduling optimization
model that comprehensively considers service delay, bandwidth occupation, and path hops. Additionally, it balances the
differentiated requirements of delay-critical K-flows, bandwidth-intensive D-flows, and background B-flows through
adaptive weighting. The proposed framework employs a customized state space comprising node labels, link bandwidth,
delay metrics, and path length. It incorporates an action space derived from node weights and a hybrid reward function
that integrates both single-step and multi-step excitation mechanisms. Based on these components, a hierarchical
architecture is designed, effectively integrating the data plane, control plane, and knowledge plane. In particular,
the adaptive expert mechanism is introduced, which triggers the shortest path algorithm in the training process to
accelerate convergence, reduce trial and error costs, and maintain stability. Experiments across diverse real-world
network topologies demonstrate that DRL-AMIR achieves a 15–20% reduction in K-flow transmission delays, a 10–15%
improvement in link bandwidth utilization compared to SPR, QoSR, and DRSIR, and a 30% faster convergence speed
via adaptive expert mechanisms.

KEYWORDS: Zero trust network; software-defined networking; deep reinforcement learning; flow scheduling

1 Introduction
With the continuous development of emerging network applications such as the Internet of Things,

artificial intelligence, and smart cities, traditional network perimeter-based security measures are increas-
ingly ineffective. ZTN [1,2] enhances identity verification and fine-grained access control, enabling network
systems to maintain high security and compliance in the face of increasingly complex threats. However, how
to further enhance the flexibility of ZTN in flow control to improve the service quality remains an unresolved
problem [3].

To enable more flexible management of network systems, SDN [4] has been progressively adopted.
Currently, SDN is widely used in data center networks, local area networks, and wide area networks to

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.065665
https://www.techscience.com/doi/10.32604/cmc.2025.065665
mailto:wlke@zjhu.edu.cn


3306 Comput Mater Contin. 2025;84(2)

enhance service quality [5,6]. However, applying SDN to ZTN and designing corresponding network flow
scheduling methods still presents challenges. First, ZTN requires more granular control over network traffic.
Therefore, the designed flow scheduling methods must be capable of identifying different types of network
flows. Second, the network flows of ZTN have varying security levels and transmission priorities. As a result,
the flow scheduling methods must support differentiated flow control strategies [7,8].

To further improve the effectiveness and efficiency of flow scheduling methods in routing decisions,
DRL [9,10] has been introduced. However, existing DRL-based flow scheduling methods still face the issue of
slow model convergence, which hinders their ability to effectively respond to dynamic network changes [11].
To address these challenges, this paper proposes a flow scheduling method based on SDN and DRL for the
ZTN scenario. The main contributions of this paper are as follows:

(1) We propose a traffic scheduling optimization model for ZTN. The proposed model takes into account
the different requirements of various types of flow in ZTN for network performance and parameters
such as delay, bandwidth, and path hop.

(2) We propose a flow scheduling method based on SDN and DRL, called DRL-AMIR. We tailor the
state space, action space, reward function, and adaptive expert mechanism for DRL-AMIR to improve
its performance.

(3) We conduct extensive testing of the proposed method in various network topologies. The experimental
results show that the proposed method outperforms existing methods in terms of decision-making
efficiency, transmission delay, load balancing, and bandwidth overhead.

The rest of this paper is organized as follows. Section 2 provides an analysis of the current research in
the field. Section 3 introduces the traffic scheduling optimization model proposed in this paper. The DRL-
AMIR method presented in this paper is described in Section 4. Section 5 outlines the experimental setup
and results analysis. Section 6 concludes the paper.

2 Related Work
The core principle of zero trust network “never trust, always verify” is changing the traditional network

boundary security model [12,13]. At present, zero trust technology has been widely used in network security,
Internet of Things, cloud computing and other fields, showing the potential to solve security challenges
in complex network environments [14]. Okegbile et al. [15] proposed a blockchain-enabled data sharing
framework that enhances data security and credibility through distributed ledger technology in zero trust
human digital twin systems. In their subsequent work on ZTN [16], they further improved the consensus
process by enhancing system throughput and reducing latency through reputation mechanisms and sharding
technology, which is crucial for the efficient operation of ZTN. Network traffic in ZTN can be classified
according to security requirements and service characteristics [17]. However, existing research mainly
focuses on device/user authentication and authorization, and the challenge of designing efficient routing
optimization models for different traffic types in ZTN has not been largely resolved.

SDN realizes centralized control and flexible configuration of network management by separat-
ing control plane and data plane, which provides new possibilities for network flow scheduling [18].
Ali et al. [19] proposed an E2E QoS guarantee framework for IoT devices, achieving end-to-end quality of
service guarantees in multi-domain heterogeneous networks through a two-layer SDN control architecture.
Alenazi and Ali [20] developed a deep Q-learning scheme for QoS improvement in the physical layer of
SDN, reducing end-to-end delay by intelligently selecting appropriate QoS categories. At present, SDN-based
flow scheduling approaches demonstrate exceptional capabilities in optimizing latency, reducing energy
consumption, and managing congestion control.



Comput Mater Contin. 2025;84(2) 3307

In recent years, DRL has been widely used in network routing optimization [21,22]. Shen et al. [23]
proposed MFGD3QN, which integrates mean-field games with dueling double deep Q-networks to enhance
network defense against attacks, providing insights for security-sensitive traffic optimization [24]. Casas-
Velasco et al. [25] developed DRSIR, an intelligent routing method based on DRL and SDN, to generate
adaptive routes for dynamic traffic changes. He et al. [26] proposed Message Passing Deep Reinforcement
Learning (MPDRL), which uses graph neural network to interact with the network topology environment
and extract knowledge through information transmission between links to achieve traffic load balanc-
ing [27]. Sun et al. [28] pointed out that existing DRL based routing solutions usually rely on complete node
information. Their ScaleDeep method improves routing performance and enhances adaptability to topology
changes by partially controlling key nodes in the network. In addition, research [29] shows that existing
methods are often difficult to balance different performance indicators when considering multi-objective
optimization, especially when dealing with traffic with strict deterministic requirements.

In general, the current DRL based network routing methods still have room for improvement in
handling the differentiated routing requirements of multiple traffic types in the ZTN environment [30]. The
DRL-AMIR method proposed in this paper aims to solve these limitations through state space, action space,
reward function and adaptive expert mechanism specially designed for ZTN environment.

3 The Routing Problems in Software-Defined Zero Trust Networks
This section will analyze and model the routing problems in Software-Defined Zero Trust Networks.

The goal of the modeling is to meet the routing requirements of different types of data flows in the ZTN,
while considering the overall network load balancing.

3.1 Problem Statement
The core principle of ZTN is “never trust, always verify”. In a ZTN, resource requesters can only establish

a connection with the resource provider after identity authentication and authorization. This ensures the
security of data resources and communication processes. At the same time, the ZTN can assign transmission
priorities to network flows based on their identified flow types, ensuring that high-priority flow is transmitted
over more suitable network links. This paper classifies the internal network flow in ZTN into three main
categories based on its primary workflows:

(1) K-flow: These flows mainly involve network traffic related to system security, such as identity verifica-
tion, authorization, and key distribution in a ZTN. This type of flows occupies a small portion of the
network bandwidth but has the highest transmission priority.

(2) D-flow: These flows primarily involve network traffic generated when transmitting data related to
specific user requests in a ZTN. This type of flows occupies a larger portion of the network bandwidth
and has the second-highest transmission priority.

(3) B-flow: These flows mainly involve the transmission of background data within the ZTN. Since this
data can be transmitted during system idle times, it requires a larger network bandwidth but has the
lowest transmission priority.

The objective of routing and scheduling the aforementioned network flows in this paper is to minimize
the transmission delay of high-priority flows and to achieve an overall load balancing across the network
links. Furthermore, by routing the critical security-related traffic along the optimal transmission paths with
minimized latency, the security performance of ZTN can be significantly enhanced.



3308 Comput Mater Contin. 2025;84(2)

3.2 Problem Formulation
The network topology of the ZTN can be represented as a graph G(V, E), where V denotes the set of

network nodes in the ZTN, and E represents the set of edges between the nodes. Based on the analysis of the
overall ZTN business in Section 3.1, as well as the varying network performance requirements of different
types of traffic during routing and transmission, this section focuses on the optimization and modeling of
path selection for network flows during routing. The objective of this paper is to identify the transmission
path that minimizes both the transmission delay and the number of hops, while also minimizing the
maximum link bandwidth utilization. The following sections provide a detailed explanation of each objective.

(1) Cumulative Hop Count. The cumulative hop count refers to the total number of network links traversed
by service flows as they are transmitted from the source node to the destination node. Reducing the
cumulative hop count during data transmission can effectively minimize the overhead on network
bandwidth and may also reduce transmission delays to some extent. Mathematically, the cumulative
number of hops is defined as follows:

Chc (x f ,e) = ∑
f ∈F
∑
e∈E

x f ,e (1)

where F denotes the set of all data flows in the network. Each flow f ∈ F represents a distinct
communication request between a source node and a destination node. e denotes a specific edge in the
set E. x f ,e denotes a binary decision variable that equals 1 if data flow f traverses edge e, and 0 otherwise.

(2) Cumulative Transmission Delay. The cumulative transmission delay refers to the total time taken for
service flows to transmit from the source node to the destination node. It is the sum of the trans-
mission delays of the network links that constitute the end-to-end transmission path. Minimizing the
cumulative transmission delay helps improve the ZTN’s response time to service requests, especially
for delay-sensitive K-flows and D-flows, which have higher demands for transmission efficiency. The
cumulative transmission delay is defined as follows:

Ctd (x f ,e) = ∑
f ∈F
∑
e∈E

de x f ,e (2)

where de represents the transmission delay of edge e, which quantifies the delay required for data to
traverse the link.

(3) Maximum Link Utilization. The maximum link utilization represents the highest bandwidth resource
utilization among all links in the network. Minimizing the maximum link utilization effectively avoids
bottleneck links, ensuring that traffic is evenly distributed across multiple links, thereby enhancing the
load balancing performance of the network. Furthermore, this optimization objective improves the
network’s fault tolerance capability. When a specific link fails, the load on other links will not become
excessively concentrated, preventing a sharp degradation in network performance. Mathematically,
the maximum link utilization is defined as follows:

Mlu (x f ,e) = maxeεE (
∑ f εF b f x f ,e

ce
) (3)

where b f represents the bandwidth requirement of flow f. ce denotes the bandwidth capacity of network
link e.

(4) Objective function. The optimization objective of this paper is to minimize the three functions
Chc (x f ,e), Ctd (x f ,e), and Mlu (x f ,e) during the routing selection process. The corresponding



Comput Mater Contin. 2025;84(2) 3309

objective functions are presented as follows:

min[Chc (x f ,e) , Ctd (x f ,e) , Mlu (x f ,e)] (4)

Eq. (4) describes a multi-objective optimization problem. However, it is challenging to simultaneously
achieve the minimum values for all optimization objectives. To reduce computational overhead, we
transform the multi-objective optimization problem in Eq. (4) into a single-objective optimization
problem with weights. This approach is justified as the Weighted Sum Method balances computational
tractability with decision-maker priorities through adjustable coefficients, systematically guiding the
search toward Pareto-optimal solutions. The corresponding single-objective functions are presented
as follows:

min w1Chc (x f ,e) +w2Ctd (x f ,e) +w3Mlu (x f ,e) (5)
s.t. w1 +w2 +w3 = 1 (6)
∑
f ∈F

b f x f ,e ≤ ce (7)

where w1, w2, and w3 in constraint (6) are the weight coefficients for the three sub-objectives, and their
values are typically determined through experiments or empirical knowledge. Constraint (7) indicates
that for each link e ∈ E, the total traffic flowing through it must not exceed its bandwidth capacity.

To solve the routing optimization problem described by Eqs. (5)–(7), this paper proposes a flow
scheduling algorithm based on deep reinforcement learning and an adaptive expert mechanism, termed
DRL-AMIR. The specific details of this method will be introduced in the following section.

4 The Proposed DRL-AMIR Flow Scheduling Method
In this section, we first present the overall architecture of DRL-AMIR. According to existing research,

the routing decision-making problem in networked systems constitutes a sequential decision-making task
that can be modeled as a Markov Decision Process problem. Then, we provide a detailed explanation of
DRL-AMIR’s key modules, including the state function, action function, reward function, and adaptive
expert mechanism.

4.1 The Overall Architecture
The framework of DRL-AMIR is designed as illustrated in Fig. 1, comprising three key components: the

data plane, the control plane, and the knowledge plane. In the control plane, the controller communicates
with the data plane via the OpenFlow protocol to achieve network topology awareness, link information
measurement, and flow table distribution. The collected network link information is stored in the network
link state repository within the knowledge plane, which is utilized by the DRL-AMIR agent during the
training phase for learning. Once the agent training is completed, the controller constructs transmission
paths based on the latest link information and distributes the corresponding routing flow tables.

4.2 The State Function
The state space comprises the following elements: node labels, link bandwidth and latency, length of

the generated path, and type of service (ToS) field. Each element is utilized to represent different state
information of the current network. The total length of the state vector is ∣V ∣ + 2 ∣E∣ + 2, where V denotes the



3310 Comput Mater Contin. 2025;84(2)

number of nodes in the network and E represents the set of edges between the nodes. The construction of
the state vector is detailed as follows.

Knowledge Plane
DRL-AMIR  

Node label
Link bandwidth

Delay

Node weight 
allocation

Next hop selection

Single step reward
Multi step reward

Exception handling
Dynamic discount factor

Control Plane

Network information perception module

Topology discovery

Bandwidth 

Routing forwarding module

Data Plane

Network link status 

information 

repository

Reward Adaptive Expert Mechanism

OpenFlow Device

K-flow (highest)

B-flow (medium)

D-flow (minimum)

Traffic classification

OpenFlow  Topology and link status Stream Table Distribution

Optimal path Network link information

train

data

Traffic optimization 

DRL-AMIR
Path constructionDelay measurement

State Action

Figure 1: The framework of DRL-AMIR

A. Node labels
The node labeling section is employed to identify the source node, the destination node, and the nodes

within the generated path. The vector length of node labels is ∣V ∣. For a routing path construction task, the
node labeling process consists of the following three steps: (1) Initialize the first ∣V ∣ elements of the state space
vector to 0. Each element corresponds to a node in the network, and its value is used to indicate whether the
node has been selected for constructing the routing path. (2) Based on the requirements of the routing task,
set the values of the vector elements corresponding to the source node and the destination node to ns and
nd , respectively. (3) According to the agent’s exploration in each round, sequentially label the nodes starting
from the source node as ni , where i represents the order of the node in the constructed routing path.
B. Link bandwidth and latency

In the state space, the link bandwidth and delay are used to record the remaining bandwidth and average
transmission delay of each link in the current network, respectively. These data will directly influence the
routing decisions of the DRL agent. When measuring the residual bandwidth of a specific link ev1 ,v2 , the SDN
controller sends OFPPortStatsRequest messages to the two network nodes, v1 and v2, connected by this link.
Upon receiving the request, each network node responds with an OFPPortStatsReply message, reporting
the cumulative number of packets transmitted by the network port of the measured link. For nodes v1, the
reporting message is bv1 ,t1 . Then the residual bandwidth of v1 can then be calculated as follows:

rv1 = cv1 −
bv1 ,t1 − bv1 ,t0

t1 − t0
(8)



Comput Mater Contin. 2025;84(2) 3311

where cv1 represents the bandwidth capacity of the node v1. bv1 ,t1 denotes the cumulative number of packets
transmitted until time t1, bv1 ,t0 represents the cumulative number of packets transmitted until the previous
measurement time t0, and t1 − t0 is the time interval between two consecutive measurements. Consequently,
the residual bandwidth of link ev1 ,v2 at time t1 can be determined, which is the smaller value between
rv1 and rv2 .

To measure the transmission delay of link e, the SDN controller sends link layer discovery protocol
(LLDP) packets to nodes v1 and v2, respectively, to determine the round-trip delay dvc ,v1 , dvc ,v2 between the
controller and each node. Simultaneously, the total delay dvc ,v1 ,v2 ,vc is measured for a data packet traveling
from the controller through nodes v1 and v2 and back to the controller. Based on these measurements, the
transmission delay between nodes v1 and v2 can be calculated using the following equation:

dv1 ,v2 =
dvc ,v1 ,v2 ,vc + dvc ,v2 ,v1 ,vc − dvc ,v1 − dvc ,v2

2
(9)

where vc represents the SDN controller. dvc ,v2 ,v1 ,vc denotes the transmission delay for a packet traveling from
the controller through nodes v2, v1 and back to the controller.
C. Path length and ToS field

The path length refers to the length of the currently generated path, which is used to track the progress
of the agent in exploring the complete path. In each round, the agent’s action involves adding a link to the
current path until a complete path from the source node to the destination node is constructed. The ToS
field is utilized to indicate the type of traffic. It consists of an 8-bit binary value. In this study, the ToS fields
for the K-flows, D-flows, and B-flows described in Section 3.1 are marked as 0b00000001, 0b00000010, and
0b00000011, respectively.

4.3 Action Function
The action space of the proposed DRL-AMIR method is designed as the set of weight values assigned to

all nodes in the network. In each action step, the agent selects the next-hop node for the transmission path
based on these weight values, continuing until a complete path from the source node to the destination node
is constructed. Mathematically, the action space is represented as follows:

at = [wv1 , wv2 , . . . wvi , . . . , wvn] (10)

where wvi denotes the weight assigned by the agent to the i-th node as the next-hop node. A higher weight
value indicates a stronger preference of the agent for selecting that node.

Based on the current network state, the agent may encounter four distinct scenarios during action
selection and environment interaction. Each corresponding to a specific reward or penalty strategy to guide
the learning process.

(1) Valid Hop Reward: If the agent selects a next-hop node that is reachable, the state is updated to the
new network state, and the agent receives a positive reward. This reward mechanism encourages the
agent to choose valid next-hop nodes, thereby progressively advancing the path construction.

(2) Invalid Selection Penalty: If the agent selects a node that is unreachable, the current state remains
unchanged, and the agent is penalized for the invalid selection. This penalty mechanism aims to reduce
the agent’s tendency to choose invalid nodes, promoting the selection of nodes that contribute to valid
path construction.

(3) Loopback Penalty: When the agent selects a node that already exists in the current path, it incurs a
loopback penalty. This penalty strategy prevents the inclusion of duplicate nodes in the path, avoiding



3312 Comput Mater Contin. 2025;84(2)

the formation of invalid or redundant hops, thereby enhancing the efficiency and effectiveness of
path selection.

(4) Cycle Penalty: If the agent’s selected node results in the formation of a cycle, it is penalized with a cycle
penalty. This design prevents the creation of closed loops in the path, ensuring that network traffic
does not circulate indefinitely and guaranteeing successful data delivery to the destination node.

Through the aforementioned action space design and reward mechanisms, the agent can progressively
learn the optimal path selection strategy. It effectively avoids invalid path choices, cycles, and redundant node
hops, thereby achieving efficient and high-quality data transmission.

4.4 Reward Function
In the proposed DRL-AMIR routing method, the reward function is designed to evaluate each action

taken by the agent during the path selection process. The reward is used to guide the agent to learn
in a direction that continuously optimizes network performance. The primary objectives of the reward
function are to minimize path length, minimize transmission delay, and minimize maximum link utilization.
To address the dimensional differences among these performance metrics, this study employs the range
normalization method to standardize these indicators. The normalization process is as follows:

u(x) = xmax − x
xmax − xmin (11)

According to Eq. (11), the smaller the value of a network performance metric x, the larger its correspond-
ing normalized value u(x). For any network performance metric x, the range of u(x) is [0, 1]. To effectively
guide the agent in finding the optimal transmission path, the reward function of DRL-AMIR includes both
single-step rewards and multi-step rewards. Their mathematical formulations are presented below:

Rste p = λ1u (Ctd(vi)) + λ2u (Mlu(vi)) (12)
R f inish = w1u (Chc(pvs ,vd)) +w2u (Ctd(pvs ,vd)) +w3u (Mlu(pvs ,vd)) (13)

where Ctd(vi) and Mlu(vi) represent the scores in terms of transmission delay and link bandwidth uti-
lization, respectively, after adding node vi . Meanwhile, Chc(pvs ,vd), and Mlu(pvs ,vd) denote the total scores
in terms of hop count, transmission delay, and link bandwidth utilization, respectively, after constructing
the complete path pvs ,vd from the source node vs to the destination node vd . The parameters λ1, λ2, w1,
w2, and w3 are weighting factors. By dynamically adjusting the weighting factors in the reward function,
the proposed method can adapt to the transmission requirements of different traffic flows. This enables the
reduction of transmission delays for high-priority flows while simultaneously minimizing overall network
bandwidth consumption and improving load balancing performance.

4.5 Adaptive Expert Mechanism
An adaptive expert mechanism is tailored for DRL-AMIR to further reduce the trial-and-error cost

of the agent and improve training efficiency. The expert mechanism is triggered when the agent’s decision-
making meets any of the following conditions: (1) the selected node is unreachable; (2) the agent repeatedly
selects a node already present in the current path; (3) the selected node would form a loop.

Once the adaptive expert mechanism is triggered, the agent employs a shortest-path algorithm to assist
in selecting the next-hop node. The actions chosen by the expert are stored in the experience replay buffer
with a discount factor D, ensuring that these actions appropriately influence the training process without



Comput Mater Contin. 2025;84(2) 3313

excessively interfering with the agent’s autonomous exploration. The discount factor D dynamically adjusts
based on the number of error rounds, following the equation:

DT+1 = min (1, max (ε, DT + k ⋅ (M
2
− T))) (14)

where ε denotes the minimum value of the discount factor. DT represents the current discount factor. k is
the step size coefficient controlling the adjustment speed of the discount factor. M represents the maximum
number of rounds for the expert mechanism, and T denotes the current expert round. Through this adaptive
expert mechanism, the agent can rapidly acquire effective path experiences during the early stages of training,
thereby reducing unnecessary trial and error. Additionally, it ensures that the agent maintains a higher
level of exploration during the mid-training phase. The process of the proposed DRL-AMIR is detailed in
Algorithm 1.

Algorithm 1: DRL-AMIR for Flow Scheduling in ZTN
Input: Source node vs , destination node vd , learning rate α, reward discount factor γ, sampling size k,
target network update frequency Ft , number of iterations In , expert discount factor D.
Output: Optimal path from vs to vd .
Initialize the network Qw (s, a) with random parameters w, where s is the state and a is the action.
Initialize the target network Qw− by copying the parameters w− ← w.
Initialize the experience replay buffer Rb
Initialize the topology map Mto po using information collected from the SDN controller.
1. For episode = 1 to In do:
2. Generate the initial state st .
3. While True do:
4. Select an action at using the decaying ε-greedy policy.
5. if executing at results in an anomaly:
6. Assign a penalty rt .
7. Store (st , at , rt , st+1) as an experience into experience pool Ep.
8. Adjust the expert coefficient.
9. Use the expert mechanism to select an action at .
10. Execute at , obtain rt and next state st+1.
11. Store (st , at , rt , st+1) as an experience into Ep.
12. if the number of experience in Ep exceeds the sampling size k:
13. Sample k experiences from the Ep.
14. Compute the target value for experience i: yi = ri + γmaxQw−(si+1 , a).
15. Minimize the target loss.
16. if the update frequency Ft is met:
17. Update the target network.
18. if the destination node vd is reached after executing action at :
19. Break the loop.
20. if the number of loop iterations exceeds the total number of nodes in the network:
21. Break the loop.
22. Update the current state st to st+1.
23. End While
24. End For



3314 Comput Mater Contin. 2025;84(2)

5 Experimental Setup and Performance Evaluation
To evaluate the effectiveness of the proposed DRL-AMIR routing method, we design a comprehensive

set of comparative experiments. In this section, we first introduce the experimental setup, including
the runtime environment, network topology, and comparative methods. Subsequently, we present the
specific results and analyses of the proposed DRL-AMIR method in terms of hyperparameter setting and
network performance.

5.1 Experimental Setup
The experimental environment is set up on a server equipped with a 16-core CPU, 64GB of RAM, and

an NVIDIA 3090 GPU. On this server, we install the Ubuntu 16.04 operating system and utilize the Mininet
network emulator along with the Ryu controller to construct the ZTN environment.

To test the effectiveness of the proposed DRL-AMIR method in different network environments, this
paper employs three network topologies of varying scales. These three network topologies [31] consist of 10,
14, and 21 network nodes, respectively.

To evaluate the performance of DRL-AMIR in terms of network performance, this paper conducts
comparative experiments with four existing methods, namely SPR, LBR, QoSR, and DRSIR [25]. The
experimental methodology is defined as follows: (1) SPR constructs paths with minimal network hop
counts for routing tasks; (2) LBR composes paths using links with maximum residual bandwidth; (3) QoSR
minimize hop counts for delay-sensitive flows and maximize residual bandwidth for throughput-sensitive
flows; (4) DRSIR implements a DQN-driven approach to intelligently identify optimal transmission paths.

5.2 Hyperparameter Setting
In the training of the proposed DRL-AMIR, hyperparameters such as the learning rate, sampling size,

target network update frequency, and discount factor play a critical role in determining model performance.
By tuning these parameters and observing the convergence speed of the final reward as well as the reward
value after convergence, we identified the optimal parameter settings for our network environment. The
experimental results of testing these hyperparameters are illustrated in Fig. 2.

As shown in Fig. 2a, testing values of 0.01, 0.001, and 0.0001 revealed that lr = 0.01 provides the fastest
convergence (within 100 episodes) and highest stable reward (0.85). Lower rates showed significantly slower
convergence, with lr = 0.001 requiring 200 episodes and lr = 0.0001 stabilizing only after 300 episodes with
notable early fluctuations.

Fig. 2b demonstrates that with values of 0.5, 0.7, and 0.9 tested, γ = 0.9 showed superior performance,
achieving rapid reward increase after 50 episodes and stabilizing near 0.85. This indicates that prioritizing
long-term returns improves decision-making effectiveness. Lower values (γ = 0.7 and γ = 0.5) exhibited
slower convergence and inferior overall performance.

As illustrated in Fig. 2c, comparing sizes of 32, 64, and 128, a batch size of 128 showed the highest stability
during convergence. Though initial convergence was slightly slower, it produced a smooth learning curve
with minimal fluctuations and consistently high reward values in later stages, indicating more comprehensive
utilization of experience samples and more stable gradient updates.

Fig. 2d shows that testing values of 50, 100, and 500 revealed that update = 50 achieved optimal results
in both convergence speed and reward optimization. This setting demonstrated quick convergence to high
reward levels with smaller post-convergence fluctuations, effectively accelerating the learning process while
maintaining training stability.



Comput Mater Contin. 2025;84(2) 3315

Figure 2: Hyperparameter test of the proposed DRL-AMIR: (a) learning rate; (b) discount factor γ; (c) batch size; (d)
update; (e) decay-ε-greedy; (f) expert mechanism

As depicted in Fig. 2e, with convergence epochs set to 10, 50, and 100, decay = 10 showed rapid early
convergence and stable high reward values. Larger decay values (50 and 100) resulted in slower convergence
and greater fluctuations, with decay = 100 showing persistent instability even in later stages.

Fig. 2f compares training with and without the expert mechanism, demonstrating that DRL-AMIR with
the mechanism achieves faster initial convergence, reaching stability after approximately 200 episodes with
higher reward values. Without the mechanism, DRL-AMIR-E exhibited slower convergence and greater
fluctuations, though eventually reaching similar reward levels. The expert mechanism thus effectively
improves both convergence speed and model stability.

5.3 Network Performance
To evaluate the performance of the proposed DRL-AMIR method in terms of transmission delay, load

balancing efficiency, and network bandwidth overhead, this section presents comparative analyses against
four benchmark methods: SPR, LBR, QoSR, and DRSIR. The experimental results, as illustrated in Figs. 3–5,
demonstrate the comparative performance metrics across these methodologies.

As can be seen from Fig. 3, DRL-AMIR demonstrates significant advantages in low latency across
different topological scales and flow types. This indicates that the method can efficiently balance link load and
latency requirements in path selection, exhibiting excellent latency optimization performance. DRL-AMIR
adaptively adjusts its routing decisions based on the characteristics of different traffic types, showcasing
strong generalization capabilities. Even in topologies with a larger number of nodes and more complex
network structures, it maintains its low-latency advantage, further validating its applicability in complex
scenarios. Additionally, compared to other routing methods, DRL-AMIR exhibits smaller fluctuations in
latency, indicating more stable performance. This suggests that its routing decisions are more reliable in
dynamic networks and less susceptible to changes in network topology or load fluctuations.



3316 Comput Mater Contin. 2025;84(2)

Figure 3: Average transmission delay of diverse flows in different network topology: (a) 10-nodes topology; (b) 14-
nodes topology; (c) 21-nodes topology

Figure 4: Average bottleneck bandwidth of diverse flows in different network topology: (a) 10-nodes topology; (b)
14-nodes topology; (c) 21-nodes topology

Figure 5: Average path length of diverse flows in different network topology: (a) 10-nodes topology; (b) 14-nodes
topology; (c) 21-nodes topology.

From Fig. 4, it is evident that DRL-AMIR shows a clear advantage in bottleneck bandwidth for both
D-flows and B-flows. This demonstrates that DRL-AMIR can effectively balance bottleneck bandwidth with
other performance metrics, ensuring high resource utilization and meeting the transmission requirements
of D-flows and B-flows. However, DRL-AMIR does not outperform all other methods in every scenario.



Comput Mater Contin. 2025;84(2) 3317

Specifically, compared to the LBR method, LBR achieves theoretically optimal results in terms of bottleneck
bandwidth because it solely focuses on maximizing bottleneck bandwidth without considering other factors
such as latency. In contrast, DRL-AMIR strikes a balance among multiple metrics, including bottleneck
bandwidth, latency, and hop count, making it more practical for real-world applications.

From Fig. 5, it is apparent that DRL-AMIR performs well in reducing path hop count. Although SPR
achieves the best performance among all methods by selecting the shortest path, which theoretically mini-
mizes hop count, it only considers path length and fails to account for other critical network performance
metrics such as bottleneck bandwidth and link load. This can lead to over-concentration of bandwidth
resources in certain network environments, causing congestion or imbalanced resource allocation. In
contrast, DRL-AMIR finds an optimal balance among multiple performance metrics, effectively reducing
hop count while considering factors such as bandwidth, latency, and link load. This enables more efficient
optimization of network resource utilization, particularly in dynamic scenarios with complex topologies and
multiple flow types.

6 Conclusion
This article proposes DRL-AMIR, a novel flow scheduling method for software defined zero trust

networks that addresses the key challenges of network flexibility and service quality. The main contributions
of this work are threefold. Firstly, we propose a comprehensive flow scheduling optimization model tailored
for the ZTN environment, which effectively considers the differentiated requirements of various network
flow types in terms of latency, bandwidth, and path hop count in terms of network performance indicators.
Secondly, we developed the DRL-AMIR method, which has a specially designed state space, action space,
reward function, and adaptive expert mechanism, significantly improving the decision-making efficiency
of flow scheduling in ZTN environments. Thirdly, through extensive experiments on various network
topologies of different scales, we have demonstrated that DRL-AMIR consistently outperforms existing
methods in key performance indicators, including SPR, LBR, QoSR, and DRSIR.

Future research will focus on integrating meta-learning techniques to enable rapid adaptation across
dynamic network topologies. Additionally, we aim to develop hierarchical action space architectures with
adaptive granularity control, enhancing DRL-AMIR’s capability to handle abrupt environmental changes
while maintaining computational efficiency.

Acknowledgement: Thanks to the anonymous reviewers and editors for their hard work.

Funding Statement: This work was supported in part by Scientific Research Fund of Zhejiang Provincial Educa-
tion Department under Grant Y202351110, in part by Huzhou Science and Technology Plan Project under Grant
2024YZ23, in part by Research Fund of National Key Laboratory of Advanced Communication Networks under
Grant SCX23641X004, and in part by Postgraduate Research and Innovation Project of Huzhou University under
Grant 2024KYCX50.

Author Contributions: The authors confirm their contribution to the paper as follows: Conceptualization: Wenlong
Ke, Zilong Li, Peiyu Chen; Methodology: Wenlong Ke, Zilong Li, Peiyu Chen; Software: Peiyu Chen, Jinglin Lv;
Writing—original draft preparation: Wenlong Ke, Peiyu Chen; Writing—review and editing: Wenlong Ke, Zilong Li,
Benfeng Chen, Qiang Wang, Ziyi Jia, Shigen Shen; Funding Acquisition: Wenlong Ke, Benfeng Chen. All authors
reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The general created dataset is available upon request.

Ethics Approval: This study did not involve any human or animal subjects, and therefore, ethical approval was
not required.



3318 Comput Mater Contin. 2025;84(2)

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Zhang J, Zheng J, Zhang Z, Chen T, Ya T, Zhang Q, et al. ATT&CK-based advanced persistent threat attacks risk

propagation assessment model for zero trust networks. Comput Netw. 2024;245(2):110376. doi:10.1016/j.comnet.
2024.110376.

2. Erel-Özçevik M. Token as a service for software-defined zero trust networking. J Netw Syst Manag. 2024;33(1):1–20.
doi:10.1007/s10922-024-09894-w.

3. Xu X, Zhou X, Zhou X, Bilal M, Qi L, Xia X, et al. Distributed edge caching for zero trust-enabled connected
and automated vehicles: a multi-agent reinforcement learning approach. IEEE Wirel Commun. 2024;31(2):36–41.
doi:10.1109/mwc.001.2300414.

4. Hao M, Tan B, Wang S, Yu R, Liu RW, Yu L. Exploiting blockchain for dependable services in zero-trust vehicular
networks. Front Comput Sci. 2023;18(2):182805. doi:10.1007/s11704-023-2495-0.

5. Rostami M, Goli-Bidgoli S. An overview of QoS-aware load balancing techniques in SDN-based IoT networks.
J Cloud Comput. 2024;13(1):89. doi:10.1186/s13677-024-00651-7.

6. Hu M, Xiao M, Hu Y, Cai C, Deng T, Peng K. Software defined multicast using segment routing in LEO satellite
networks. IEEE Trans Mob Comput. 2024;23(1):835–49. doi:10.1109/tmc.2022.3215976.

7. Xie H, Wang Y, Ding Y, Yang C, Liang H, Qin B. Industrial wireless internet zero trust model: zero trust meets
dynamic federated learning with blockchain. IEEE Wirel Commun. 2024;31(2):22–9. doi:10.1109/mwc.001.2300368.

8. Hu M, Li J, Cai C, Deng T, Xu W, Dong Y. Software defined multicast for large-scale multi-Layer LEO satellite
networks. IEEE Trans Netw Serv Manag. 2022;19(3):2119–30. doi:10.1109/tnsm.2022.3151552.

9. Dhanaraj RK, Singh A, Nayyar A. Matyas-Meyer Oseas based device profiling for anomaly detection via deep
reinforcement learning (MMODPAD-DRL) in zero trust security network. Computing. 2024;106(6):1933–62.
doi:10.1007/s00607-024-01269-y.

10. Dong T, Zhuang Z, Qi Q, Wang J, Sun H, Yu FR, et al. Intelligent joint network slicing and routing via GCN-
powered multi-task deep reinforcement learning. IEEE Trans Cogn Commun Netw. 2022;8(2):1269–86. doi:10.
1109/tccn.2021.3136221.

11. Bhavanasi SS, Pappone L, Esposito F. Dealing with changes: resilient routing via graph neural networks and multi-
agent deep reinforcement learning. IEEE Trans Netw Serv Manag. 2023;20(3):2283–94. doi:10.1109/tnsm.2023.
3287936.

12. Dhiman P, Saini N, Gulzar Y, Turaev S, Kaur A, Nisa KU, et al. A review and comparative analysis of relevant
approaches of zero trust network model. Sensors. 2024;24(4):1328. doi:10.3390/s24041328.

13. Ye J, Cheng W, Liu X, Zhu W, Xa W, Shen S. SCIRD: revealing infection of malicious software in edge computing-
enabled IoT networks. Comput Mater Contin. 2024;79(2):2743–69. doi:10.32604/cmc.2024.049985.

14. Shen Y, Shepherd C, Ahmed CM, Shen S, Yu S. SGD3QN: joint stochastic games and dueling double deep
Q-networks for defending malware propagation in edge intelligence-enabled internet of things. IEEE Trans Inf
Forensics Secur. 2024;19:6978–90. doi:10.1109/tifs.2024.3420233.

15. Okegbile SD, Cai J, Chen J, Yi C. Blockchain for secure data sharing in zero-trust human digital twin systems. In:
Nguyen TA, editor. Blockchain and digital twin for smart hospitals. Amsterdam, The Netherlands: Elsevier; 2025.
p. 337–61. doi:10.1016/b978-0-443-34226-4.00018-6.

16. Okegbile SD, Cai J, Chen J, Yi C. A reputation-enhanced shard-based byzantine fault-tolerant scheme for secure
data sharing in zero trust human digital twin systems. IEEE Internet Things J. 2024;11(12):22726–41. doi:10.1109/
JIOT.2024.3382829.

17. Singh A, Dhanaraj RK, Sharma AK. Personalized device authentication scheme using Q-learning-based decision-
making with the aid of transfer fuzzy learning for IIoT devices in zero trust network (PDA-QLTFL). Comput Electr
Eng. 2024;118(5):109435. doi:10.1016/j.compeleceng.2024.109435.

18. Pacini A, Scano D, Sgambelluri A, Valcarenghi L, Giorgetti A. Hybrid-hierarchical synchronization for resilient
large-scale SDN architectures. IEEE Access. 2025;13(1):9032–46. doi:10.1109/access.2025.3527224.

https://doi.org/10.1016/j.comnet.2024.110376
https://doi.org/10.1016/j.comnet.2024.110376
https://doi.org/10.1007/s10922-024-09894-w
https://doi.org/10.1109/mwc.001.2300414
https://doi.org/10.1007/s11704-023-2495-0
https://doi.org/10.1186/s13677-024-00651-7
https://doi.org/10.1109/tmc.2022.3215976
https://doi.org/10.1109/mwc.001.2300368
https://doi.org/10.1109/tnsm.2022.3151552
https://doi.org/10.1007/s00607-024-01269-y
https://doi.org/10.1109/tccn.2021.3136221
https://doi.org/10.1109/tccn.2021.3136221
https://doi.org/10.1109/tnsm.2023.3287936
https://doi.org/10.1109/tnsm.2023.3287936
https://doi.org/10.3390/s24041328
https://doi.org/10.32604/cmc.2024.049985
https://doi.org/10.1109/tifs.2024.3420233
https://doi.org/10.1016/b978-0-443-34226-4.00018-6
https://doi.org/10.1109/JIOT.2024.3382829
https://doi.org/10.1109/JIOT.2024.3382829
https://doi.org/10.1016/j.compeleceng.2024.109435
https://doi.org/10.1109/access.2025.3527224


Comput Mater Contin. 2025;84(2) 3319

19. Ali J, Song HH, Roh B-H. An SDN-based framework for E2E QoS guarantee in internet-of-things devices. IEEE
Internet Things J. 2024;12(1):605–22. doi:10.1109/JIOT.2024.3465609.

20. Alenazi MJ, Ali J. An effective deep-Q learning scheme for QoS improvement in physical layer of software-defined
networks. Phys Commun. 2024;66(2):102387. doi:10.1016/j.phycom.2024.102387.

21. Tan KY, Tan SC, Chuah TC. A multi-phase DRL-driven SDN migration framework addressing budget, legacy
service compatibility, and dynamic traffic. IEEE Access. 2025;13(4):33202–19. doi:10.1109/access.2025.3543236.

22. Wang L, Lu L, Wang M, Li Z, Yang H, Zhu S, et al. SNS: smart node selection for scalable traffic engineering in
segment routing networks. IEEE Trans Netw Serv Manag. 2025;22(1):92–106. doi:10.1109/tnsm.2024.3424928.

23. Shen S, Cai C, Shen Y, Wu X, Ke W, Yu S. MFGD3QN: enhancing edge intelligence defense against DDoS with
mean-field games and dueling double deep Q-Network. IEEE Internet Things J. 2024;11(13):23931–45. doi:10.1109/
jiot.2024.3387090.

24. Shen S, Cai C, Shen Y, Wu X, Ke W, Yu S. Joint mean-field game and multiagent asynchronous advantage actor-
critic for edge intelligence-based IoT malware propagation defense. IEEE Trans Dependable Secur Comput.
2025;2025:1–15. doi:10.1109/TDSC.2025.3542104.

25. Casas-Velasco DM, Rendon OMC, da Fonseca NLS. DRSIR: a deep reinforcement learning approach for routing in
software-defined networking. IEEE Trans Netw Serv Manag. 2022;19(4):4807–20. doi:10.1109/tnsm.2021.3132491.

26. He Q, Wang Y, Wang X, Xu W, Li F, Yang K, et al. Routing optimization with deep reinforcement learning in
knowledge defined networking. IEEE Trans Mob Comput. 2024;23(2):1444–55. doi:10.1109/tmc.2023.3235446.

27. Shen S, Xie L, Zhang Y, Wu G, Zhang H, Yu S. Joint differential game and double deep Q-networks for suppressing
malware spread in industrial internet of things. IEEE Trans Inf Forensics Secur. 2023;18:5302–15. doi:10.1109/tifs.
2023.3307956.

28. Sun P, Guo Z, Li J, Xu Y, Lan J, Hu Y. Enabling scalable routing in software-defined networks with deep reinforce-
ment learning on critical nodes. IEEE/ACM Trans Netw. 2022;30(2):629–40. doi:10.1109/tnet.2021.3126933.

29. Tao X, Monaco D, Sacco A, Silvestri S, Marchetto G. Delay-aware routing in software-defined networks via network
tomography and reinforcement learning. IEEE Trans Netw Sci Eng. 2024;11(4):3383–97. doi:10.1109/tnse.2024.
3371384.

30. Shen S, Hao X, Gao Z, Wu G, Shen Y, Zhang H, et al. SAC-PP: jointly optimizing privacy protection and
computation offloading for mobile edge computing. IEEE Trans Netw Serv Manag. 2024;21(6):6190–203. doi:10.
1109/tnsm.2024.3447753.

31. Ye M, Zhao C, Wen P, Wang Y, Wang X, Qiu H. DHRL-FNMR: an intelligent multicast routing approach based on
deep hierarchical reinforcement learning in SDN. IEEE Trans Netw Serv Manag. 2024;21(5):5733–55. doi:10.1109/
tnsm.2024.3402275.

https://doi.org/10.1109/JIOT.2024.3465609
https://doi.org/10.1016/j.phycom.2024.102387
https://doi.org/10.1109/access.2025.3543236
https://doi.org/10.1109/tnsm.2024.3424928
https://doi.org/10.1109/jiot.2024.3387090
https://doi.org/10.1109/jiot.2024.3387090
https://doi.org/10.1109/TDSC.2025.3542104
https://doi.org/10.1109/tnsm.2021.3132491
https://doi.org/10.1109/tmc.2023.3235446
https://doi.org/10.1109/tifs.2023.3307956
https://doi.org/10.1109/tifs.2023.3307956
https://doi.org/10.1109/tnet.2021.3126933
https://doi.org/10.1109/tnse.2024.3371384
https://doi.org/10.1109/tnse.2024.3371384
https://doi.org/10.1109/tnsm.2024.3447753
https://doi.org/10.1109/tnsm.2024.3447753
https://doi.org/10.1109/tnsm.2024.3402275
https://doi.org/10.1109/tnsm.2024.3402275

	DRL-AMIR: Intelligent Flow Scheduling for Software-Defined Zero Trust Networks
	1 Introduction
	2 Related Work
	3 The Routing Problems in Software-Defined Zero Trust Networks
	4 The Proposed DRL-AMIR Flow Scheduling Method
	5 Experimental Setup and Performance Evaluation
	6 Conclusion
	References


